Soliton interactions and transformations in colloidal media

Michał Matuszewski, Wieslaw Krolikowski, and Yuri S. Kivshar
Phys. Rev. A 79, 023814 – Published 11 February 2009

Abstract

We study nonlinear light propagation in colloidal suspensions of spherical dielectric nanoparticles. We analyze the existence and properties of one-dimensional self-trapped beams (spatial optical solitons) in such media and demonstrate the existence of a bistability regime. The solitons corresponding to the two bistable branches have very different properties, and they can be easily distinguished by the measurement of the soliton width. We find that both types of solitons can form spontaneously through spatial modulational instability of continuous wave beams, but the solitons corresponding to the upper branch are more robust. This is also confirmed by the study of soliton collisions, where we describe a number of possible scenarios, including soliton amalgamation, destruction, reflection, deflection, and switching to another branch. We also find that the interaction of two mutually coherent solitons corresponding to different branches is phase independent and always repulsive. We provide a simple physical explanation of this phenomenon.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 September 2008

DOI:https://doi.org/10.1103/PhysRevA.79.023814

©2009 American Physical Society

Authors & Affiliations

Michał Matuszewski1, Wieslaw Krolikowski2, and Yuri S. Kivshar1

  • 1Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
  • 2Laser Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 2 — February 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×