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IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Current methods for classifying measurement trajectories in superconducting qubit systems pro-
duce fidelities systematically lower than those predicted by experimental parameters. Here, we
place current classification methods within the framework of machine learning (ML) algorithms and
improve on them by investigating more sophisticated ML approaches. We find that non-linear algo-
rithms and clustering methods produce significantly higher assignment fidelities that help close the
gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into
natural subsets within the data, which allows for the diagnosis of systematic errors. We find large
clusters in the data associated with T1 processes and show these are the main source of discrepancy
between our experimental and ideal fidelities. These error diagnosis techniques help provide a path
forward to improve qubit measurements.

Maximizing the information one can extract from a
physical system requires the ability to perform accurate
measurements. Our goal in this paper is to provide meth-
ods for diagnosing measurement errors and increasing
fidelities by using various machine learning (ML) algo-
rithms. An important application of these techniques is
in quantum information processing, where highly accu-
rate operations and measurements are required to per-
form fault-tolerant information processing in the pres-
ence of noise [1].We apply our methods in a supercon-
ducting qubit measurement system, and we anticipate
that the generality of these techniques can be useful in
a broader class of systems. Superconducting quantum
bits (qubits) are becoming increasingly promising for ex-
perimentally demonstrating quantum protocols due to
their long coherence times [2–4], high-fidelity multi-qubit
gate operations [5], and the ability to perform single-shot
measurements [6–9] in a circuit QED architecture [10].
In the dispersive measurement scheme of circuit quan-
tum electrodynamics (cQED), a superconducting anhar-
monic oscillator, such as a transmon [11], is coupled to a
resonator, producing a state-dependent shift of the res-
onator frequency. This allows for qubit measurements
by driving the resonator and recording the output tra-
jectory [12] in phase (I-Q) space. In practice, signif-
icant sources of random noise and systematic effects,
such as T1 processes (spontaneous decay), make single-
shot trajectories appear complex and difficult to distin-
guish. There has been significant progress in reducing
error-rates and measurement times [13] however manag-
ing, classifying, and extracting useful information from
the trajectory data is extremely important for improving
readout as these systems scale to larger networks.

The outline of the paper is as follows. We begin by
describing the experimental system used to create the
measurement data as well as how we characterize the
measurement performance by the assignment fidelity Fa

(defined in Eq. (1)). We first analyze the data using the
current method, which is a simplified version of linear dis-
criminant analysis (LDA), and obtain Fa = 0.9586. LDA

is the simplest ML classification algorithm and finds the
plane that optimally separates the I-Q data trajectories
under idealized assumptions of symmetric and Gaussian
noise at each point in time. Next we use the quadratic
extension of LDA called quadratic discriminant analysis
(QDA), which allows for noise asymmetry, and find no-
ticeable improvement in the assignment fidelity. Finally,
we remove assumptions on the noise and approach the
problem from a purely geometric viewpoint using support
vector machines (SVM’s). The non-linear SVM provides
the largest improvement giving Fa = 0.9821 (∼ 2.4%
increase), which indicates non-linear effects such as T1

events are likely present. To verify this, and to under-
stand details of the noise, we use ML clustering algo-
rithms to find natural subclasses in the data. We find a
large subclass corresponding to T1 events which validates
our hypothesis. Accounting for these events, we find as-
signment fidelities much closer to those that should be
attainable in our system under the ideal noise conditions
assumed for the optimality of LDA.

Let us briefly make a few points about using ML meth-
ods. First, the methods we present here can be useful
in a much broader context. Any measurement scheme
that produces patterns in a geometric space can poten-
tially benefit from more advanced ML methods. Investi-
gating the applicability to different systems will depend
on the details of each situation. Second, these methods
are applicable even if we are trying to improve higher
fidelity measurements than those considered here. The
key is that these methods can be tailored according to
the types of noise present. Third, ML methods have also
been applied to other problems in quantum information
such as phase estimation [14] and asymptotic state esti-
mation [15].

Our system is a single transmon qubit (Q4) coupled to
a readout resonator in a lattice of four superconducting
qubits [16] (full details of this experiment are in Ref. [16]
and a diagram of the four-qubit setup is given in the Sup-
plementary Material [17]). The main parameters of the
single-qubit system are provided in Table I. The measure-



2

ment framework is the dispersive limit of cQED where
− g

∆ � 1 (∆ = ω − ωR). A full discussion of this frame-
work is given in [10, 17]. The general idea is there is a
qubit state-dependent dispersive shift of the readout res-
onator frequency so driving near the bare resonator fre-
quency corresponds to a quantum non-demoliton (QND)
measurement of the qubit state. A circuit diagram of the

TABLE I. System parameters.

transmon 0-1 frequency ω/2π = 5.415 GHz

resonator frequency ωR/2π = 6.693 GHz

transmon-resonator coupling g/2π = 42.3 MHz

resonator line-width κ = 1.21 MHz

T echo
2 22µs

T1 29µs

single-qubit apparatus is shown in Fig. 1. The control
pulse is shown in black (top) and the readout pulse in
red (bottom). The readout pulse is split into two signals,
one of which is sent to the device while the other is mixed
with the post-amplification signal. A single drive line en-
ters the device and amplification of the output signal is
provided by the (low-noise) JPA and HEMT amplifiers.
The I-Q field quadratures are measured and recorded,
producing single-shot time-dependent data. An example
of this data for a |0〉 state preparation is given in Fig. 2.
I-Q plots for single-shot |0〉 and |1〉 preparations, as well
as the means over these preparations, are given in Fig. 3.
We see that once the measurement drive is turned on,
photons populate the cavity leading to a Stark shift of
the qubits and an increase in the mean separation be-
tween the trajectories. Each single-shot trajectory can
be complicated due to noise however there are enough
shots to ensure smooth and well-separated means.

FIG. 1. Circuit diagram of the single-qubit set-up. See text
for details (color online).
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FIG. 2. Measured output of I and Q quadratures for state
|0〉 single-shot trajectory (color online).
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FIG. 3. Mean trajectories and single-shots for |0〉 (blue) and
|1〉 (red) preparations (color online). The |0〉 (|1〉) single-shot
trajectory (blue (red)-dotted) has arrow pointing up (down)
and to the left (right). The mean trajectories of |0〉 (blue-
solid) and |1〉) (red-solid) have steady-states of ∼ (-0.07,-0.02)
and (-0.01,-0.07) (color online).

The assignment fidelity

Fa = 1− (P [0|1] + P [1|0]) /2, (1)

is a standard metric for characterizing how well a mea-
surement assigns outcomes. Here P[0|1] (P[1|0]) is the
probability of obtaining outcome “0” (“1”) given the sys-
tem was prepared in |1〉 (|0〉) and so Fa ∈ [0, 1]. Our data
consists of 51200 single-shot trajectories (shots), half ini-
tially prepared in |0〉 and the other half in |1〉 (denote
these classes by C0 and C1). The first half of the tra-
jectories is used as a training set for classification on the
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second half. The total measurement time T is 2.6µs and
[0, T ] is discretized into 163 time-points so trajectories are
represented by vectors x ∈ R326 (let M = 326) where the
first (last) 163 entries correspond to the real (imaginary)
parts of the trajectory. Hence each x(j) can be viewed
as a real-valued random variable. The mean trajectories
and covariance matrices for each class are denoted µ0, µ1

(see Fig. 3) and Σ0, Σ1 respectively.
The current method of classifying trajectories [18] is

based on linear discriminant analysis (LDA) [20] and as-
sumes the noise is highly idealized; the noise at each time
is assumed to be: 1) Gaussian distributed, 2) uncorre-
lated with noise at other times, and 3) symmetric be-
tween C0, C1. Alternatively, this can be phrased as Σ0

and Σ1 are Gaussian, diagonal, and equal. Under these
assumptions x is associated to

fLDA(x) = xT
[
Σ−1

0 (µ0 − µ1)
]
, (2)

which is then assigned as 0 or 1 according to an appro-
priate threshold. Using this method in our experiment
gives Fa = 0.9586.

In reality, the noise is far from these ideal conditions
and one of the main goals of this paper is to deal with
these more realistic scenarios. Before doing this, we can
ask what fidelity we would expect from the parameters of
our system if the noise did satisfy these ideal conditions.
As shown in [17] this ideal fidelity, denoted Fid, is

Fid = 0.9999± 0.0001. (3)

Hence there is a large discrepancy between Fid and Fa

that can be due to effects such as state-preparation er-
rors and non-Gaussian/non-linear noise. This discrep-
ancy motivates us to investigate better methods of clas-
sifying trajectories.

Let us relax the unrealistic assumption of noise symme-
try between C0 and C1. In this case the optimal method
is quadratic discriminant analysis (QDA) [19] and each
trajectory x is mapped to

fQDA(x) = −1

2
xT

[
Σ−1

0 − Σ−1
1

]
x+ xT

[
Σ−1

0 µ0 − Σ−1
1 µ1

]
,

(4)

and then assigned “0” or “1” according to an appropriate
threshold. We computed Fa using the “fitcdiscr” func-
tion in Matlab for four different methods: LDAd, LDA,
QDAd, and QDA (“d” represents diagonal covariance
matrix and LDAd is the method of [18]). The results
are in the second column of Table II. Not surprisingly,
we find QDAd improves upon LDAd and allowing non-
diagonal covariance matrices produces higher Fa. The
values in Table II are the sample means from 100 repeti-
tions. The sample variances σ2 are ∼ 1×10−8 indicating
stable/reproducible results.

A value of Fa for QDA was not attainable due to sin-
gular covariance matrices, which is a result of overfitting

the data (having more variables than required from the
correlation time in the trajectories). To remedy this, we
perform dimensionality reduction using principal compo-
nent analysis (PCA) [21] and find 99.9% of the variance
in the data can be accounted for in a subspace of dimen-
sion ∼ 20 (noise correlation time ∼ 85−180 ns). Results
with a PCA pre-processing step (using “princomp” in
Matlab) are in the third column of Table II. Not sur-
prisingly QDA provides the highest Fa out of all cases
considered.

TABLE II. Assignment fidelities for discriminant analysis
methods.

Method All time-points PCA

LDAd 0.9586 0.9557

LDA 0.9701 0.9586

QDAd 0.9627 0.9648

QDA – 0.9712

These classification methods assume Gaussian noise
and better methods are needed to deal with realistic
noise. We approach this in two ways. The first is via
the support vector machine (SVM) [22, 23], which re-
quires no assumptions on the noise and can be extended
to non-linear discriminating surfaces. The second is to
utilize “clustering” methods in ML to naturally goup the
data from which we perform multi-class classification.

The linear SVM is a quadratic program based on max-
imizing the minimum distance of a data point to a hy-
perplane separating the data. The non-linear SVM is
derived by defining a kernel that maps the data to a
higher-dimensional space. The linear SVM in the higher-
dimensional space allows for non-linear discrimination in
RM . Due to its generality and simplicity, we chose a
radial basis function kernel.

We implemented the SVM using the Matlab “fitcsvm”
function and classification was repeated 100 times. The
mean values with the optimal soft-margin parameter are
contained in Table III (see [17] for details). Sample vari-
ances σ2 of Fa are approximately 1.9 × 10−8. The non-
linear SVM produces the highest assignment fidelity out
of all methods considered, indicating non-linear effects
are present. We hypothesize the main factor producing
the non-linearity is T1 events.

TABLE III. Assignment fidelities for SVM methods.

Method All time-points PCA

Linear SVM 0.9753 0.9571

Non-linear SVM 0.9821 0.9739

Our second method for implementing a non-linear clas-
sifier combines classification and clustering algorithms.
Clustering naturally groups the data into subsets and is
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“unsupervised” since it requires no training data. We im-
plement k-means clustering [17, 24] and anticipate sim-
ilar results can be obtained with other standard meth-
ods such as heirarchical clustering. We used the Matlab
“kmeans” function to find k = 3 clusters in each of C0

and C1. We chose k = 3 to take into account both vari-
ance and systematic effects. The mean trajectories and
size of the six subclasses are given in Fig. 4. C0 is split
relatively evenly into the subclasses S0,1, S0,2, S0,3 (blue
colored trajectories) that mainly capture variance. We
don’t see a C0 subclass corresponding to ground state
heating, however we implemented k-means for k = 7 and
found a heating subclass of size ∼ 230 (see Fig.2 in [17]).
C1 has strikingly different properties as subclass S1,2

(green-solid line) is comprised of T1 processes. S1,1 and
S1,3 (red trajectories) are similar in size and mainly cap-
ture variance. The key point is we have found explicit
shot indices for T1 events. We verified that S1,2 is com-
prised of T1 trajectories by performing k-means with
k = 4 (see Fig.3 in [17]). From Fig. 4, ∼ 9% of the |1〉
preparations result in a T1 event, which is consistent with
the percentage calculated from system parameters [17],
1 − e−2.6/29 ∼ 8.6%. The I and Q quadratures of the
T1 subclass are contained in Fig. 5 where the T1 jump is
seen most clearly in Q.
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FIG. 4. Subclasses found from k-means algorithm (color
online). C0 and C1 have three subclasses, the trajectory rep-
resenting each subclass is the mean over all subclass trajec-
tories. Subclasses of C0 (purple-dash-dot, blue-solid, light
blue-dotted) initially move up and left. Subclasses of C1 (red-
dashed, green-solid, dark red-dotted) initially move down and
right. The T1 subclass (green-solid) of C1 initially moves
down and right but abruptly changes its path up and left.
Legend numbers are subclass sizes.

To perform classification, we lift the T1 subclass S1,2

to a class C2 of its own, redefine C1 = S1,1 ∪ S1,3, keep
C0 as before, and perform multi-class classification on
C0, C1, and C2. We implemented four multi-class al-
gorithms in Matlab; multi-class LDA, multi-class SVM,
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FIG. 5. I and Q quadratures for T1 subclass mean trajectory
(color online).

“TotalBoost”, and “RUSBoost”. The latter two are ex-
amples of boosting algorithms [25] and RUSBoost [26] is
particularly useful since it is tailored to the case of one
class (here C2) being significantly smaller than the rest.
The results are in Table IV. We again see an increase
in Fa over the discriminant analysis methods of Table II.
Not surprisingly, RUSBoost provides the most significant
increase. We repeated the k-means algorithm 50 times
with random initializations and found it to be stable (σ2

of Fa ∼ 3× 10−6).

Out of all methods considered, non-linear SVM’s pro-
duce the greatest increase in Fa (0.9586 to 0.9821). All
methods are relatively stable with reproducible assign-
ment fidelities (each method was repeated ∼ 100 times;
sample means of Fa are the table values and sample vari-
ances are ∼ 1× 10−8).

TABLE IV. Assignment fidelities from multi-class classifica-
tion.

Method All time-points PCA

Multi-LDA 0.9768 0.9689

Multi-SVM 0.9784 0.9717

TotalBoost 0.9527 0.9413

RUSBoost 0.9788 0.9723

While we have improved Fa to 0.9821, we are still far
from Fid = 0.9999. We hypothesize much of the remain-
ing discrepancy comes from T1 events. To investigate
this we propose the simple diagnostic test of replacing
each T1 event from the k-means algorithm with a ran-
dom trajectory from S1,2∪S1,3. This provides a measure
of Fa when T1 is negligible. The means of 100 samples
for each classification method are in Table V (variances
are ∼ 1 × 10−8). Non-linear SVM produces the highest
value of Fa however for all methods Fa > 0.99, which
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is more consistent with Fid = 0.9999. This confirms T1

events are the significant reason for not reaching Fid.

TABLE V. Assignment fidelities with replacement of T1

events.

Method All time-points PCA

LDAd 0.9920 0.9909

LDA 0.9921 0.9928

QDAd 0.9918 0.9908

QDA – 0.9927

Linear SVM 0.9936 0.9943

Non-linear SVM 0.9945 0.9949

One attempt to reduce the significance of T1 is to re-
duce T , however this implies the trajectories will spend
less time near their steady states and noise variance will
dominate. To observe this, we truncated the trajecto-
ries to different T and calculated Fa using the non-linear
SVM. From Fig. 6, T = 2.6µs appears close to optimal.
A much shorter measurement time of ∼ 1.2µs (not shown
in Fig. 6) is needed to achieve an assignment fidelity of
0.9586, which we recall is the value obtained using the
simplest ML method of [18]. This is a strong message
that better classifiers can allow for shorter measurement
times. Longer measurement times than the current 2.6µs
decrease Fa due to an increase in T1 events.
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FIG. 6. Varying measurement time (color online).

To conclude, we have utilized ML to understand and
improve the readout in a superconducting system. More
sophisticated classification algorithms can potentially al-
low for shorter measurement times and increase assign-
ment fidelities. Non-linear SVM’s provided the largest
increase in assignment fidelity, 0.9586 to 0.9821 (∼ 2.4%).
Clustering helped diagnose the prevalence of systematic
effects by finding clusters in the data corresponding to
single-shot identification of heating and T1 effects. We
verified T1 events are a significant source of error as the

assignment fidelity increases to 0.9945 when the T1 clus-
ter is replaced with typical trajectories. This is more
consistent with the ideal fidelity and the remaining dis-
crepancy can be due to effects such as heating and state-
preparation errors. Moving forward, we expect these
methods will help provide insight for improving readout,
especially when non-linear and non-Gaussian effects are
present.
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