Bose-Einstein Condensation and Liquid Helium

Oliver Penrose and Lars Onsager
Phys. Rev. 104, 576 – Published 1 November 1956
PDFExport Citation

Abstract

The mathematical description of B.E. (Bose-Einstein) condensation is generalized so as to be applicable to a system of interacting particles. B.E. condensation is said to be present whenever the largest eigenvalue of the one-particle reduced density matrix is an extensive rather than an intensive quantity. Some transformations facilitating the practical use of this definition are given.

An argument based on first principles is given, indicating that liquid belium II in equilibrium shows B.E. condensation. For absolute zero, the argument is based on properties of the ground-state wave function derived from the assumption that there is no "long-range configurational order." A crude estimate indicates that roughly 8% of the atoms are "condensed" (note that the fraction of condensed particles need not be identified with ρsρ). Conversely, it is shown why one would not expect B.E. condensation in a solid. For finite temperatures Feynman's theory of the lambda-transition is applied: Feynman's approximations are shown to imply that our criterion of B.E. condensation is satisfied below the lambda-transition but not above it.

  • Received 30 July 1956

DOI:https://doi.org/10.1103/PhysRev.104.576

©1956 American Physical Society

Authors & Affiliations

Oliver Penrose* and Lars Onsager

  • Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut

  • *Present address: Imperial College, London, England.

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 3 — November 1956

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Journals Archive

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×