Characterizing generalized axisymmetric quantum states in d×d systems

Marcel Seelbach Benkner, Jens Siewert, Otfried Gühne, and Gael Sentís
Phys. Rev. A 106, 022415 – Published 17 August 2022

Abstract

We introduce a family of highly symmetric bipartite quantum states in arbitrary dimensions. It consists of all states that are invariant under local phase rotations and local cyclic permutations of the basis. We solve the separability problem for a subspace of these states and show that a sizable part of the family is bound entangled. We also calculate some of the Schmidt numbers for the family in d=3, thereby characterizing the dimensionality of entanglement. Our results allow us to estimate entanglement properties of arbitrary states, as general states can be symmetrized to the considered family by local operations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 March 2022
  • Accepted 23 June 2022

DOI:https://doi.org/10.1103/PhysRevA.106.022415

©2022 American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Quantum Information, Science & Technology

Authors & Affiliations

Marcel Seelbach Benkner1, Jens Siewert2,3, Otfried Gühne1, and Gael Sentís1,4

  • 1Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
  • 2Departamento de Química Física, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Biscay, Spain
  • 3Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Biscay, Spain
  • 4Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera, Barcelona, Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 2 — August 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×