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The free energy cost of reducing noise while maintaining a high sensitivity
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Living systems need to be highly responsive, and also to keep fluctuations low. These goals are
incompatible in equilibrium systems due to the Fluctuation Dissipation Theorem (FDT). Here, we
show that biological sensory systems, driven far from equilibrium by free energy consumption, can
reduce their intrinsic fluctuations while maintaining high responsiveness. By developing a continuum
theory of the E. coli chemotaxis pathway, we demonstrate that adaptation can be understood as a
non-equilibrium phase transition controlled by free energy dissipation, and it is characterized by a
breaking of the FDT. We show that the maximum response at short time is enhanced by free energy
dissipation. At the same time, the low frequency fluctuations and the adaptation error decrease
with the free energy dissipation algebraically and exponentially, respectively.

PACS numbers: 87.10.Vg, 87.18.Tt, 05.70.Ln

Living organisms need to respond to external signals
with high sensitivity, and at the same time, they also
need to control their internal fluctuations in the absence
of signal. In equilibrium systems, the fluctuation dissi-
pation theorem (FDT) dictates that these two desirable
properties, high sensitivity and low fluctuation, can not
be satisfied simultaneously. Most sensory and regula-
tory functions in biology are carried out by biochemical
networks that operate out of equilibrium – metabolic en-
ergy is spent to drive the dynamics of the network [1–4].
Thus, in principle they are not constrained by the FDT
[5]. How fluctuations, energy dissipation, and sensitivity
are related for such systems remains not well understood.
Here, we address this question by studying a negative
feedback network responsible for adaptation in the bac-
terial chemosensory system [6–9].

A typical adaptive behavior in a small system such as
a single cell is shown in Fig. 1A [10]. In response to a
change of the signal S, the output y of the sensory system
first changes quickly with a fast time scale τy. After the
fast response, the output slowly adapts back towards its
pre-stimulus level aad with an adaptation time τad � τy.
The new steady state (adapted) output may differ from
the pre-stimulus value, and the difference is quantified
by the adaptation error ε. In our previous work [11], we
showed that the negative feedback network responsible
for adaptation operates out of equilibrium with a finite
free energy dissipation rate Ẇ . The average adaptation
error 〈ε〉 was found to decrease exponentially with τadẆ .
However, how the variance σ2

ε of the error behaves in an
adaptive system still remains unknown. This is an im-
portant question as adaptive feedback systems are intrin-
sically noisy due to the slow adaptation dynamics [12].

In the linear response regime, the output response of
a system to an input signal S(t) is given by R(t) =

R(0) +
∫ t

0
χ(t− t′)S(t′)dt′, where χ is the response func-

tion. For equilibrium systems, under the general assump-
tion that response and signal are conjugate variables,
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FIG. 1: Noisy response of feedback adaptation. A)
Adaptive output response to a step input signal increase at
time 0. After a sharp decrease in a time τy, the output y
recovers back in a time τad to its adapted value aad. The
adaptation error is characterized by its average 〈ε〉, as well
as its variance σε. B) Schematic of the feedback adaptation
model. Transitions between the active and inactive memory
energy landscapes, f1 and f0, are mediated via equilibrium
activity transitions with rates ω0 and ω1. An external chemi-
cal energy input µ is used to drive the memory variable uphill
in both the active and inactive states. The result is a dissi-
pative loop of probability flow around the adapted memory
state mad, which ensures the output to be near aad.

the FDT establishes that χ(t) = −β∂tCR(t)Θ(t), where
CR(t) ≡ 〈R(t)R(0)〉 − 〈R〉2 is the auto-correlation func-
tion, Θ(t) is the Heaviside function, and β = (kBT )−1

is the inverse thermal energy set to unity hereafter. For
a small step stimulus S(t) = S0Θ(t), integration of the
FDT leads to a relation between the response and its
correlation: R(t) = R(0) − S0(CR(t) − CR(0)). Since
for systems in chemical equilibrium CR(t) is a monoton-
ically decreasing function of time [13], the response R(t)
is also monotonic in time, and thus no adaptation dy-
namics is possible. Furthermore, the long time response
∆R ≡ R(t = ∞) − R(0) is linearly proportional to the
variance σ2

R = CR(0), i.e., ∆R = S0σ
2
R.

In this paper, we show that in a non-equilibrium adap-
tive system both the average adaptation error 〈ε〉 (anal-
ogous to ∆R) and its variance σ2

ε (analogous to σ2
R) are

suppressed by the free energy dissipation of the system
but in different ways, which results to a nonlinear (log-
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arithmic) relationship between them. More importantly,
violation of the FDT allows suppression of noise without
compromising the strength of the short time response.

The continuous model of feedback adaptation. We start
by introducing a discrete adaptation model motivated by
the E. coli chemotaxis pathway. The system is character-
ized by its binary receptor activity A = 0, 1, its output
y, and an internal control variable M = 0, 1, . . . , N , that
corresponds to the chemoreceptor’s methylation level in
E. coli chemotaxis [9]. For a given external input signal
S, the free energy of the system can be written as:

FA(M,S) = −(A− 1/2)[(M −Mr)E − (S − Sr)], (1)

where Sr is a reference signal at a methylation level Mr,
and E (which is positive) sets the methylation energy
scale. For E. coli chemotaxis, the signal S depends on
the ligand attractant concentration logarithmically [14].

The dynamics of the system is characterized by the
transitions among the 2 × (N + 1) states in the A ×M
phase space. The receptor activity switches at a time
scale τa, which is much shorter than the adaptation time
scale τad at which the internal variable M is controlled.
The activity A determines the output y of the signaling
pathway. In the case of E. coli chemotaxis, this is car-
ried out by the phosphorylation and dephosphorylation
reactions of the response regulator CheY with an inter-
mediate time scale τy: τad � τy � τa. To account for

this, we express y by y(t) = τ−1
y

∫ t
−∞ e(t′−t)/τyA(t′)dt′,

which averages the fast binary activity A over the time
scale τy.

According to Eq. (1), a larger signal S favors the inac-
tive state A = 0. Thus, an increase in S quickly reduces
the system’s average activity, at time scale ∼ τa, and out-
put, at time scale ∼ τy, as represented in Fig. 1A. After
this sudden initial response, the system slowly adapts by
adjusting its internal variable M to balance the effect of
the increased signal. Due to its slow time scale, M effec-
tively serves as a memory of the system. This adaptation
process restores activity and output to a level near their
pre-stimulus value 〈A〉 = 〈y〉 ≈ aad. Although highly
precise, adaptation is imperfect, and its inaccuracies are
quantified by the adaptation error ε, which we define as

ε =
y − aad

aad
. (2)

For E. coli chemotaxis, the adaptive machinery consists
of chemical reactions that increaseM in the inactive state
and decrease it in the active state. Note from Eq. (1) that
such regulatory reactions are energetically unfavorable,
and thus require a chemical driving force µ, see Fig. 1B.

To gain analytical insights about dynamics and ener-
getics of adaptation, we consider the limit where N →∞
and m = M/N ∈ [0, 1] becomes a continuous variable
[15]. Note that free energy and bare rates need to be
rescaled for the continuum limit to converge (see Supple-
mentary Information, SI, for details). Proceeding in this

way we obtain two coupled Fokker-Planck equations that
describe the chemotaxis pathway dynamics:

∂tp1 = p0ω0 − p1ω1 − ∂mJ1

∂tp0 = p1ω1 − p0ω0 − ∂mJ0, (3)

where p1(m, t) and p0(m, t) are the probabilities of m for
the active and inactive states, respectively. The proba-
bility currents are given by

JA = DA (−(∂mfA + (A− 1/2)µ)pA − ∂mpA) , (4)

for A = 0, 1, and where fA(m) = −(A−1/2)[(m−mr)e−
(S − Sr)] is the continuum limit of Eq. (1) characterized
by the rescaled energy parameter e = NE. The fast tran-
sition rates between the active and inactive states, ω0 and
ω1, satisfy detailed balance ω0/ω1 = exp(f0 − f1). The
diffusion-like constants D1 and D0 set the time scale of
m changes for active and inactive states, and thus the
adaptation time goes as τad ∼ D−1

A and is independent
of µ, see SI. Our model is analogous to that of an isother-
mal ratchet [16], where a chemical driving fuels directed
motion. Whereas in ratchets µ drives directed motion,
here it fuels currents up the energy landscapes f0 and f1

to achieve adaptation.

In the absence of external driving, i.e. µ = 0, the
system relaxes to a state of thermal equilibrium with no
phase-space fluxes J0 = J1 = 0. In this regime adapta-
tion is impossible. The chemical driving µ > 0 breaks
detailed balance and creates currents that increase m in
the inactive state and decrease it in the active state. For
large enough µ, the memory variable m can be stabi-
lized (trapped) in a cycle around its adapted state mad,
which ensures 〈y〉 ≈ aad as illustrated in Fig. 1B. The free
energy dissipation rate of this process, Ẇ , can be com-
puted, and is given by Ẇ ≈ C|µ|/τad, with C a system
specific constant set to unity by our parameter choice,
see SI. In the following, we will use the chemical driving
µ ≈ τadẆ to characterize the system’s energy dissipa-
tion.

The dynamics of A, y, and m are illustrated in Fig. 2A.
The power spectra of A and y, given in Fig. 2B, show that
the high frequency fluctuation of y is suppressed with re-
spect to that of A by time-averaging. However, the low
frequency fluctuations of y, which are caused by the slow
fluctuations of m, are not affected. These slow fluctua-
tions, which can affect the bacterium’s swimming behav-
ior due to the motor’s ultra-sensitivity, are suppressed by
free energy dissipation, as we show later in this paper.

Adaptation as a non-equilibrium phase transition.
Given the separation of time scales τa � τad, we can solve
Eqs. (3) by using the adiabatic approximation [13, 17]:
p1(m) = a(m)p(m), and p0(m) = (1 − a(m))p(m), with
a(m) = (1 + ef1(m)−f0(m))−1 the average equilibrated ac-
tivity for a fixed value of m. The distribution of m can
be written as p(m) = e−h(m,S)/Z with h the effective
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FIG. 2: Adaptation as a non-equilibrium transition A)
Schematic time traces of the binary activity A (blue), the
output y (black), and the memory M (red) in steady state.
The slow M variations induce large fluctuations in the out-
put y, while the fast A switching for a fixed M only produces
small fluctuations in y. B) Power spectra of the activity SA
and output Sy. The output noise is filtered (reduced) in the
high frequency range τ−1

y < ω < τ−1
a ; but it remains unfil-

tered in the range τ−1
ad < ω < τ−1

y . C) Effective memory
potential in Eq. 5 for three values of the chemical driving µ
(due to the choice D1 = D0 taken here, mad = m∗). At
equilibrium, µ = 0, the adapted memory state mad is unsta-
ble. At the value µ = µc the system becomes critical. In
the region µ > µc the adapted state mad is stable, and the
system adapts output and activity to a(mad). Inset: Activ-
ity response to step signal increase for corresponding values
of µ. D) Effective temperature Teff for three different values
of the chemical driving µ. After the onset of adaptation a
region with “negative friction” develops, at the end of which
the effective temperature diverges. Values of µ from lighter
to darker blue are µ = 0, µ = 0.65µc, and µ = 20µc (the same
as in panel C). The other parameters are from [17], see SI.

potential and Z a normalization constant. We have de-
termined the effective potential h analytically (see SI):

h(m,S) =
µ

µc
ln[D0e

−(m−m∗)e/2 +D1e
(m−m∗)e/2]

− ln[e−(m−m∗)e/2 + e(m−m∗)e/2] , (5)

where we have defined the critical chemical driving as
µc = e/2, and m∗ = mr + (S − Sr)/e.

The analytical form of the effective potential is one
of the main results of this paper. The effect of energy
dissipation and the onset of adaptation can be under-
stood intuitively with h(m,S), which contains two terms
with similar shapes, see Fig. 2C. The first term (propor-
tional to µ/µc) in the right hand side of Eq. (5) comes
from chemical driving (non-equilibrium effect) and has
a stable free energy minimum. The second term is the
equilibrium potential in the absence of driving, and has
a maximum at m∗. At equilibrium the only critical point
m∗ is unstable, so the system tends to go to the bound-

aries without adapting. As µ increases and opposes the
force generated by fA the first part of the potential starts
to dominate. For µ > µc, the system develops a stable
fixed point at mad indicating the onset of adaptive be-
haviors towards a(mad) [18]. As µ grows it dominates
the slope of h near the fixed point increasing its stabil-
ity, and adaptation accuracy improves. The transition of
a feedback system to adaptation can thus be loosely un-
derstood as a continuous phase transition (see SI). Since
the control parameter is the free energy dissipation, the
transition to adaptation occurs far from equilibrium and
a breaking of FDT is to be expected.

Breakdown of Fluctuation Dissipation Theorem. In our
feedback model, the observable conjugate to the signal is
eA = −∂SfA, something that does not hold for feedfor-
ward models where the adaptive machinery can be main-
tained at no energy cost [19–21]. At equilibrium the FDT
leads then to χ(t) = e∂tCA(t), where χ is the activity re-
sponse function and CA the monotonic correlation func-
tion. In an adaptive system the integral of χ, which is
just the response to a step stimulus, is non-monotonic,
therefore FDT is broken and adaptation occurs out of
equilibrium.

To quantify the departure from equilibrium, we define
an effective temperature Teff using the formulation of the
FDT in frequency space [5, 22], see inset in Fig. 2D.
The frequency-dependence of Teff for µ > 0 implies a
breakdown of FDT. As shown in Fig. 2D, while for any
value µ 6= 0 we have Teff 6= 1, after the transition to the
adaptive regime µ ≥ µc a divergence occurs. This cor-
responds to the appearance of a frequency region where
Im[χ(ω)] < 0. A negative effective viscosity indicates the
dominance of the active effects that drive a net current
to flow against the gradients of the equilibrium energy
landscapes (fA), which was also observed in other bio-
logical systems such as collections of motors [23] or the
inner ear hair bundle [5]. The breakdown of FDT means
that there is no a priori connection among fluctuations
σ2
ε , chemical driving µ (dissipation), and long-time re-

sponse 〈ε〉. In the following we derive relations linking
these three quantities in the adaptive feedback system
studied here.

The free energy cost of suppressing fluctuations. As ev-
ident from the effective potential, increasing the chemical
driving µ stabilizes the adapted state. In the limit µ →
∞, the system thus goes to its perfectly adapted state
with average activity and output aad = D0/(D0 + D1),
that is a(mad) → aad. For finite µ, the output differs
from aad, which can be characterized by the average er-
ror 〈ε〉 and its variance σ2

ε .

The average adaptation error is 〈ε〉 = (〈y〉 − aad)/aad.
Summing and integrating Eqs. (3) at the steady state,
we have

〈ε〉 =
D1p1(1) +D0p0(1)

D0(e/2− µ)
− D1p1(0) +D0p0(0)

D0(e/2− µ)
. (6)
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Thus to obtain the adaptation error we only need to eval-
uate the probability at the boundaries. In the limit of
µ� µc, we have:

〈ε〉 ≈ εce−kµµc , (7)

where k and εc are constants with only weak dependence
on µ and S (see SI). This shows explicitly that the adap-
tation error goes down exponentially with energy dissi-
pation, as found numerically in our previous work for the
discrete model [11]. Here, we show this relationship ana-
lytically in the continuum limit, which is consistent with
direct simulations of the discrete model, see Fig. 3A.� �
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FIG. 3: Free energy cost of reducing error and noise.
A). Dependence of average error with chemical driving for
several system sizes. The decay is exponential, in agreement
with the infinite size limit (dashed red). Saturation of the
decay for finite N is due to finite size effects. B) Adaptation
noise as a function of chemical driving for several system sizes,
together with the analytical estimate in dashed red. At very
large driving the noise saturates to its minimum σym dictated
by the intrinsic activity fluctuations. Note that at the critical
driving µc the analytical estimate diverges. This divergence
is smoothed for finite N .

Besides stabilizing the adapted state, Eq. (5) shows
that increasing µ also reduces the m−fluctuations by
making the effective potential sharper. The reduction
in these fluctuations implies a decrease in the variance of
the error σ2

ε . Taking into account the separation of time
scales, the variance of the output y can be approximated
as the sum of two variances σ2

ym and σ2
a. They respec-

tively correspond to variation of y at time scale ∼ τy
around its average a(m) for a fixed m, and the variation
of a(m) due to variation of m at the adaptation time
∼ τad, see Fig. 2A. We thus have

σ2
ε ≈ (σ2

ym + σ2
a)/a2

ad . (8)

The variance σ2
ym of y is caused by the fast fluctuations

of the binary variable A at timescale ∼ τa averaged over
the output timescale τy � τa (see SI):

σ2
ym = (aad − a2

ad)τa/(τy + τa) ,

which clearly shows that σ2
ym ∝ τa/τy is reduced by time-

averaging [12, 24].
The variance σ2

a = 〈a2〉 − 〈a〉2, where 〈an〉 =∫ 1

0
an(m)p(m)dm for n = 1, 2, is caused by the slow vari-

ation of m, and can not be reduced by time average.

To obtain an analytical expression for σ2
a we approxi-

mate p(m) by a Gaussian, valid for µ� µc. This results
in σ2

a ≈ (∂maad)2σ2
m. The variance σ2

m = 〈m2〉 − 〈m〉2
within the same Gaussian approximation of p(m) is given
by σ2

m ≈ (µµc)−1. Defining now a characteristic variance
as σ2

c = (1− aad)2a2
ad, we finally have:

σ2
a ≈ σ2

cµc/µ , (9)

which vanishes when µ → ∞. This is a main result of
the paper, which shows that energy dissipation is used
to reduce error noise by suppressing slow activity fluctu-
ations. This result is verified by direct simulations of the
discrete models with increasing N , see Fig. 3B.
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FIG. 4: Response and correlations in systems out of
equilibrium. A) (top panel) Average output response to a
signal decrease for several values of the chemical driving be-
yond µc, see the color-code for µ in panel B. As the chemical
driving µ increases, the maximal transient response 〈y〉max in-
creases, but the long time response ∆〈y〉 = aad〈ε〉 decreases.
(bottom panel) The correlation function also decreases as the
system is driven further away from equilibrium. B) The de-
pendence of 〈y〉max, ∆〈y〉, and σy on the chemical driving
µ. The long-time response (adaptation error) ∆〈y〉 decreases
quickly with µ. The output fluctuation σy , dominated by
the memory noise σm, decays more gradually with µ, and con-
trols the increase in the maximal response 〈y〉max for large µ.
In this figure N = 15, and S = Sr.

Discussion. Biochemical networks are non-equilibrium
systems fueled by free energy dissipation to achieve their
biological functions. Energy dissipation liberates the net-
works from constraints such as the Fluctuation Dissipa-
tion Theorem and Detailed Balance. Here, we show in
a negative feedback network that the long-time output
response ∆〈y〉 = aad〈ε〉 decreases with the free energy
dissipation µ ≈ τadẆ exponentially, and its fluctuation
σ2
y = a2

adσ
2
ε decreases as µ−1, making the latter a limit-

ing factor for accuracy at large µ. These effects, which
arise from an improved accuracy and smaller fluctuations
of the adaptation dynamics, contribute to enhance the
short time response 〈y〉max, see Fig. 4.

Even though FDT is broken in the adaptive sys-
tem studied here, fluctuations and long-time response of
the output are linked via a non-linear relation: σ2

y ≈
dµ2

c/ ln(yc/∆〈y〉) + σ2
ym, where d = kσ2

c and yc = aadεc.
Unlike the linear non-equilibrium FDT derived by a
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change of observables [25–27], our non-linear relation
links observables that are conjugate at equilibrium, mak-
ing it particularly appealing. Our work is closely related
to the bound derived in [28] for fluctuations of currents
and in [29] for reduction in concentration estimates. We
expect that the results here shown are generically appli-
cable to feedback adaptive systems. And while there is
evidence that their scope could be broader [30], it remains
a challenging question to formulate a general relationship
among response, fluctuations, and energy dissipation for
systems far from equilibrium.
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