• Open Access

Modified belief propagation decoders for quantum low-density parity-check codes

Alex Rigby, J. C. Olivier, and Peter Jarvis
Phys. Rev. A 100, 012330 – Published 19 July 2019

Abstract

Quantum low-density parity-check codes can be decoded using a syndrome based GF(4) belief propagation decoder (where GF denotes Galois field). However, the performance of this decoder is limited both by unavoidable 4-cycles in the code's factor graph and the degenerate nature of quantum errors. For the subclass of CSS codes, the number of 4-cycles can be reduced by breaking an error into an X and Z component and decoding each with an individual GF(2) based decoder. However, this comes at the expense of ignoring potential correlations between these two error components. We present a number of modified belief propagation decoders that address these issues. We propose a GF(2) based decoder for CSS codes that reintroduces error correlations by reattempting decoding with adjusted error probabilities. We also propose the use of an augmented decoder, which has previously been suggested for classical binary low-density parity-check codes. This decoder iteratively reattempts decoding on factor graphs that have a subset of their check nodes duplicated. The augmented decoder can be based on a GF(4) decoder for any code, a GF(2) decoder for CSS code, or even a supernode decoder for a dual-containing CSS code. For CSS codes, we further propose a GF(2) based decoder that combines the augmented decoder with error probability adjustment. We demonstrate the performance of these new decoders on a range of different codes, showing that they perform favorably compared to other decoders presented in literature.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
22 More
  • Received 19 March 2019
  • Revised 23 May 2019

DOI:https://doi.org/10.1103/PhysRevA.100.012330

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Alex Rigby*, J. C. Olivier, and Peter Jarvis

  • College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania 7005, Australia

  • *alex.rigby@utas.edu.au

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 100, Iss. 1 — July 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×