Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation

H. M. Wiseman
Phys. Rev. A 65, 032111 – Published 14 February 2002
PDFExport Citation

Abstract

Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV’s formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the “fractional-order” correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.

  • Received 18 October 2001

DOI:https://doi.org/10.1103/PhysRevA.65.032111

©2002 American Physical Society

Authors & Affiliations

H. M. Wiseman

  • Centre for Quantum Dynamics, School of Science, Griffith University, Brisbane, Queensland 4111, Australia

References (Subscription Required)

Click to Expand
Issue

Vol. 65, Iss. 3 — March 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×