Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels

Philip M. Morse
Phys. Rev. 34, 57 – Published 1 July 1929
PDFExport Citation

Abstract

An exact solution is obtained for the Schroedinger equation representing the motions of the nuclei in a diatomic molecule, when the potential energy function is assumed to be of a form similar to those required by Heitler and London and others. The allowed vibrational energy levels are found to be given by the formula E(n)=Ee+hω0(n+12)hω0x(n+12)2, which is known to express the experimental values quite accurately. The empirical law relating the normal molecular separation r0 and the classical vibration frequency ω0 is shown to be r03ω0=K to within a probable error of 4 percent, where K is the same constant for all diatomic molecules and for all electronic levels. By means of this law, and by means of the solution above, the experimental data for many of the electronic levels of various molecules are analyzed and a table of constants is obtained from which the potential energy curves can be plotted. The changes in the above mentioned vibrational levels due to molecular rotation are found to agree with the Kratzer formula to the first approximation.

  • Received 8 April 1929

DOI:https://doi.org/10.1103/PhysRev.34.57

©1929 American Physical Society

Authors & Affiliations

Philip M. Morse

  • Palmer Physical Laboratory, Princeton University

References (Subscription Required)

Click to Expand
Issue

Vol. 34, Iss. 1 — July 1929

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Journals Archive

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×