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ABSTRACT 
 

 Applying the Briggs-Bers ‘pole-pinch’ criterion to the exact transcendental dispersion 

relation of a dielectric traveling wave tube (TWT), we find that there is no absolute instability 

regardless of the beam current. We extend this analysis to the circuit band edges of a linear beam 

TWT by approximating the circuit mode as a hyperbola in the frequency-wavenumber (ω-k) 

plane and consider the weak coupling limit. For an operating mode whose group velocity is in 

the same direction as the beam mode, we find that the lower band-edge is not subjected to 

absolute instability. At the upper band-edge, we find a threshold beam current beyond which 

absolute instability is excited. The non-existence of absolute instability in a linear beam TWT 

and the existence in a gyrotron-TWT, both at the lower band edge, is contrasted. The general 

study given here is applicable to some contemporary TWT’s such as metamaterial-based and 

advanced Smith-Purcell TWT’s.  
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 Unwanted oscillations pose a major threat to the operation of high power amplifiers.  In a 

traveling wave tube (TWT) amplifier, when the electron beam current is too high, the amplifier 

oscillates.  Three types of oscillations may occur: (a) regenerative type [1-3], (b) backward wave 

oscillation [2-4], and (c) absolute instability [5,6] near the band edges, at which the group 

velocity is zero.  Among the three types, (c) is least studied.  This paper focuses on (c).  

Oscillations of the regenerative type, (a), occur when there is a mismatch at the input, 

sever, and/or output ends of the amplifier. The partial reflections at the ends would lead to 

regenerative oscillation if the ‘round-trip’ gain between the two points of reflection exceeds 

unity.  In the second type, (b), the beam directly excites a backward wave of the circuit, whose 

group velocity is opposite to the beam mode. This leads to backward wave oscillations even if 

the amplifier is well matched at both ends.  In (c), the feedback is also provided internally, but 

the instability is a result of the beam interaction with a dispersive medium (which is not unstable 

itself). The oscillations occur at a frequency where the group velocity is close to zero; the 

forward wave and the backward wave of the circuit modes are tightly coupled. We call these 

zero group velocity points the ‘band edge’. Oscillations of type (c) are difficult to detect directly 

in experiments [7], and difficult to analyze theoretically because they usually require an intricate 

analysis using the Briggs-Bers criterion [5,6].  Since TWT input and output ports typically 

provide poor matches near the band edge frequencies, oscillations of type (c) could also be 

masked by oscillations of type (a), occurring in the same range of frequency. 

 The motivation for the present work arises from our study of random manufacturing 

errors on TWT’s. The multiple, small-scale internal reflections due to manufacturing errors that 

are randomly distributed along the TWT axis may lead to large gain ripples in the frequency 

response [8]. It is natural to inquire if these gain ripples, due to internal reflections, may develop 

into an absolute instability in a TWT [9]. 

Band-edge oscillations in TWT’s have been intensively studied [2-4,10-18] and threshold 

conditions have been obtained in many cases. However, the question of whether the resulting 

instability is convective or absolute has received relatively little attention in the West.  This 

important question, however, was extensively analyzed in the former Soviet Union [15,18]. 

These prior works adopted two simplifying assumptions: that the beam-circuit interaction is 

weak, and that the circuit dispersion relation near the band edge is approximated by a parabola. 
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Our present paper relaxes these assumptions in a case study, but corroborates other results of 

these earlier works.  

Since the Briggs-Bers criterion requires consideration of the dispersion relation in the 

entire lower half complex -plane (in a small signal theory with j t jkze ω −  dependence), we shall 

consider a dielectric TWT for which the exact dispersion relation can be derived. No assumption 

on weak beam-circuit interaction or on circuit mode is made as in previous studies [9,15,18]. The 

model consists of a sheet electron beam of surface charge density  0σ , propagating in 

the mid-plane of a smooth dielectric, planar transmission line at speed v and guided by an 

infinite magnetic field, both in the z-direction. Despite its impracticality, this dielectric TWT is 

governed by the exact dispersion relation [19],  

                                         . .              (1a,b) 

In Eq. (1), 2 2 2
0p kω εμ= − , 2

0 / 2p e m aω σ ε= , where ε is the dielectric constant of the planar 

transmission line of separation 2a, and μ0 is the free space permeability. (We pretend that this 

dielectric medium is transparent to beam propagation.)  The cold tube dispersion relation is 

shown in Fig. 1, given by F(ω,k) = 0, or pa = (n - 1/2)π, where n = 1, 2, 3, … and the cutoff 

frequency of the n-th mode is ( 1/ 2) /cn n c aεω π= −  with 01/cε εμ=  . Applying the Briggs-

Bers criterion [5,6] to the exact dispersion relation (1), we find the surprising result that there is 

no absolute instability in this dielectric TWT, regardless of the beam current, or 2
pω .  Note that 

the exact dispersion relation, Eq. (1), relaxes the assumption of weak coupling. In the next two 

paragraphs, we present some details of the Briggs-Bers criterion for the dielectric TWT because 

they are relevant to the subsequent studies of both upper and lower band edges. 

 An absolute instability with unstable mode frequency ωs with Im(ωs) < 0, and wave 

number ks may occur when the beam current, measured by 2
pω  in Eq. (1), is sufficiently high. It 

is anticipated that ωs is close to the cutoff frequency ωc1, because the reverse propagating 

waveguide mode needs to be internally excited for the existence of absolute instability.  The 

complex numbers, ωs and ks, are determined by solving the two equations [5,6], 

2 2( , ) , ( , ) ( ) /[( ) tan( )].pF k F k kv pa paω ω ω ω= ≡ − −
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At marginal stability, ωs is real, and this will occur at a threshold value of ωp. If at a higher 

value of ωp for which Im(ωs) < 0, an absolute instability exists.  An additional test for ωs being 

the root of potential absolute instability is to allow ω to change continuously from ωs to 

s jω − ∞  [5,6].  If an absolute instability exists, the (double or multiple) roots of k obtained by 

solving 2( , ) pF kω ω=  would change continuously from the (double or multiple) root ks to roots 

of k that end up with both Im(k) > 0 and Im(k) < 0. Such a root of ωs and ks is also known as the 

‘pole-pinch’ root.  If all of the (double or multiple) root ks end up with the same sign in Im(k) as 

s jω ω→ − ∞ , there is no absolute instability and the amplifier is zero-drive stable, i.e., the 

amplifier is stable in the absence of an input (drive) signal.  The black lines in Fig. 2 show the 

marginal stability curves, the ks vs ωs plots for real ωs that satisfies Eq. (2b) and the pole-pinch 

condition. The points P1 and P2 correspond to (ωs, ks) = (ωc1, 0), and (ωc2, 0), respectively, i.e. 

P1 and P2 are the first and second cutoff frequency points; Q1 is the presumed operating point of 

this dielectric TWT. Since Eq. (1a) gives 2 ( , )p s sF kω ω= , we have separated in Fig. 2 the values 

of (ωs, ks)  at which F(ωs, ks)  is real and non-negative. The marginal stability curves in the 

colored region of Fig. 2 satisfy this requirement. On the marginal stability curves in the white 

region, F(ωs, ks) is real but negative, which are unacceptable because they correspond to a 

negative value of  2
pω  (but are quite relevant to the analysis of the upper band edge of a coupled 

cavity TWT, and to the gyrotron TWT, as we shall see below).  

 Since F(ωs, ks) = 0 at the cutoff frequencies P1 and P2 in Fig. 2, this creates the (false) 

impression that there is no threshold current for the onset of absolute instability since the value 

of 2
pω   is zero at marginal stability. Exactly the opposite is true, namely, there is no absolute 

instability regardless of the beam current (or 2
pω ), in the sense of Briggs and Bers.  The reason 

follows.  As we increase 2
pω   from zero, the pole pinch root (ωs, ks) remains real and it simply 

moves from P1 along the marginal stability curve into the colored region of Fig. 2. This is true 



 5

for all positive values of 2
pω .  Thus, there is no absolute instability for the dielectric waveguide 

TWT, as modeled by the dispersion relation, Eq. (1). While Fig. 2 assumes v = 1.2 cε, we expect 

this conclusion to hold independent of the beam voltage. Note that on the lower boundary of the 

colored region that includes P1 (Fig. 2), F(ω, k) = 0.  On the upper boundary of that colored 

region, ( , ) .F kω → ∞   Figure 2 shows that the value of θ , which is related to F(ω, k) by 

2 2( , ) / 2 tan( ).F k a cεω πθ= Thus, F(ω, k)  increases from zero at P1 to infinity along the marginal 

stability curve in the colored region. 

 To further explore this lack of absolute instability, we approximate Eq. (1) with the 

“standard” form near operating point Q1 (Fig. 1), 

    2 2 2 2 2 4 3
1 1( ) ( ) 2c ckv k c Cεω ω ω ω− − − =  .    (3) 

In Eq. (3), the first parenthesis represents the beam mode, the second parenthesis represents the 

n = 1 circuit mode, and the interaction between the two modes is represented by the RHS of (3), 

in which C3 is proportional to the beam current (or 2
pω ).  In Eq. (3), C is Pierce’s gain parameter 

[1] for the dielectric TWT. Upon applying the Briggs-Bers criterion to Eq. (3), we confirm that 

the dispersion relation (3) does not admit an absolute instability, regardless of the coupling 

constant, C3.  The marginal stability curve in the ω-k plane for Eq. (3) is very close to the 

marginal stability curve in Fig. 2 in the vicinity of P1.   

Based on the excellent approximation of Eq. (1) by the much simpler and physically 

transparent form of Eq. (3), we postulate that absolute instability near the zero group velocity 

point may be similarly analyzed by approximating the local dispersion relation in the form of 

the second parenthesis in Eq. (3). Under this assumption, it immediately follows that if the 

dispersion curve of the circuit mode is concave locally at the zero group velocity point (as at the 

lower band edge of the dielectric waveguide TWT), its interaction with the beam mode would 

not produce an absolute instability, for values of beam voltage that the beam line intersects the 

circuit mode on the “forward wave” side.  The same conclusion was reached by Kuznetsov et al. 

[15,18] who approximated the vacuum circuit mode as a parabola in the ω-k plane, instead of a 

hyperbola that is modeled by the second parenthesis of Eq. (3). This is the case even if in the 

dispersion relation (3) is modified by replacing ω with ω - ω’ and k by k – k’ where ω’ and k’ 
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are arbitrary real constants (pretending the RHS of (3) is a constant, independent of ω and k).  

Shifting ω by ω’ and k by k’ would simply shift the coordinates of the ω-k plane, leaving the 

structure of the dispersion relation (3), and its analysis by the Briggs-Bers criterion unchanged.  

For a coupled cavity or folded waveguide TWT, the dispersion diagram for the circuit 

mode [2,3], and for the beam mode is shown in Fig. 3a.  The circuit mode has a zero group 

velocity point at the lower band-edge (A) and at the upper band-edge (B), with midband 

frequency at Q (Fig. 3a).  Near Q, the Pierce dispersion relation reads, 

   2 3 3
0 0 0( ) [( ) ( )]gkv v k k Cω ω ω ω− − − − =  ,    (4) 

where vg is the group velocity of the (forward) circuit wave at the operating point Q at which ω 

= ω0  and k = k0, with Pierce gain parameter C. When we use the more complete dispersion 

relation, similar to Eq. (3), that is also valid at the lower band edge (A), it is immediately clear 

that the lower band-edge (A) would not be subjected to absolute instability because the 

dispersion curve at A is concave, and the interaction with the beam mode there is entirely 

analogous to that in the dielectric TWT shown in Fig. 1. 

To examine the upper band-edge, B (Fig. 3a), we include the reverse propagating mode 

there and modify Eq. (4) to read, 

   2 2 2 2 2 4 3
0( ) [( ) ( ) ] 2m mkv r k k Cω ω ω ω− − − − − Δ = −  .   (5) 

In Eq. (5), the square bracket represents the circuit mode near the upper band-edge B, and ωm, 

km, r, and Δ are real constants, determined by the curvature at B, and by the requirement that the 

dispersion relation (5) reduces to the third degree polynomial, Eq. (4), near the operating point 

Q.  In sharp contrast to Eq. (3), the RHS of Eq. (5) contains a negative sign. Thus, at the upper-

band edge, the behavior of the dispersion relation, Eq. (5), is entirely analogous to that shown in 

Eq. (3) in which C3 replaced by -C3, i.e., 2
pω  in Eq. (1) is replaced with - 2

pω . In the marginal 

stability analysis for the upper band-edge, we then would have to examine the trajectory of the 

marginal stability curve into the uncolored region, from the Point P1 in Fig. 2. On the portion of 

the marginal stability curve that is in the uncolored region, ( , )s sF kω  is negative and we find 

that there is a maximum value of ( , )s sF kω .  This means that at the upper band-edge, there will 
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be an absolute instability if the beam current is so high that 2
pω  exceeds this maximum value of 

( , )s sF kω . A similar conclusion concerning absolute instability at the upper band edge was also 

reached if the vacuum circuit mode is approximated as a parabola in the ω-k plane, as in Refs. 

[15, 18] and [9]. 

Because of the negative sign in its RHS, the dispersion relation, Eq. (5), has the same 

form as that of a gyro-TWT [7,20] whose power gain originates from a “negative mass” effect 

[21] (also known as the cyclotron maser effect [22]).  Because of this negative mass effect, C3 is 

in fact negative when the gyro-TWT dispersion relation is cast in Pierce’s form [7,20,23,24]. 

The dispersion relation (5) then has a mathematical structure that is identical to the gyro-TWT 

which exhibits absolute instability [7,22]. We have applied the Briggs-Bers criterion to the 

dispersion relation, Eq. (5), to numerically obtain the threshold of C3 for the onset of absolute 

instability at the upper band-edge of a coupled cavity TWT.  We find these threshold values to 

be consistent with those given analytically for gyro-TWT [7].   

Figure 3b shows the circuit mode, beam mode, and the marginal stability curve for the 

onset of absolute instability at the upper band edge for a model of the coupled cavity TWT [25]. 

The parameters in Eq. (5) for this example are: upper band edge frequency ωu/2π = 36.954 GHz, 

lower band edge frequency ωL/2π = 24.245GHz, ωm/2π = 44.319 GHz, km = 2π/L, r = 8.6973 x 

107 m/s, Δ/2π = 7.365 GHz, and L = 1.765 mm.  For a beam voltage of 14.811 kV, for which 

ω0/2π= 31.689 GHz, k0 = 1.584π/L, the threshold value of C is 0.0248 (Fig. 3b). If C > 0.0248, 

absolute instability near the upper band edge occurs. Figure 4 shows the threshold value of C at 

other beam voltages. The beam mode with beam voltage of 12.545 kV would intersect the 

circuit mode at the upper band-edge B (Fig. 3b) for which the threshold value of C is zero (Fig. 

4).   

 If the absolute instability occurs very close to cutoff, it may easily escape detection 

because of the zero group velocity. For example, in the gyro-TWT, the absolute instability very 

close to waveguide cutoff was predicted [7], and was actually recorded in experiments but was 

not noted, because the power from the absolute instability that was coupled out (at the cutoff 

frequency) was much smaller than that due to reflection (at the operating frequency) [7,22].  

Likewise, for the linear beam tube, at both lower and upper band-edge, matching is difficult, 
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oscillation of the reflective type would make the absolute instability of the type under 

discussion difficult to detect.  Absolute instability at the upper band-edge may provide an 

intrinsic limitation of TWT efficiency.  As the electron beam yields its kinetic energy to the RF, 

the slope of the beam line in Fig. 3a will gradually decrease, and if the beam line cuts the circuit 

dispersion diagram at B, oscillation due to absolute instability could occur.  At Point B, the 

threshold current for the onset of absolute instability is zero according the dispersion relation 

Eq. (5). In fact, such “drive induced” oscillation has been well documented in TWT’s [18, 26-

31].  This oscillation occurs only at a high drive level  – which induces significant beam 

velocity/energy spreads at the same time reducing the slope of the beam mode (Fig. 3a). This 

would lead to intersection of the (modified) beam mode with the circuit mode at point B more 

likely. Whether drive induced oscillation in coupled cavity TWT is related to absolute 

instability remains to be examined. 

 The absence of absolute instability at the lower band-edge (A) does not rule out an 

instability whose amplitude exponentiates as exp( )t βα  for some positive α, β  with 0 < β  < 1.  

Such exponential growth, in fractional power of t, is not covered by the Briggs-Bers criterion 

[5,6], but is common in beam breakup instability found in all types of linear accelerators, from 

induction linacs to linear colliders [32]. In the latter case, communication between adjacent 

cavities is achieved only by the beam, e.g., by setting the term 2 2 0k cε =  in Eq. (3). [32, 33] 

In summary, we find that there is no absolute instability in an exact dielectric TWT 

model, regardless of the beam current. We contrast the absolute instability in a gyrotron-TWT 

and in a linear beam TWT. Approximating the dispersion diagram as a hyperbola near the band 

edges, we also find that a linear beam would not excite an absolute instability close to a zero 

group velocity point if the dispersion diagram is concave at that point, for values of beam voltage 

such that the beam line intersects the circuit mode on the forward wave side.  An absolute 

instability will occur if the dispersion diagram is convex at that point if the beam current exceeds 

a certain threshold value, (or if the beam line intersects the backward wave side of the circuit 

dispersion curve).  These general conclusions are applicable to novel TWT’s of current interest, 

including meta-materials TWT [34,35,36], and the THz Smith-Purcell radiation sources 

[37,38,39].  Recent simulations indeed reveal an absolute instability at the upper band edge of a 

TWT that uses a disk-on-rod slow wave structure [40]. 
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Fig. 1.  (Color online) The first two waveguide modes (n = 1 and n = 2) and the beam mode in a 

dielectric TWT, with possible operating points at Q1 and Q2. 
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Fig. 2. (Color online) The black lines show the marginal stability curves for a dielectric TWT in 

the normalized ω-k plane where / , .a c k kaεω ω π= =  In the colored region, F(ω, k) > 0.  In the 

non-colored region, F(ω, k) < 0.  The color bar shows the value of θ  in the colored regions, 

which is related to F(ω, k) by 2 2( , ) / 2 tan( ).F k a cεω πθ=   On the lower (upper) boundary of the 

colored region that includes the cutoff frequency point P1, F(ω, k) = 0 (= infinity). 
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Fig. 3.  (Color online) (a) Left. The lower band-edge (A), the upper band-edge (B), and the 

operating point (Q) at which the beam mode intersects with the circuit mode in a coupled cavity 

TWT at (ω, k) = (ω0, k0).  kL is the phase shift per period. (b) Right. The beam mode, the circuit 

mode, and the marginal stability curve for a Ka-band coupled-cavity TWT with a 14.811 kV 

beam. The maximum value of C is 0.0284 on the marginal stability curve, on which the value of 

C is color-coded. 
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Fig. 4. Threshold value of Pierce gain parameter C for the onset of absolute instability at the 

upper band-edge of the coupled cavity TWT model shown in Fig. 3b.  

 


