Approximating steady states in equilibrium and nonequilibrium condensates

Hayder Salman
Phys. Rev. A 85, 063622 – Published 29 June 2012

Abstract

We obtain approximations for the time-independent Gross-Pitaevskii (GP) and complex GP equation in two and three spatial dimensions by generalizing the divergence-free WKB method. The results include an explicit expression of a uniformly valid approximation for the condensate density of an ultracold Bose gas confined in a harmonic trap that extends into the classically forbidden region. This provides an accurate approximation of the condensate density that includes healing effects at leading order that are missing in the widely adopted Thomas-Fermi approximation. The results presented herein allow us to formulate useful approximations to a range of experimental systems including the equilibrium properties of a finite-temperature Bose gas and the steady-state properties of a two-dimensional nonequilibrium condensate. Comparisons between our asymptotic and numerical results for the conservative and forced-dissipative forms of the GP equations as applied to these systems show excellent agreement between the two sets of solutions, thereby illustrating the accuracy of these approximations.

  • Figure
  • Received 13 August 2011

DOI:https://doi.org/10.1103/PhysRevA.85.063622

©2012 American Physical Society

Authors & Affiliations

Hayder Salman

  • School of Mathematics, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 6 — June 2012

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×