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We study cell navigation in spatiotemporally complex environments by developing a microflu-
idic race-track device that creates traveling wave with multiple peaks and a tunable wave speed.
We found that while the population-averaged chemotaxis drift speed increases with wave speed for
low wave speed, it decreases sharply for high wave speed. This reversed dependence of population-
averaged chemotaxis drift speed on wave speed is caused by a “barrier-crossing” phenomenon, where
a cell hops backwards from one peak attractant location to the peak behind by crossing an unfa-
vorable (barrier) region with low attractant concentrations. By using a coarse-grained model of
chemotaxis, we map bacterial motility in an attractant field to random motion of an over-damped
particle in an effective potential. The observed “barrier-crossing” phenomenon of living cells and
its dependence on spatiotemporal profile of attractant concentration are explained quantitatively by
Kramers reaction rate theory.

Sensing and responding to changes in external envi-
ronments are critical for the survival of organisms. One
of the well-studied model systems is bacterial chemo-
taxis. Bacteria use their transmembrane chemoreceptors
to sense their environments and control their motion in
search of places with more favorable conditions [1–3]. In
a homogeneous environment, an E. coli cell performs the
run-and-tumble random walk allowing it to explore its
environment [4]. In the presence of an attractant gra-
dient, E. coli cells bias their random walk towards the
preferred direction by lengthening (shortening) the run
time in the “correct” (“wrong”) direction. The intra-
cellular biochemical circuit that allows an E. coli cell
to compute gradient has been studied extensively in the
past decades [5–9]. Predictive models have been devel-
oped based on knowledge of the bacterial signaling path-
way and quantitative molecular and celluar experiments
[10–13]. A modeling framework based on the intracellu-
lar signaling dynamics and the motor response has also
been developed to study cellular and population behav-
iors [14–17].

However, cells live in heterogeneous environments to-
gether with other cells. There can be multiple favorable
locations that are separated by unfavorable regions. Cells
can also emit chemical signals and act as moving sources
of attractants. Can a cell find its way out of a local
optimum location to explore the environment globally?
Can a cell track a moving attractant source? Here, we
investigate these questions by developing a microfluidic
device to create environments with multiple attractant
peaks that move with a tunable speed. In particular, we
created a traveling wave of attractant concentration in
an annulus (race-track) channel as shown in Fig.1. Both
population level behaviors and individual cell trajectories
were measured for traveling wave attractant profiles with
different wave speeds (vw). Our measurements showed

that the population-averaged chemotaxis drift speed (vd)
increases with vw for small vw. Surprisingly, we observed
a critical wave speed, beyond which vd decreases sharply
with vw instead of reaching a saturating value. Our in-
dividual cell trajectory data revealed that cells can hop
from one peak attractant position to another by crossing
a barrier region with lower attractant concentrations, and
the backward hopping probability increases with vw.

To explain the experimental observations quantita-
tively, we studied a theoretical model of chemotaxis mo-
tion based on the intracellular signaling dynamics. Our
model analysis showed that E. coli chemotactic behav-
ior can be mapped to a thermally activated motion in
an effective energy landscape, with the cells random mo-
tion acting as the source of thermal fluctuation and an
effective potential determined by the ligand concentra-
tion profile. The effective potential barrier height for
backward hopping is lowered by vw, which results to
a backward drift speed that depends exponentially on
vw. This exponential backward drift speed leads to the
sharp drop in vd at high vw. Finally, the barrier-crossing
phenomenon is confirmed by a “double well” experiment
with different barrier heights..

We first describe our microfluidic device shown in
Fig.1(a). The device is composed of concentration modu-
lating parts, an annular observation channel, two agarose
adding channels, and a cell loading channel. Attractant
and buffer solutions, after being well mixed in the modu-
lating parts, are pumped into the modulating parts with
time varying injection speed. Details of the observation
channel are presented in Fig.1(b). The connection chan-
nels between observation channel and source channels are
filled with agarose gel and serve as control points. The
hydrogel added from the agarose inlets is used to prevent
bacteria escaping and avoid net flow that affects bacterial
motility. The attractant concentration profile in the ob-
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FIG. 1. Experiment setup. (a) The panorama of PDMS chip.
(b) The zoomed-in picture of the observation channel. The
circumference of the observation channel is λ = 800 µm. (c)
The spatiotemporal profile of attractant (MeAsp) concentra-
tion in the observation channel for vw = 1µm/s. T represents
the period of the concentration wave and p1-p4 are corre-
sponding control points shown in (b). Attractant concentra-
tions at the four source channels oscillate between 0 and 1
mM with a phase delay of π/2 in every two adjacent control
points. The ligand concentration is measured by adding a
small amount of fluorescein into attractant stocks.

servation channel is determined by diffusion through the
four control points. The same oscillation of attractant
concentration (amplitude and period) was introduced in
the four source channels with a phase delay of π/2 be-
tween two adjacent control points. As a result, the at-
tractant molecules diffuse into the annular channel, form-
ing a traveling-wave concentration field. The wave speed
vw is determined by the driving attractant period at the
four control points. We test the attractant concentration
in the observation channel by adding fluorescein in the
attractant solution and the spatiotemporal concentration
profile is shown in Fig.1(c) for vw = 1 µm/s. The cell
loading channel and observation channel are linked by
a narrow pass. Because the attractant concentration in
the observation channel is always higher than that in the
loading channel during experiments, cells that are loaded
to the cell loading channel can chemotax to the observa-
tion channel through the narrow pass and seldom escape
out of it. [see supplementary material (SM) for detail of
chip layout and fabrication].

Bacterial motion in the observation channel were im-
aged by using dark field lens. E.coli (wild type RP437)
swimming in the traveling attractant wave (α-methyl-
DL-aspartate (MeAsp)) with different wave speeds (vw)
0.67 µm/s, 1 µm/s, 2 µm/s, 4 µm/s, 8 µm/s, 10 µm/s,
13.3 µm/s, are tracked and analyzed [see SM for details
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FIG. 2. Dynamics of bacterial population. The spatiotempo-
ral cell density profiles for different wave speeds 1 µm/s (a),
4 µm/s (b), and 10 µm/s (c). The normalized cell density
and attractant concentration is represented by the color and
gray scales respectively. The gray scale stripe on the left side
of each panel shows the normalized ligand concentrations at
x=0. The red arrows indicate the “backward” bacterial flux
moving in the opposite direction of the attractant wave. (d)
The bacterial drift velocity (vd) averaged over a period versus
vw from experiments (black), SPECS simulations (red) and
fitting with the Eq.4 and Eq. S26 (blue). The error bars
denote standard deviation in 9 independent experiments.

of experiments]. The spatiotemporal cell density profiles
for different wave speeds are shown in Figs.2(a)-(c). The
bacterial chemotactic behavior depends strongly on vw.
For smaller vw 6 4 µm/s, most bacteria form a cluster
following the crest of the attractant wave [Fig.2(a)-(b)].
Occasionally, a cell escapes from the cluster and moves
in a backward direction opposite to the attractant wave
as indicated by the red arrow in Fig.2(b). However, for
higher vw > 4 µm/s, such backward motion becomes
more frequent leading to a more diffused cell distribution
[Fig.2(c)].

To characterize the bacterial population dynamics at
different vw quantitatively, we calculated the bacterial
drift velocity vd by averaging the velocities of all cell tra-
jectories within a period [see SM for details for trajectory
extraction]. As shown in Fig. 2(d), for small wave speed
vw 6 2µm/s, we have vd ≈ vw as cells can follow the at-
tractant wave. For intermediate 8µm/s > vw > 2µm/s,
vd starts to deviate from vw but still increases with vw
albeit sub-linearly. This slowing down is likely caused by
the effect of a finite adaptation time of E. coliin track-
ing/computing the attractant gradient [15, 16]. How-
ever, the most surprising observation is that vd decrease
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FIG. 3. Single cell dynamics. (a) Two representative single-
cell trajectories with ∆ϕT ≈ 2π (left panel) and ∆ϕT ≈ 0
(right panel) from experiment with vw = 8 µm/s. The arrow
shows the direction of attractant wave. (b) The statistics of
∆ϕT for vw = 2 µm/s (47 cells), vw = 8 µm/s (50 cells), and
vw = 13.3µm/s (51 cells).

sharply with vw instead of saturating to a constant value
when vw ≥ 8 µm/s. In the rest of this paper, we try to
understand the observed non-monotonic dependence of
vd on vw, in particular the sharp decrease in vd for large
vw.

To characterize the relative motion of individual cells
with respect to the traveling wave, we define the phase
shift of a cell for a given period as ∆ϕT ≡ 2π∆x/(vwT ),
where ∆x is the net displacement along the direction of
the attractant wave in a period T . If a cell follows the
wave exactly, we have ∆ϕT = 2π. If a cell hops back-
wards to the peak behind the current one during time T ,
we have zero net displacement ∆x = 0, and ∆ϕT = 0.
Two representative trajectories for ∆ϕT ≈ 2π and 0 are
shown in Fig.3(a). Individual cell behaviors are analyzed
by manually tracking their trajectories over a complete
period. Fig. 3(b) shows the probability distributions
of ∆ϕT for vw = 2µm/s, 8µm/s, and 13.3µm/s. For
vw = 2 µm/s, the ∆ϕT distribution peaks around a large
∆ϕT ∼ 1.5π. However, for vw = 8 µm/s, an additional
peak appears in the ∆ϕT distribution near ∆ϕT ∼ 0,
indicating the significance of backward hopping, which
is responsible for the significant reduction in vd for large
vw. For the high wave speed vw = 13.3µm/s, the distri-
bution is centered around ∆ϕT = 0, which means back-
ward hops dominate and the mean drift speed vanishes.

To understand both the population-level and individ-
ual cell behaviors quantitatively, we used the signaling
pathway-based E. coli chemotaxis simulator (SPECS)
[18] instead of the filter-function based phenomenolog-
ical models[19–21]. The advantage of SPECS is that
it incorporates the internal signaling pathway dynam-
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FIG. 4. The statistic of ∆ϕT for different wave speed from
SPECS. The multimodality of density probability is caused
by the “barrier-crossing” between the neighboring local well.
The effective potentials for vw = 0 and vw > 0, and the
attractant concentration profile are shown in the inset.

ics with the movements of individual cells (see SM for
details of SPECS simulation). The dependence of vd
on vw from SPECS agrees with our experimental data
[Fig.2(d)]. We also studied statistics of ∆ϕT of individ-
ual cells for different traveling attractant wave speeds in
SPECS. As shown in Fig.4, the ∆ϕT distributions exhibit
multimodality with peaks centered around 2π and 0, and
the proportions of bacteria distributed around different
peaks change significant with vw. For vw = 2 µm/s, a
large proportion of cells have ∆ϕT around 2π and only
about < 20% of the population distributes near 0. As
vw increases, the proportion of the cells with ∆ϕT ∼ 0
increases, and eventually dominates at high vw, which
agrees with the experiments (Fig. 3(b)).

In our previous work, a mean field theory based on in-
tracellular signaling dynamics was developed for studying
population level bacterial chemotaxis behaviors [15, 17].
Briefly, the tumbling rate zt = τ−1(a/a0)H is modulated
by chemoreceptors activity a, where τ and a0 are the av-
erage run time and activity of chemoreceptors at steady
state, H(≈ 10) is the Hill coefficient [22]. The total
frequency of a cell changing its direction is the sum of
the rotational diffusion coefficient (z0) and the tumbling
rate (zt): z(a) = zt + z0. Thus, the average run time is
z̄−1 ≈ z−1|(a=ā) with ā the average activity of all cells at
position x, and the average run distance is vz̄−1 with v
the run speed. The dynamics of the receptor activity is
governed by the local attractant concentration and the
receptor methylation level, which has a slow dynamics
and essentially carries a memory of the cells environment
in the past. Therefore, when cells move in a chemical
gradient, the average activity of the left-moving cells at
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position x is different from the right-moving cells at the
same position, as these two populations carry different
receptor methylation levels. The activity difference leads
to a difference in the tumbling frequency ∆z, which even-
tually drives the bacterial chemotactic drift.

In our experiments with traveling attractant waves, it
is convenient to study the system in a co-moving frame
with the attractant by using the transformation x′ =
x− vwt. The dynamics of the bacterial density ρ(x′, t) in
the moving frame is given by:

∂ρ

∂t
=

∂

∂x′
[D(x′)U ′(x′)ρ] +

∂

∂x′

[
D(x′)

∂ρ

∂x′

]
, (1)

which describes bacterial chemotaxis motility as the ther-
mal motion of particles moving in an external potential
[23]. The attractant field gives rise to the external poten-
tial and the bacterial random walk acts as the thermal
fluctuation. As shown in details in SM, the diffusion co-
efficient D(x′) and the effective potential U(x′) can be
expressed as:

D(x′) ≈ v2

z̄
(1 +

vw∆z

vz̄
),

U(x′) ≈
∫ x′

0

1

D(x′′)

(
vw +

v∆z

z̄

)
dx′′. (2)

The effective potential U(x′) given above by Eq. 2 de-
pends on the wave speed vw. The potential contributed
by the attractant profile alone (i.e., vw = 0) is periodic
(black curve in Fig.4 inset). The effect of vw is to tilt
this periodic potential along the wave direction (x) to
form a tilted washboard potential for vw > 0 (red curve
in Fig.4 inset). This can be seen by approximating D
as a constant in Eq. 2, which leads to a term vwx

′/D
for the potential U(x′). In this washboard potential, a
cell quickly moves to its closest well and stay there until
the random walk motion drives it over a barrier into a
neighboring well. Based on the classical Kramers theory
of energy barrier crossing [24], the hopping rates along
(forward) or against (backward) the attractant wave di-
rection (rf or rb) depends on the barrier height (∆U1 or
∆U2, see Fig. 4 inset) exponentially:

rb = r0e
−∆U1 ≈ αeβ1vw , rf = r0e

−∆U2 ≈ αe−β2vw ,
(3)

where r0 is the base attempt rate, and α is the hopping
rate for stationary wave. The constants β1, β2 are in-
dependent of vw (see SM for detailed derivations).The
discrete hopping events from one well to another explain
the multimodality of the probability distribution of ∆ϕT
[Fig. 3(b) and Fig. 4]. As vw increases, the backward
hopping rate rb increases and the percentage of cells with
∆ϕT = 0 increases. Put together, vd is given by:

vd = vw − λ(rb − rf ) ≈ vw − αλ[eβ1vw − e−β2vw ], (4)

where λ = 800 µm is the peak-to-peak distance of the
traveling wave. For small vw, the hopping rates are small,
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FIG. 5. Bacterial motion in a “double well potential”. (a) The
concentration profile for generating a stationary “double well
potential”. By controlling the attractant concentration differ-
ence between P1(P3) and P2(P4), we can control the barrier
height. (b) Cells were concentrated around P1 initially. The
cell population around P1 decays with time by escaping to P3.
Inset shows the dependence of transition rates on the relative
gradient, the dashed line indicates the predicted dependence
(see Eq. S27 in SM).

so vd ≈ vw. However, due to the exponential depen-
dence of rb on vw, there exists a critical wave speed (vc)
where dvd/dvw = 0 , and the drift velocity is dominated
by the backward hopping term rb and decreases sharply
for vw > vc. In our experiments, the attractant wave
amplitude had a weak dependence on vw, which leads
to α = α0(vw/v)d, where d ≈ 1.34 is determined from
experiments, and α0 is a vw-independent constant (see
SM for details). Quantitatively, Eq. 4 fits the experi-
ments and SPECS simulations well with α0 = 0.0141/s,
β1 = 0.0713 s/µm and β2 = 0.4915 s/µm as shown in
Fig.2(d). Note that for a high wave speed vw = 13.3µm/s
Eq. 4 needs to be modified to include higher order terms
(see Eq. S26 in SM).

To verify the barrier crossing effect, we studied chemo-
taxis in a “double well potential”. The double well po-
tential is achieved in the same device by giving a static
high concentration at control points P1 and P3; and a
static low concentration at P2 and P4. Cells were con-
centrated initially near P1 by lowering the concentration
at P3. Once a majority cell population is established
around P1, the concentration at P3 is raised to form the
double well potential [Fig.5(a)]. The cells hop probabilis-
tically between P1 and P3, causing cell density in P1 to
decay exponentially to 0.5 over time [Fig.5(b)]. When
we increase the potential barrier by decreasing the con-
centration at P2 and P4, the decay rate decreases as ex-
pected from the transition state theory [Fig.5(b) inset].

In summary, by developing a “racetrack” microfluidic
device we investigate bacterial chemotaxis behaviors in
response to traveling attractant waves. The underly-
ing mechanism is understood by a computational model
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based on realistic signaling pathway dynamics. We be-
lieve that this combined approach, i.e., quantitative mi-
crofluidics experiments together with predictive models
based on realistic signaling dynamics, can be extended to
study other interesting biological phenomena, such as col-
lective behaviors due to cell-cell communication through
chemical signaling[25–28].
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