Predicting scattering properties of ultracold atoms: Adiabatic accumulated phase method and mass scaling

B. J. Verhaar, E. G. M. van Kempen, and S. J. J. M. F. Kokkelmans
Phys. Rev. A 79, 032711 – Published 20 March 2009

Abstract

Ultracold atoms are increasingly used for high-precision experiments that can be utilized to extract accurate scattering properties. This results in a stronger need to improve on the accuracy of interatomic potentials, and in particular the usually rather inaccurate inner-range potentials. A boundary condition for this short range can be conveniently given via the accumulated phase method. However, in this approach one should satisfy three conditions, two of which are in principle conflicting, and the validity of these approximations comes under stress when higher precision is required. We show that a better compromise between the two is possible by allowing for an adiabatic change in the hyperfine mixing of singlet and triplet states for interatomic distances smaller than the separation radius. Results we presented previously in a brief publication using this method show a high precision and extend the set of predicted quantities. The purpose of this paper is to describe its background. A mass-scaling approach to relate accumulated phase parameters in a combined analysis of isotopically related atom pairs is described in detail and its accuracy is estimated, taking into account both Born-Oppenheimer and Wentzel-Kramers-Brillouin breakdown. We demonstrate how numbers of singlet and triplet bound states follow from the mass scaling.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 November 2008

DOI:https://doi.org/10.1103/PhysRevA.79.032711

©2009 American Physical Society

Authors & Affiliations

B. J. Verhaar, E. G. M. van Kempen*, and S. J. J. M. F. Kokkelmans

  • Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

  • *Present address: Philips Applied Technologies, Eindhoven, The Netherlands.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 3 — March 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×