• Open Access

Dissipative and dispersive cavity optomechanics with a frequency-dependent mirror

Juliette Monsel, Anastasiia Ciers, Sushanth Kini Manjeshwar, Witlef Wieczorek, and Janine Splettstoesser
Phys. Rev. A 109, 043532 – Published 29 April 2024

Abstract

An optomechanical microcavity can considerably enhance the interaction between light and mechanical motion by confining light to a subwavelength volume. However, this comes at the cost of an increased optical loss rate. Therefore, microcavity-based optomechanical systems are placed in the unresolved-sideband regime, preventing sideband-based ground-state cooling. A pathway to reduce optical loss in such systems is to engineer the cavity mirrors, i.e., the optical modes that interact with the mechanical resonator. In our work, we analyze such an optomechanical system, whereby one of the mirrors is strongly frequency dependent, i.e., a suspended Fano mirror. This optomechanical system consists of two optical modes that couple to the motion of the suspended Fano mirror. We formulate a quantum-coupled-mode description that includes both the standard dispersive optomechanical coupling as well as dissipative coupling. We solve the Langevin equations of the system dynamics in the linear regime showing that ground-state cooling from room temperature can be achieved even if the cavity is per se not in the resolved-sideband regime, but achieves effective sideband resolution through strong-optical-mode coupling. Importantly, we find that the cavity output spectrum needs to be properly analyzed with respect to the effective laser detuning to infer the phonon occupation of the mechanical resonator. Our work also predicts how to reach the regime of nonlinear quantum optomechanics in a Fano-based microcavity by engineering the properties of the Fano mirror.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 4 December 2023
  • Accepted 4 April 2024

DOI:https://doi.org/10.1103/PhysRevA.109.043532

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Juliette Monsel, Anastasiia Ciers, Sushanth Kini Manjeshwar, Witlef Wieczorek, and Janine Splettstoesser

  • Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 4 — April 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×