Parametrization of the two-electron reduced density matrix for its direct calculation without the many-electron wave function: Generalizations and applications

David A. Mazziotti
Phys. Rev. A 81, 062515 – Published 30 June 2010

Abstract

An improved parametrization of the two-electron reduced density matrix (2-RDM) [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)] was recently shown to yield energies and properties that are markedly better than those calculated by traditional ab initio methods of similar computational scaling. In this paper a family of such energy functionals, generalizing the ones obtained previously, is derived through the use of (i) p-particle contraction relations based on the contraction of the cumulant expansions of p-particle RDMs and (ii) Cauchy-Schwarz relations that arise from an important set of N-representability constraints known as the two-positivity conditions. The 2-RDMs are explicitly parameterized in terms of the first-order part of the cumulant 2-RDM and, for the inclusion of single excitations, a second-order part of the 1-RDM. In contrast to earlier formulations based on the coefficients from configuration interaction with single and double excitations (CISD), the cumulant-based parametric 2-RDM methods, from the properties of cumulants, are rigorously size extensive. We also show that writing the energy functionals in terms of correlated 1-RDMs and cumulant 2-RDMs reduces the computational cost of the parametric 2-RDM methods to that of CISD. Applications are made to ground-state energies of several molecules, equilibrium bond distances, and frequencies of HF, F2, and CO, the relative energy of the cis and trans isomers of HO3, and the HCN-HNC isomerization reaction. For bond breaking in hydrogen fluoride the improved and more efficient parametric 2-RDM methods yield energies with similar accuracies at both equilibrium and nonequilibrium geometries in 6-31G** and polarized valence quadruple-ζ basis sets. Computed 2-RDMs very nearly satisfy well-known N-representability conditions.

  • Figure
  • Received 22 March 2010

DOI:https://doi.org/10.1103/PhysRevA.81.062515

©2010 American Physical Society

Authors & Affiliations

David A. Mazziotti*

  • Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA

  • *damazz@uchicago.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 6 — June 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×