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The relative phase of the order parameters in the collision of two condensates can influence the
outcome of their collision in the case of weak coupling. With increasing interaction strength however,
the initially independent phases of the two order parameters in the colliding partners quickly become
phase locked, as the strong coupling favors an overall phase rigidity of the entire condensate, and
upon their separation the emerging superfluid fragments become entangled.

Since the gauge symmetry is spontaneously broken in
superfluids, it is reasonable to wonder under what con-
ditions the relative phase of two superfluids is physically
relevant. The Josephson effect [1, 2], experiments with
cold Bose or Fermi atoms [3–8], and the superfluid frag-
ments emerging from nuclear fission [9–11], are just a few
examples where that is the case. As we will discuss here,
there are other situations when one would however expect
that the relative phase of two condensates is physically
irrelevant. However, the emerging overall picture of the
role of the relative phase of two condensates appears to
be more complex than envisaged so far. Recently Magier-
ski, Sekizawa, and Wlazłowski (MSW) [12] reported on
a rather surprising observation concerning the role the
pairing field plays in the collisions of two heavy-ions at
energies near the Coulomb barrier. MSW observed a very
strong dependence of the properties of the emerging frag-
ments on the relative phase of the pairing condensates in
the initial colliding nuclei. In a somewhat related study
of 20O+20O [13], the reported effect was rather weak, a
result confirmed in the similar case of 44Ca+44Ca [14],
due to the small number of nucleons above the closed
shell. The amplitude of the pairing field ∆ in nuclei is
of the order of 1 MeV, which is significantly smaller than
the magnitude of the normal single particle field, which
is of the order of 50 MeV. The character of the nuclear
pairing correlations is recognized in literature of being
of the Bardeen-Cooper-Schriefer (BCS) type [15], a the-
ory which describes weak coupling pairing with Cooper
pairs with sizes significantly larger than the average sep-
aration between fermions. The gain in binding energy
due to pairing correlations, called condensation energy
Econd = −N(0)|∆|2/2, can hardly be greater than per-
haps a few MeVs. MSW report however that in the colli-
sion of 240Pu on 240Pu near the Coulomb barrier pairing
effects can lead to changes in the total kinetic energy of
the emerging fragments of up to 20 MeV and that the ap-
parent height of the fusion barrier could be changed by
10 MeV or even more. These dramatic changes, with an
energy significantly higher than the magnitude of the to-
tal pairing condensation energy, were correlated by MSW
with the relative phase of the pairing fields in the two col-
liding partners prior to collisions.

The gauge symmetry breaking bears similarity with

the rotational symmetry breaking in case of deformed
nuclei, when their relative orientations plays a notice-
able role in heavy-ion fusion reactions and various de-
cays. The MSW results, obtained by solving the time-
dependent density functional theory (TDDFT) equa-
tions, can be reproduced semi-quantitatively using a sim-
ple Ginzburg-Landau (GL) approach [16, 17], or the for-
mally equivalent static Gross-Pitaevskii (GP) descrip-
tion [18, 19]. When the two nuclei touch the phase of
the condensate can change across the contact region, as
in a domain wall, in a manner superficially similar to the
tunneling current in a Josephson junction [1, 2], albeit in
the absence of a barrier.

In the presence of pairing correlations the ground state
of a nucleus is a Bose-Einstein condensate (BEC) of
Cooper pairs, which in theory is accurately described in
the grand canonical ensemble, where only the average
particle number is specified. The phase of the order pa-
rameter φ̂ is conjugate to the particle number N̂ , and
thus in a system with well defined particle number the
phase is undefined [20, 21]. However, as Anderson points
out [22]: in a bucket of liquid helium below the λ-point
“φ has become a classical variable, ... any future experi-
ment will be interpretable as though φ was fixed.” This
is also the prevalent approach in describing nuclei with
well defined pairing correlations, when the effect of par-
ticle projection is small. One can thus reasonably ask, a
common question in condensed matter physics: “Can a
nucleus have a well defined phase of the condensate with
respect to another nucleus?” Since the total wave func-
tion of the two nuclei prior to their interaction is merely
a product of two independent wave functions, one would
expect that the interaction between two nuclei cannot
depend on the phases of each initial wave functions. A
(relative separation) coordinate dependence of the phase
of the pairing field indicates the presence of a current.
The phases of the pairing fields can be changed by ar-
bitrary and independent gauge transformations in each
partner prior to the moment the two nuclei touch and
thus one can generate a phase gradient in the “neck.” An
objection raised by G.F. Bertsch in discussions was that
initial nuclei have well defined proton and neutron num-
bers, unlike the anomalous densities which are the central
objects in a DFT approach, and the phase of the wave
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function of each nucleus prior to the collision should be
physically irrelevant. Clearly a similar argument would
not be accepted in case of deformed nuclei, as a num-
ber of observables are impacted (α-decay penetrability,
heavy-ion fusion cross sections, etc.) This kind of argu-
mentation began since the inception of quantum mechan-
ics and many have wondered about similar problems, see
Anderson’s talk [22] and the follow-up spirited discus-
sion. As Anderson writes: “if the experimenter now cools
down two entirely different, non-communicating buckets
of liquid helium from T > Tλ → T ≈ 0, ... upon open-
ing an orifice between the two, would see initially with
equal probability any fixed value of the phase difference,
and thereafter no experiment he tried could recover the
components of the wave-function which started out with
different relative phases. He would not see zero interfer-
ence current, ...” This situation corresponds theoretically
to a fragmented condensate [23] and the inability of the
experimenter to recover the initial state is due the fact
that the two buckets became macroscopically entangled
after being in contact for some time. Macroscopic entan-
glement of up to hundreds to millions of particles have
been put in evidence experimentally [24–28]. It is crucial
to recognize that there are two qualitative steps in An-
derson’s gedanken experiment, the creation of the initial
state and the subsequent emergence of the final state.
This is also the situation in the MSW simulations and
the natural question arises, why these authors did not
observe the outcome conjectured in Anderson’s gedanken
experiment, as the outcome of their collisions showed a
strong dependence on the initial relative phase of the con-
densates, unlike what Anderson conjectured. We are not
aware however of any experiments in which the depen-
dence on the strength of the coupling on the outcome of
a collision and of the entanglement have been studied.

There is however another qualitatively different situa-
tion, relevant to experiments performed in cold gases [3–
8] or to superfluid fragments emerging from nuclear fis-
sion [9–11]. This happens when one cools down a bucket
of helium from above the λ-transition, and subsequently
separates it into two parts kept always close to T ≈ 0
and reunites them after they had different histories, and
the two parts remain macroscopically entangled at all
times [22]. In this situation the relative phase of the two
buckets is always rather well defined, but the particle
numbers in the two buckets are not. (We will not discuss
here the role the phase diffusion can play.)

There will definitely be increasingly more studies of
colliding superfluid nuclei and other systems in the future
performed within the only practical microscopic frame-
work available so far, the TDDFT. A correct interpreta-
tion of such numerical simulation results and a correct
method to evaluate observables are stringent elements
of our theoretical tools, tools which are still not yet as-
certained. Nuclei contain many particles, are essentially
macroscopic objects, and as Anderson has also noted [22]:

“... the central problem of measurement theory is not
the quantum mechanics of atoms, which is simple and
easy, but the fact that macroscopic everyday objects are
very difficult indeed for the quantum theory to deal with
properly.” Many properties of nuclei (liquid drop mass
formula, surface tension, compressibility, symmetry en-
ergy, hydrodynamics, collective motion, rotation, sym-
metry breaking, transport coefficients, etc.) can be and
are often treated quite accurately using concepts charac-
teristic for macroscopic systems.

In order to shed light on the MSW very startling ob-
servation, that the relative phase of the pairing fields in
two colliding nuclei can have a dramatic role in the col-
lision process, we will turn at first to a simpler system,
in which the role of the relative phase of two condensate
can be easily studied. In the presence of pairing cor-
relations nuclei can be treated as a BEC of interacting
Cooper pairs, as in the case of electrons in supercon-
ductors [15], and the total wave function can be repre-
sented as an anti-symmetrized product of Cooper pair
wave functions. In the case of a weakly interacting Bose
system at zero temperature a GP equation is extremely
accurate [29]. In the GP approximation a boson field
operator ψ̂(r) is replaced with its non-vanishing aver-
age ψ(r) = 〈0|ψ̂(r)|0〉 (a classic example of U(1) broken
gauge symmetry) and the accuracy of the approxima-
tion is of order ∼ 1/

√
N , where N is the total number

of bosons. A BCS fermionic condensate is a system of
weakly interacting Cooper pairs/bosons and qualitatively
a GP equation is appropriate and has been used in the
past numerous times. The weakness of the interaction is
typically characterized by the ratio of the pairing gap to
the Fermi energy ∆/εF � 1. In the weak coupling limit,
all Cooper pairs have a zero momentum, as in a BEC.

Typical BEC systems have all particles in one cloud
and the one-body density matrix acquires the form

ρ(r1, r2) = 〈0|ψ̂†(r1)ψ̂(r2)|0〉 ⇒ n0ψ
∗(r1)ψ(r2),

when |r1 − r2| → ∞, and there is only one eigen-
vector with a macroscopic eigenvalue n0 = O(N), a
situation known as the off-diagonal long-range order
(ODLRO) [16, 30–32]. It is possible to have a frag-
mented BEC system [23], when two or more eigenvalues
of the one-body density matrix ρ(r1, r2) are macroscopi-
cally large. This is the case of two BEC clouds with par-
ticle numbers N1 and N2 in two spatially well separated
potential traps Vk(r),

∫
d3r |ψk(r, t)|2 = Nk, k = 1, 2,

i~ψ̇k(r, t) = − ~2

2m
4ψk(r, t) + Vk(r)ψk(r, t) (1)

+g |ψk(r, t)|2 ψk(r, t) = µkψk(r, t) = µkφk(r)e−
iµkt

~ .

Let us consider now this fragmented BEC condensate,
when their initially spatially well separated trapping po-
tentials are moving towards each other, and their com-
bined wave function at times before the two clouds come
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into contact is naturally given by

Ψ(r, t) = ψ1(r, t) + eiαψ2(r, t), (2)

ψk(r, t) = φk(r− rk − ukt)e
imuk·r

~ − iµkt~ −
imu2

kt

2~ , (3)

with Vk(r) → Uk(r, t) = Vk(r − rk − ukt) and eiα

arbitrary. Using Ψ(r, t) one can construct a coher-
ent state exp[τ

∫
d3rΨ(r, t)ψ̂†(r)] |0〉 and the fragmented

BEC state is obtained only after a specific particle pro-
jection is performed, see the discussion below and in
connection with Eq. (4) and the Supplemental Online
Material (SOM) [33]. We will assume that the veloci-
ties uk are significantly smaller in magnitude than the
speed of sound [29] c =

√
g|Ψ(r, t)|2/m evaluated in

the central part of the could, and therefore superfluid-
ity is not endangered. At all times this combined wave
function satisfies the time-dependent GP equation with
U(r, t) = U1(r, t) + U2(r, t),

i~Ψ̇(r, t) =

[
− ~2

2m
4+ g |Ψ(r, t)|2 + +U(r, t)

]
Ψ(r, t).

Before contact each component of the total wave function
ψk(r, t), see Eq. (1), satisfies its own time-dependent GP
equation (1) with Vk(r)→ Uk(r, t). The arbitrary phase
exp(iα) can arguably influence the dynamics if g 6= 0.
This is the phase in one of the two cases of liquid helium
buckets discussed by Anderson [22]. Unlike the overall
phase of the many-body wave function, this phase can-
not be now removed, similarly to the relative orientation
of two colliding deformed nuclei. In the case of two sepa-
rated condensates the overall order parameter is the sum
of the two separated order parameters, similarly to mag-
netization for example. (The action of the magnetic field
on the spin coordinate of a fermion is formally identi-
cal to the action of the pairing field on the two compo-
nents of the fermionic quasiparticle [34].) Magnetization
is created by electric currents and magnetic moments,
and when one brings two magnets into proximity, the
two magnetic fields add up, even though the many-body
electron wave functions for the two separated magnets are
multiplied to each other. As in the case of a magnetic
field, where the relative orientation of two magnetic fields
is important, and in the case of the complex pairing field
the relative phase of the two fields is important, as is in
the case of Josephson junctions too. This relative phase
is also arbitrary, but this relative phase can be controlled
in some instances. In the vicinity of an isolated cloud
one can apply for a finite interval of time a constant po-
tential over the isolated cloud, a procedure performed in
the case of cold atoms in experiments, equivalent to per-
forming a local gauge transformation, and thus one can
change the relative phase of two clouds [4–8].

By analyzing both the GP equation, see SOM [33], and
the collision of superfluid nuclei we arrived at a totally
unexpected and surprising result, that the strength of the
interaction g plays a qualitative role in the dynamics. By

increasing the strength of the interaction from zero (cor-
responding to the case of non-interacting bosons or ab-
sence of pairing correlations in nuclei) to a relatively large
value, the character of the collision changes dramatically,
but in a continuous manner.

We observe the establishment of a common phase of
the combined condensate for large values of the coupling
constant, which clearly can be attributed to the phase
rigidity in superfluids [16, 17, 20, 22, 35]. While the
two partners are in contact the phase of the condensate
becomes spatially constant over the entire system, the
phase gets locked. We illustrate the phase locking mech-
anism for both Fermi and Bose superfluid systems: with
the collision of two superfluid nuclei described within the
extension of TDDFT formalism to superfluid fermionic
systems TDSLDA [36] by changing the strength of the
pairing correlations, see Fig. 1, and with the case of the
collision of two BEC with relevant results in SOM [33].

One can limit the analysis to a one-dimensional model
as only matter, momentum, and energy transfer between
two colliding partners along the line joining the two part-
ners (which can rotate in space though) are controlling
most of the dynamics, similarly to the case of the Joseph-
son junction in the case of superconductors, when only
dynamics across the junction is typically analyzed. In
the absence of the interaction (g ≡ 0), the GP equation
is linear, and each wave function ψk(r, t) satisfies inde-
pendently the Schrödinger equation

i~ψ̇k(r, t) = − ~2

2m
4ψk(r, t) + U(r, t)ψk(r, t),

and after the two potential wells have past each other
each wave function ψk(r, t) will split in between the two
potential wells. Obviously, the linear combination of the
wavefunctions Ψ(r, t) = ψ1(r, t) + eiαψ2(r, t), which sat-
isfies the same Schrödinger equation, depends on the rel-
ative phase. While for weak coupling g the dynamics is
α-dependent, when the strength of the interaction g is
gradually increased, the dependence of the final outcome
on the relative phase α becomes weaker and weaker the
stronger the interaction gets, and the two cases α = 0
and α = π in their final state become almost identical,
see Figure 1 for nuclei in 3D and SOM for bosons [33].
When the coupling constant is sufficiently large, the two
boson clouds penetrate each other and their final states
are relatively little affected irrespective of the value of
α and both clouds emerge with the initial number of
particles practically unchanged and with very small ex-
citation energies as well [33]. The role of the particle-
particle interaction is to lead upon contact to a very rapid
phase locking between the two condensates after which
the properties of the final state depend very weakly on
the phase exp(iα). The strength of the interaction g con-
trols the speed at which the information is transmitted
throughout the cloud. In the case of strong coupling, af-
ter the relatively short time needed to send “messages”
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FIG. 1. The evolution of the phase of the pairing
field (time runs top to bottom) in the head-on collision of
120Sn+120Sn [9–11], simulated with the phenomenological en-
ergy density functional SLy4 and pairing as described in
Ref. [37]. The right and the left columns correspond to a
realistic or artificially increased pairing field strength respec-
tively. The upper and lower half of each frame corresponds
to an initial phase difference between the two initial pairing
condensates of 0 and π respectively. Even though the pairing
field magnitudes are constant before the colliding nuclei come
into contact, their phases change in time and space (first two
top frames), see Eq. (3). The phase locking of the pairing
field is clearly manifest after fusion in the left column, but
absent in the right column.

between the two partners, the properties of the emerging
final state are largely α-independent and the two clouds
become completely entangled upon separation. The total
wave function corresponds in this case to a coherent state
in the particle number difference N− = N1 −N2 and to
a macroscopically entangled state of two large objects.
This conclusion is in agreement with Anderson’s conjec-
ture [22] concerning the inability of an experimenter to
recover the initial relative phase of the condensates α
after establishing the contact between the two indepen-
dently cooled liquid helium buckets from above Tλ. This
also it clarifies the content of Anderson’s conjecture, that
only when the superfluid correlations are “strong" enough
the role of the initial relative phase is erased. This is
also consistent with the generalized phase rigidity due
to the term in GL equation ns~2|∇φ|2/2m (where ns
is the superfluid density) in the free energy of superflu-
ids [16, 17, 20, 22, 35], which is an emerging term, whose
presence and strength are dictated by the interactions,
and which is absent in non-interacting systems.

This dependence on α of the properties of the emerging
fragments in the case of “weak" superfluid correlations
reflects particle number difference fluctuations between
the two initial partners, see also SOM [33]. The combined
wave function of two superfluid nuclei (with even particle
numbers), depending on two arbitrary gauge angles τ and
α, can be written as [38] (here for simplicity for one kind
of nucleons either only):

|Ψ(τ, α) =
∏
k

[uk + ei2τei2αvka
†
ka
†
k
] (4)

×
∏
l

[ul + ei2τe−i2αvla
†
l a
†
l
]|0〉,

where k and k and l and l denote pairs of time-reversed
states in the two nuclei and uk,l and vk,l being the corre-
sponding amplitudes of the Bogoliubov-Valatin quasipar-
ticles. Integrating Ψ(τ, α) over τ with the weight e−iτN+

will select the wave function with the total particle num-
ber N+ = N1 + N2. Integrating Ψ(τ, α) over α with
the weight e−iN−α will select the exact particle differ-
ence N− = N1 − N2 between the two nuclei. In the
case of weak coupling an additional projection over the
relative phase α is required to ensure that the particle
number difference between the two initial partners has
the expected value, namely exactly zero (∆N ≡ 0) in
the case of two identical nuclei, see also SOM [33]. One
can expect that TKE or fusion rates distributions would
become wider in case of superfluid colliding nuclei.

When comparing our simulations of 240Pu fission [37]
with realistic pairing interactions with simulations in
which the pairing field was artificially increased to ≈ 3−4
MeV [9–11] we observed a similar transition to a phase
locking pattern. Realistic nuclear pairing strength is rel-
atively weak, the phase locking does not typically occur
on the way from saddle-to-scission and the phase and the
magnitude of the pairing fields fluctuate strongly both in
space and time. In the case of strong pairing [9–11],
even though the time from saddle-to-scission is about
ten times shorter, the evolution is almost identical to
the dynamics of an ideal or perfect fluid and the fission
fragments emerge strongly entangled. While one might
naively expect a faster rate of energy transfer from col-
lective to intrinsic degrees of freedom, the fluctuations
of the pairing field are greatly suppressed (due to larger
gaps and larger critical velocities) and the evolving fis-
sioning nucleus stays cool.

In conclusion, we have established that the initial rela-
tive phase of two colliding condensates plays an increas-
ingly smaller role in the case of strong interactions, when
a phase locking over the entire system is established fast
(unless the entire system is very extended and the sig-
nal propagation time is large as well), and after the sep-
aration the final macroscopic (large) fragments emerge
entangled.
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