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We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate
set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford
gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently
mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dom-
inated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D
topological codes are likely to be dominated by Clifford gates due to a high implementation cost
associated with logical T -gates. Thus our algorithm may serve as a verification tool for near-term
quantum computers which cannot in practice be simulated by other means. To demonstrate the
power of the new method, we performed a classical simulation of a hidden shift quantum algorithm
with 40 qubits, a few hundred Clifford gates, and nearly 50 T -gates.

The path towards building a large-scale quantum com-
puter will inevitably require verification and validation
of small quantum devices. One way to check that such
a device is working properly is to simulate it on a clas-
sical computer. This becomes impractical at some point
because the cost of classical simulation typically grows
exponentially with the size of a quantum system. With
this fundamental limitation in mind it is natural to ask
how well we can do in practice.

Simulation methods which store a complete descrip-
tion of an n-qubit quantum state as a complex vec-
tor of size 2n are limited to a small number of qubits
n ≈ 30−40. For example, a state-of-the art implementa-
tion has been used to simulate Shor’s factoring algorithm
with 31 qubits and roughly half a million gates [1]. Us-
ing distributed computation it is possible to simulate 40
qubit circuits [2]. For certain restricted classes of quan-
tum circuits it is possible to do much better [3–7]. Most
significantly, the Gottesman-Knill theorem allows effi-
cient classical simulation of quantum circuits composed
of gates in the so-called Clifford group [3]. In practice
this allows one to simulate such circuits with thousands
of qubits [1, 4]. It also means that a quantum computer
will need to use gates outside of the Clifford group in or-
der to achieve useful speedups over classical computation.
The full power of quantum computation can be recovered
by adding a single non-Clifford gate to the Clifford group.
A simple choice is the single-qubit T = |0〉〈0|+eiπ/4|1〉〈1|
gate. The Clifford+T gate set obtained in this way is a
natural instruction set for small-scale fault-tolerant quan-
tum computers based on the surface code [8, 9], and has
been at the centre of a recent renaissance in classical
techniques for compiling quantum circuits [10–12].

When it comes to realizing a logical (encoded) circuit,
non-Clifford gates pose a serious challenge for any fault-
tolerant scheme based on 2D stabilizer codes [8, 13] due
to the lack of topological protection [14, 15]. Such non-
Clifford gates can be implemented fault-tolerantly using

special single-qubit resource states known as magic states
[16]. The magic states must themselves be prepared us-
ing a fault tolerant protocol for “magic state distillation”
[16], which is relatively resource intensive. For example,
in the case of the surface code, the overhead associated
with logical T -gates exceeds that of any logical Clifford
gate by orders of magnitude [17, 18]. Thus it is likely that
the first logical circuits demonstrated in the lab will be
Clifford+T circuits dominated by Clifford gates. In this
Letter we propose a new algorithm for classical simula-
tion of such circuits. Our algorithm could therefore serve
as a verification tool for near-term quantum computers.

Let us now state our results. A Clifford+T quantum
circuit of length m acting on n qubits is a unitary opera-
tor U = Um · · ·U2U1, where each Uj is a one- or two-qubit
gate from the set {H,S, T, CNOT}, where

H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
T =

(
1 0
0 eiπ/4

)
and CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X is the controlled-
NOT gate. We shall write m = c+ t, where c is the num-
ber of Clifford gates (H,S,CNOT ) and t is the number
of T -gates also known as the T -count. Applying U to
the initial state |0⊗n〉 and measuring some fixed output
register Qout ⊆ {1, . . . , n} in the 0, 1-basis generates a
random bit string x of length w = |Qout|. A string x
appears with probability

Pout(x) = 〈0⊗n|U†Π(x)U |0⊗n〉, (1)

where Π(x) projects Qout onto the basis state |x〉 and
acts trivially on the remaining qubits.

Our main result is a classical algorithm for sampling
the output string x from a distribution which is ε-close
to Pout with respect to the L1-norm. The algorithm has
runtime

τ = O
(
w(w + t)(c+ t) + w(n+ t)3 + 2γtt3w4ε−5

)
, (2)
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where

γ ≤ −2 log2 (cos (π/8)) ≈ 0.228 (3)

is a constant that depends on the implementation details.
Note that the runtime scales polynomially in all param-
eters except for the T -count. We expect the algorithm
to be practical when the size of the output register w is
small and the precision ε is not too small. For example,
assuming that the circuit outputs a single bit (w = 1), ε
is a fixed constant, and t ≤ n ≤ c, the runtime becomes

τ = O(n3 + ct+ 2γtt3).

The algorithm can be divided into independent subrou-
tines with a runtime O(t3) each and thus supports a large
amount of parallelism. We provide pseudocode for the
main steps of the algorithm in the Supplemental Mate-
rial [19].

Since the simulation runtime is likely to be dominated
by the term exponential in t, one may wish to minimize
the exponent γ in Eq. (2). This exponent is related to
the stabilizer rank [20] of t-qubit tensor product states
|A⊗t〉, where |A〉 is a “magic state”

|A〉 = 2−1/2(|0〉+ eiπ/4|1〉).

Recall that a t-qubit state is called a stabilizer state if it
has the form V |0⊗t〉, where V is a quantum circuit com-
posed of Clifford gates. Stabilizer states form an over-
complete basis in the Hilbert space of t qubits. Let χt(δ)
be the smallest integer χ such that |A⊗t〉 can be approx-
imated with an error at most δ by a linear combination
of χ stabilizer states (here the approximating state |ψ〉
should satisfy |〈A⊗t|ψ〉|2 ≥ 1−δ). The runtime scaling in
Eq. (2) holds for any exponent γ such that χt(δ) = O(2γt)
for any constant δ > 0 and all sufficiently large t. For
simplicity here we assumed that the precision parameter
ε in Eq. (2) is a constant. Below we propose a systematic
method of finding approximate stabilizer decompositions
of |A⊗t〉 which yields an upper bound χt(δ) = O(2γtδ−1),
where γ ≈ 0.228, see Eq. (3). We conjecture that this up-
per bound is tight.

We implemented our classical sampling algorithm in
MATLAB and used it to simulate a class of benchmark
quantum circuits on n = 40 qubits, with a few hundred
Clifford gates, and T -count t ≤ 48. Specifically, we simu-
lated a quantum algorithm which solves the hidden shift
problem [21] for non-linear Boolean functions [22]. An
instance of the hidden shift problem is defined by a pair
of oracle functions f, f ′ : Fn2 → {±1} and a hidden shift
string s ∈ Fn2 . It is promised that f is a bent (maximally
non-linear) function, that is, the Hadamard transform
of f takes values ±1. It is also promised that f ′ is the
shifted version of the Hadamard transform of f , that is,

f ′(x⊕ s) = 2−n/2
∑
y∈Fn

2

(−1)x·yf(y) for all x ∈ Fn2 . (4)

Here ⊕ stands for the bit-wise XOR. The goal is to learn
the hidden shift s by making as few queries to f and
f ′ as possible. The classical query complexity of this
problem is known to be linear in n, see Theorem 8 of
Ref. [22]. In the quantum setting, f and f ′ are given as
diagonal n-qubit unitary operators Of and Of ′ such that
Of |x〉 = f(x)|x〉 and Of ′ |x〉 = f ′(x)|x〉 for all x ∈ Fn2 .
A quantum algorithm can learn s by making a single
query to each of these oracles, as can be seen from the
identity [22]

|s〉 = U |0⊗n〉, U ≡ H⊗nOf ′H⊗nOfH
⊗n. (5)

This hidden shift problem is ideally suited for our bench-
marking task for two reasons. First, the algorithm pro-
duces a deterministic output, i.e., the output is a com-
putational basis state |s〉 for some n-bit string s. Be-
cause of this we achieve the most favorable runtime scal-
ing in Eq. (2) since each bit of s can be learned by calling
the sampling algorithm with a single-qubit output regis-
ter (w = 1) and a constant statistical error ε. Second,
the T -count of the algorithm can be easily controlled by
choosing a suitable bent function. Indeed, the non-oracle
part of the algorithm consists only of Hadamard gates.
We show that for a large class of bent functions f (from
the so-called Maiorana-McFarland family) the oracles Of
and Of ′ can be constructed using Clifford gates and only
a few T -gates.

The numerical simulations were performed for two ran-
domly generated instances of the hidden shift problem
with n = 40 qubits. For each of these instances we simu-
lated the quantum circuit for the hidden shift algorithm,
i.e., the circuit implementing the unitary U described
above. The T -counts of the two simulated circuits are
t = 40 and t = 48 respectively. Since the hidden shift
s is known beforehand, we are able to verify correctness
of the simulation. Our results are presented in Fig. 1.
As one can see from the plots, the output probability
distribution of each qubit has most of its weight at the
corresponding value of the hidden shift bit. Only the
output probabilities for qubits 21, 22, . . . , 40 are shown
because our algorithm perfectly recovered the first half
of the hidden shift bits 1, 2, . . . , 20. This perfect recovery
occurs due to the special structure of the chosen bent
functions. Further implementation details can be found
in Section IV of the Supplementary Material [19].

Let us now describe two main ingredients of our sam-
pling algorithm. The first ingredient is a subroutine for
estimating the norm of a linear combination of stabilizer
states. It takes as input a t-qubit state |φ〉, a target error
parameter ε > 0 and a failure probability pf . The state
|φ〉 is given as a linear combination of χ stabilizer states,

|φ〉 =

χ∑
a=1

za|φa〉, φa ∈ St.

Here St is the set of all t-qubit stabilizer states. The
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FIG. 1. Output single-qubit probability distributions obtained by a classical simulation of the hidden shift quantum algorithm
on n = 40 qubits. Only one half of all qubits are shown (qubits 21, 22, . . . , 40). The final state of the algorithm is |s〉 = U |0⊗n〉,
where s is the hidden shift string to be found and U is a Clifford+T circuit with the T -count t = 40 (left) and t = 48 (right).
In both cases the circuit U contains a few hundred Clifford gates. For each qubit the probability of measuring ‘1’ in the final
state is indicated in blue. The x-axis labels indicate the correct hidden shift bits. The entire simulation took several hours on
a laptop computer.

subroutine computes a real number ξ which, with proba-
bility at least 1−pf , approximates the norm ‖|φ〉‖2 with
relative error ε. It has running time O(χt3ε−2p−1f ). This
improves upon the brute force method which has com-
plexity O(χ2t3). The key idea is to approximate ‖|φ〉‖2
by computing inner products between |φ〉 and randomly
chosen stabilizer states. Let |θ〉 ∈ St be a random stabi-
lizer state drawn from the uniform distribution. Define
expectation values

M2 ≡ Eθ|〈θ|φ〉|2 and M4 ≡ Eθ|〈θ|φ〉|4.

The set St is known to be a 2-design [28]. This implies
that one may compute M2 and M4 by pretending that
|θ〉 is drawn from the Haar measure. Standard formulas
for the integrals over the unit sphere yield

M2 =
‖|φ〉‖2

d
and M4 =

2‖|φ〉‖4

d(d+ 1)
, where d ≡ 2t.

(6)
Suppose |θ1〉, . . . , |θL〉 ∈ St are random independent sta-
bilizer states. Define a random variable

ξ =
d

L

L∑
i=1

|〈θi|φ〉|2. (7)

From Eq. (6) one infers that the expected value of ξ is
ξ̄ = E(ξ) = ‖|φ〉‖2 and the standard deviation of ξ is

σ =
√
d2L−1(M4 −M2

2 ) =

√
d− 1

d+ 1
L−1/2‖|φ〉‖2.

For large t one has σ ≈ L−1/2‖|φ〉‖2. By the Chebyshev

inequality, Pr
[
|ξ − ξ̄| ≥ p−1/2f σ

]
≤ pf . Thus

(1− ε)‖|φ〉‖2 ≤ ξ ≤ (1 + ε)‖|φ〉‖2

with probability at least 1 − pf provided that L =
p−1f ε−2. The inner product between any t-qubit stabi-

lizer states can be computed classically in time O(t3), see
Refs. [20, 24]. The inner product 〈θi|φ〉 =

∑χ
a=1 za〈θi|φa〉

in Eq. (7) can be computed in time O(χt3) since |θi〉 and
|φa〉 are stabilizer states of t qubits. Thus we compute
an approximation to ‖|φ〉‖2 in time O(χt3ε−2p−1f ). We
anticipate that the above norm estimation method can
be generalized to stabilizer states of qudits of prime di-
mension [25] and fermionic Gaussian states [26].

The second ingredient of our simulation algorithm is
a method for computing approximate stabilizer decom-
positions of |A⊗t〉. The magic state |A〉 is equivalent to
a state |H〉 ≡ cos(π/8)|0〉 + sin(π/8)|1〉 modulo Clifford
gates and a global phase, |A〉 = eiπ/8HS†|H〉. Thus
it suffices to consider approximate stabilizer decomposi-
tions of |H⊗t〉. We have the identity

|H⊗t〉 =
1

(2ν)t

∑
x∈Ft

2

|x̃1 ⊗ x̃2 ⊗ . . .⊗ x̃t〉 (8)

where |0̃〉 ≡ |0〉, |1̃〉 ≡ H|0〉 = 2−1/2(|0〉 + |1〉), and
ν ≡ cos(π/8). The right-hand side of Eq. (8) is a uni-
form superposition of 2t non-orthogonal stabilizer states
labeled by elements of the vector space Ft2. We construct
an approximation |ψ〉 which is a uniform superposition
of states |x̃1 ⊗ x̃2 ⊗ . . . ⊗ x̃t〉 over a linear subspace of
Ft2. The dimension k of this subspace is chosen to be the
unique positive integer satisfying 4 ≥ 2kν2tδ ≥ 2, where
δ is the error tolerance. For any k-dimensional subspace
L of Ft2 we define a normalized state

|L〉 =
1√

2kZ(L)

∑
x∈L
|x̃1 ⊗ x̃2 ⊗ · · · ⊗ x̃t〉 (9)
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FIG. 2. The T -gate gadget. The Clifford gate S is classically
controlled by the measurement outcome.

where Z(L) ≡
∑
x∈L 2−|x|/2. Here | · | denotes the

Hamming weight of a bit string. A simple computation
shows that |L〉 approximates |H⊗t〉 with error

δ(L) ≡ 1− |〈H⊗t|L〉|2 = 1− 2kν2t

Z(L)
. (10)

The error δ(L) can be computed in time O(t2k) since
Z(L) contains 2k terms. In Section III of the Supple-
mentary Material we show that by choosing O(1/δ) k-
dimensional subspaces L uniformly at random we ob-
tain at least one subspace L? such that δ(L?) ≤ δ with
high probability. We conclude that |〈ψ|A⊗t〉|2 ≥ 1 − δ,
where |ψ〉 ≡ (HS†)⊗t|L?〉 is a linear combination of
χ = 2k = O(ν−2tδ−1) stabilizer states. Computing the
approximation |ψ〉 takes time O(ν−2ttδ−2). We will see
that this is negligible compared with the overall runtime
Eq. (2) of the sampling algorithm.

We are now ready to describe the algorithm for sam-
pling from a distribution ε-close to Pout. For simplicity
here we restrict our attention to the case when the output
register consists of a single qubit (w = 1). We first trans-
form the Clifford+T circuit to be simulated by replacing
each T -gate by a certain well-known gadget [27], shown
in Fig. 2, that contains only Clifford gates and a 0, 1-
measurement. The S gate is classically controlled by the
measurement outcome. The gadget consumes one copy of
the magic state |A〉. This gives an equivalent ‘gadgetized’
circuit consisting of Clifford gates and t single-qubit mea-
surements, acting on a non-stabilizer initial state that
contains t copies of |A〉. Let Vy be the Clifford circuit
on n+ t qubits corresponding to measurement outcomes
described by a t-bit string y = y1y2 . . . yt. Each gadget
with yj = 0 contributes a CNOT gate to Vy, whereas
each gadget with yj = 1 contributes a CNOT and the S-
gate to Vy. Thus Vy contains c+ t+ |y| gates. Since the
gadgetized circuit is equivalent to the original Clifford+T
circuit, we have

Pout(x) =
〈0⊗n ⊗A⊗t|V †y (Π(x)⊗ |y〉〈y|)Vy|0⊗n ⊗A⊗t〉
〈0⊗n ⊗A⊗t|V †y (In ⊗ |y〉〈y|)Vy|0⊗n ⊗A⊗t〉

,

(11)
for any measurement outcomes y. Let |ψ〉 be a linear
combination of χ = O(ν−2tδ−1) stabilizer states con-
structed above such that |〈ψ|A⊗t〉|2 ≥ 1 − δ. Replacing

|A⊗t〉 by its approximation |ψ〉 in Eq. (11) we are led to
consider a distribution

P yout(x) =
〈0⊗n ⊗ ψ|V †y (Π(x)⊗ |y〉〈y|)Vy|0⊗n ⊗ ψ〉
〈0⊗n ⊗ ψ|V †y (In ⊗ |y〉〈y|)Vy|0⊗n ⊗ ψ〉

.

(12)
This distribution will in general depend on y since |ψ〉 is
not exactly equal to |A⊗t〉. In Section II of the Supple-
mentary Material we show that∥∥∥∥ 1

2t

∑
y∈{0,1}t

P yout(x)− Pout(x)

∥∥∥∥
1

= O(ε)

provided that δ = O(ε2). This shows that we may ap-
proximately sample from Pout (with error O(ε)) by first
selecting a t-bit string y uniformly at random and then
approximately sampling from P yout (with error O(ε)). It
remains to show how to approximately sample from P yout
for a fixed y. Since the gadgetized circuit Vy contains
only Clifford gates we may use the standard Gottesman-
Knill theorem to compute t-qubit stabilizer groups G,H
and integers u, v such that

〈0⊗n ⊗ ψ|V †y (Π(0)⊗ |y〉〈y|)Vy|0⊗n ⊗ ψ〉 = 2−u〈ψ|ΠG |ψ〉
(13)

〈0⊗n ⊗ ψ|V †y (Π(1)⊗ |y〉〈y|)Vy|0⊗n ⊗ ψ〉 = 2−v〈ψ|ΠH|ψ〉
(14)

where ΠG ,ΠH are projectors onto the codespace of sta-
bilizer codes defined by G,H. This computation, which
is described in more detail in Sections I,II of the Supple-
mentary Material, takes time

τ1 = O(t(c+ t) + (n+ t)3).

Since we are considering the case where the output string
x is a single bit, the output probability distribution is
{P yout(0), 1− P yout(0)}, where

P yout(0) =
2−u〈ψ|ΠG |ψ〉

2−v〈ψ|ΠH|ψ〉+ 2−u〈ψ|ΠG |ψ〉
(15)

We compute the expectation values in Eq. (15) with a
small relative error using the norm estimation subroutine
described above. Indeed, since the projector ΠG maps
stabilizer states to stabilizer states, one can represent
ΠG |ψ〉 as a linear combination of χ = O(ν−2tε−2) stabi-
lizer states. Thus one can estimate 〈ψ|ΠG |ψ〉 = ‖ΠG |ψ〉‖2
with a relative error O(ε) and a failure probability O(ε)
in time

τ2 = O(χt3ε−3) = O(ν−2tt3ε−5).

Let ξ = 2−u〈ψ|ΠG |ψ〉(1±ε) and ξ′ = 2−v〈ψ|ΠH|ψ〉(1±ε)
be the resulting approximations. The final step in the
algorithm is to sample a bit from the probability distri-
bution {p0, 1− p0} where p0 = ξ/(ξ + ξ′) (cf. Eq. (15)).
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The approximation guarantees for ξ, ξ′ ensure that this
distribution is O(ε)-close to P yout. The total runtime of
the algorithm is τ1 + τ2 from which we recover the w = 1
case of Eq. (2).

Whereas here we focused on the case w = 1, in Sec-
tion II of the Supplementary Material we describe the
simulation algorithm for arbitrary w. Although this al-
gorithm can be used for sampling from the output distri-
bution with a small statistical error, in general it can-
not accurately compute individual probabilities of the
output distribution. In the Supplementary Material we
also present a different algorithm which uses similar tech-
niques to compute the output probabilities Pout(x) with
a relative error ε.
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