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Bonding characteristics of liquid boron at 2500K are studied by using high resolution 

Compton scattering. An excellent agreement is found between the measurements and the 

corresponding Car-Parinello molecular dynamics simulations. Covalent bond pairs are 

clearly shown to dominate in liquid boron along with the coexistence of diffuse pairs. Our 

study reveals the complex bonding pattern of liquid boron, and gives insight into the 

unusual properties of this high temperature liquid.  
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Boron (B), which is abundant on earth, is a technologically important material because of 

its large degree of hardness, its low density and high melting temperature [1]. B-rich 

compounds display remarkable properties: for example, MgB2 shows high temperature 

superconductivity at 39 K [2], cubic-BN is the second hardest material after diamond, and 

B4C is the third hardest material [3]. Recent high-pressure experiments provide evidence 

of exciting new characteristics of elemental B: superconductivity at 11.2 K (a relatively 

high transition temperature for a simple element) under a pressure of 250 GPa [4], and the 

existence of a new B phase γ-B28 between 19 and 89 GPa [5]. These recent findings have 

renewed interest in fundamental properties of elemental B. Interestingly, B belongs to the 

group of elements situated between metals and insulators in the periodic table. B 

possesses three outer electrons like aluminum and as a result it can support a metallic 

state, but the B atom is smaller, and therefore its atomic potential holds the electrons more 

tightly like an insulator. This balance between metallic and insulating tendencies could be 

altered via pressure, temperature, or impurities. For example, elements in the column on 

the right of B in the periodic table, such as carbon [6], silicon (Si), and germanium, which 

are semiconductors in the solid state, transform into metals on melting. Some theoretical 

studies suggest that B could also acquire some metallic character on melting [7,8,9]. 

Although transport experiments on liquid (l-) B have indicated the survival of a 

semiconducting behavior [10], the question of whether l-B is a metal or not remains 

controversial and unsolved. 

  

Until very recently, it was difficult to carry out experiments on liquid B since it is 

extremely reactive with all known container materials. The recent advent of levitation 

techniques has made it possible to handle samples without contamination and to carry out 

measurements of physical properties of l-B in the temperature region down to the 

supercooled state. Unusual properties of l-B have thus been revealed. For instance, B 
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contracts by nearly 3% on melting [11] like Si and Germanium [12] while most materials 

expand on melting. Price et al. [13] levitated a molten drop of B for long enough to take 

x-ray diffraction data at different temperatures, both above and below the melting point. 

They found the bond length and coordination number of the first coordination shell to be 

similar to those reported for the crystalline and amorphous solid forms. Moreover Okada 

et al. [14] showed that the viscosity of l-B increases substantially with decreasing 

temperature in the supercooled state, suggesting the possible freezing of an amorphous 

percolating covalent network. In this Letter, we reveal the complex bonding 

characteristics of l-B through Compton scattering experiments in levitation combined 

with first principles calculations, gaining insight into the unusual properties of l-B.   

 

X-ray Compton scattering [15] is an ideal technique for probing the ground state wave 

functions in materials [16-19]. The Compton profile J(pz) obtained from the measurement 

is given within the impulse approximation by [20], 

( ) ( )d dz x yJ p n p p= ∫∫ p  ,   (1) 

where p = (px, py, pz) and n(p) is the electron momentum density given by [15] 

n(p) = ψ j r( )exp(−ip r)dr
2

j

∑   ,   (2) 

where nj is the electron occupation of jth-state Ψj(r). The area under the Compton profile 

gives the total number of electrons N: 

 .    (3) 

The Compton technique can also provide a novel spectroscopic window on the liquid 

state. Since no charged particles entering or leaving the sample are detected, the 

technique is a genuinely bulk probe, which is not complicated by surface effects present 

in photoemission or electron scattering experiments.  
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Compton profiles of polycrystalline β-rhombohedral (β-) B (300 K) and molten B (2500 

K) were measured by high-energy (116 keV) inelastic x-ray scattering at the BL08W 

beamline of SPring-8 [21]. The energy spectrum of Compton scattered X-rays was 

converted to the Compton profile with a momentum resolution of 0.16 a.u. The data 

processing to deduce the Compton profile from the raw energy spectrum consists of 

following steps: background subtraction, energy dependent corrections for the Compton 

scattering cross section, the absorption of incident and scattered x-rays in the sample, 

consideration of efficiency of the analyzer and the detector, and corrections for double 

scattering events, see Ref. [22] for details. Background in the measured profile is 

suppressed in the levitation technique used since no material is present in the immediate 

vicinity of the sample at the x-ray scattering center. 

  

Molten B is highly reactive with most crucibles. In order to hold the sample without 

contamination, a high temperature electrostatic levitator (HTESL) was used [23]. The 

detail of the HTESL for SPring-8 experiments is described in [24]. A polycrystalline 

sample (β-B, 99.9% purity) was used to obtain the spherically averaged Compton profile. 

The sample was heated and melted using the focused radiation of three 100 W 

semiconductor laser beams emitting at 808 nm. Temperature was controlled with an 

accuracy of 15 K and measured by pyrometry at wavelengths of 0.90 and 0.96 nm. 

  

Density functional theory (DFT) [25][26] and Car-Parrinello molecular dynamics 

(CPMD) simulations [27] were performed with the Quantum ESPRESSO package [28] 

within the framework of the density-functional theory using the generalized gradient 

approximation. We employed ultrasoft pseudopotentials with plane-wave expansion of 

the Kohn-Sham wave functions and charge density up to kinetic energy cutoff of 25 Ry 
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and 200 Ry, respectively. For l-B, spin-unpolarized simulations were done with 256 B 

atoms in a simple cubic supercell. A time step of 0.097 fs was used with the fictitious 

mass of electron set to 300 a.u., which is within the suggested range for accurate CPMD 

simulations. A structural optimization calculation was performed on solid B for the α- and 

β-rhombohedral phases at 0 K with 144 and 210 atoms, respectively. The simulations 

were carried out at the experimental densities of the α- and β- phases of 2.46 g/cm3 and 

2.35 g/cm3, respectively [1]. The l-B simulation was performed at 2500 K at the 

experimental density of 2.14 g/cm3 [11]. The Nose-Hoover thermostat on ions was 

applied in the liquid simulations [29][30]. We also used an additional Nose-Hoover 

thermostat on electrons in the liquid simulation due to the metallic character of the system 

[31]. The liquid simulation lasted for around 8.5 ps. Compton profile of l-B was 

calculated after thermalization from the average of eight uncorrelated configurations, 

equally spaced by 1 ps. Both profiles were spherically averaged and convoluted with a 

Gaussian to match the 0.16 a.u. experimental resolution. The valence-electron Compton 

profiles of β-B (300 K) and l-B (2500 K), obtained by subtracting the theoretical 

core-electron profile Jc(pz) [32] from the experimental profiles, are presented in Fig. 1. 

The theoretical core-electron profiles are based on the free-atom Hartree-Fock 

simulations in which the 1s2 shell is treated as core electrons. 

 

Figure 2 presents the difference between the Compton profiles for the solid and liquid 

phases [ΔJ(pz) = Jβ-B(pz) – Jl-B (pz)]. The CPMD calculated results are obtained by taking 

the difference of the liquid Compton profile and the spherically averaged solid Compton 

profile. These theoretical predictions are seen to agree extremely well with the 

experimental results demonstrating the high reliability of the bonding properties of l-B 

obtained through the CPMD simulations. The simulations also display an excellent 

agreement with the corresponding pair correlation function measured by x-rays [8].  
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We analyzed the bonding characteristics of l-B through CPMD simulations in terms of 

maximally-localized Wannier functions (MLWFs) [33, 34] where the MLWFs were 

obtained via a unitary transformation of Kohn-Sham wave functions. The spread of 

MLWFs is an indicator of the extent to which the associated electronic states are localized. 

An MLWF with a small spread identifies a localized covalent bond pair. In contrast, an 

MLWF with a large spread indicates the presence of a delocalized electronic state (we 

refer to such electron pairs as diffuse pairs), which will contribute to metallic properties. 

  

Figure 3(a) shows the Wannier function spread distributions (WFSDs) in B. All the 

electron pairs in the α-B phase and the majority of electron pairs in β-B phase are seen to 

be covalent; our MLWFs are consistent with the results obtained by Ogitsu et al [35]. The 

spread of about 3 Å2 in the WFSD of β-B reflects the presence of disorder in the form of 

vacancies and interstitials, which has been incorporated in our CPMD simulations.  

Although the WFSD of l-B displays a long tail extending to 11.2 Å2, it essentially 

overlaps with that of β-B, indicating a substantial contribution in l-B from covalent bond 

pairs. The long tail in the WFSD of l-B, on the other hand, shows the presence of diffuse 

(metallic) bond pairs. Using the criteria described in Ref. [36] that the boron-boron bond 

length is 2.35 Å (compared to 3.1 Å in Si), we estimate that on the average there are 66%, 

33%, and 1% covalent, diffuse and lone pairs, respectively.  

 

It is clear thus that two distinct bonding species, covalent and metallic, both exist together 

in l-B.  Such a coexistence of covalent and diffuse bond pairs is also observed in l-Si [24].  

For comparison, the computed WFSD of Si is shown in Fig. 3(b). Although the WFSD of 

l-Si shows a long tail like l-B, the overlap between solid (s)-Si and l-Si is seen to be rather 

small, indicating a reduced covalent character: the percentage of covalent, diffuse, and 
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lone pair bonds in l-Si is estimated to be 17%, 83%, and less than 1%, respectively [24].  

  

We turn now to address the question whether or not l-B is a metal. Note in Fig. 3(a) that 

the center of the WFSD in l-B is fairly close to the WFSD of s-B. In contrast, the center of 

the WFSD for l-Si in Fig. 3(b) is well separated from the WFSD of s-Si. Table 1 compares 

the average and standard deviation of the WFSD of B and Si. The average value can be 

used to monitor the covalent character of the electronic system: the smaller is the average, 

the larger the covalent character. As expected, the average of the WFSD is much smaller 

in l-B compared to l-Si, consistent with the fact that the melting temperature of B is 

higher than that of Si, and B is harder than Si. Moreover, the population of covalent pairs 

in l-B is much larger than in l-Si. Although some diffuse pairs with large Wannier spreads 

are found in l-B, the overall contribution of diffuse pairs is quite small. The covalent 

character is thus much more pronounced in l-B than in l-Si, allowing us to conclude that 

l-B possesses a mixed character, which is dominated by semiconducting properties 

coexisting with weak metallic characteristics. Our results are consistent with those of 

transport experiments on l-B [10], which indicate that the semiconducting character 

survives the melting process.  

  

Figure 4 shows a snapshot from the MD simulation carried out on l-B and demonstrates 

that bonding is mostly covalent. It is interesting that a network of covalent bonds can be 

seen to percolate throughout the liquid, but we do not see the appearance of icosahedral 

clusters. The covalent bonds here possess a highly dynamical nature and change rapidly 

on a time scale of a few tens of femtosecond [13].  

  

To summarize, we have carried out high resolution Compton scattering measurements on 

β- and l-B and interpreted the results in terms of parallel CPMD simulations. Experimental 
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results are found to agree exceptionally well with the corresponding theoretical predictions, 

allowing us to estimate that l-B contains 66%, 33% and 1%, covalent, diffuse and lone pair 

bonds, respectively. The covalent bond pairs thus give the largest contribution. We 

conclude that l-B possesses a mixed character dominated by semiconducting properties 

admixed with some metallic states. Although many spectroscopic techniques are well 

developed for analyzing the electronic structures of crystals, this is not the case when it 

comes to high temperature liquids. The experimental and theoretical approaches discussed 

in the present study provide new tools for investigating the nature of bonding in high 

temperature liquids, and their application to understand the bonding nature of liquids of 

heavier elements such as liquid-Te [37] would be interesting. 
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Figure 1. (color online) Experimental valence Compton profile of solid β-rhombohedral 
(blue open circles) and liquid B (red solid circles). The error bars are less than the size of 
symbols.  
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Figure 2. (color online) Difference between the Compton profiles of solid (β-B) and 
liquid phases of B [ΔJ(pz) = Jβ-B(pz) – Jl-B(pz)]: experiment (black) and CPMD simulation 
(red).  
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Figure 3. (color online) (a) Wannier spread distributions for various phases of B. The 
liquid phase distribution displays a significant tail, indicating electron delocalization in 
l-B; (b) same as (a) for l-Si. 
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Figure 4. (color online) Snapshot of the covalent network in l-B at 2500 K exhibiting B 
atoms (pink), and covalent bond pairs (cyan). The red bonds connecting B atoms are only 
guides for the eye.  
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 Average (Å2) Standard deviation (Å2) 
Alpha-B 1.243 0.091 
Beta-B 1.438 0.290 

Liquid-B 2.173 0.950 
Solid-Si 1.607 0.052 

Liquid-Si 2.796 0.751 
 

                        

 
Table I: Average and standard deviation of the Wannier spreads for different systems. 


