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A generalized master equation (GME) governing quantum evolution of modular exciton density
(MED) is derived for large scale light harvesting systems composed of weakly interacting modules of
multiple chromophores. The GME-MED offers a practical framework to incorporate real time coher-
ent quantum dynamics calculations of small length scales into dynamics over large length scales, and
also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation
employing multichromophoric Förster resonance energy transfer (MC-FRET) rates. A test of the
GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynam-
ics of excitonic populations over coupled chromophores can be accurately described by transitions
between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton
dynamics between a pair of light harvesting 2 (LH2) complexes in purple bacteria demonstrates its
promise as a computationally efficient tool to investigate large scale exciton dynamics in complex
environments.

PACS numbers: 87.15.hj, 05.60.Gg, 71.35.-y

Most photosynthetic units of bacteria and higher
plants have modular structures where the entire sys-
tems are composed of smaller subunits, or “modules” of
protein-chromophore complexes[1, 2]. While the nature
of interactions and quantum dynamics within each mod-
ule varies, the inter-module interactions in such systems
are generally weak. A striking characteristic is that exci-
tons can migrate through those weak links and find their
destinations with near unit efficiency within picoseconds.
How can this be accomplished despite significant disorder
and fluctuations? What are the general conditions ensur-
ing such high efficiency of natural systems? Recent the-
oretical studies provide some clues[3–7], but the answers
for the above fundamental questions are far from being
settled. To this end, simulation of exciton dynamics over
larger length and longer time scales including realistic
effects of disorder/fluctuations is needed. However, ac-
curate quantum dynamical calculations typically apply
to small (∼ 7 chromophores) [8, 9] or medium range sys-
tems having up to ∼ 30 chromophores [10–13], with the
latter already requiring massive computational resources.
Thus, application of such approach to simulation of com-
plexes with hundreds of chromophores (e.g., photosys-
tem II) also while averaging over sufficiently large en-
semble of disorder is impractical at present. Instead, the
Pauli master equation (PME) is frequently used for such
calculations[14–20], but without clear derivation of its
kernels from quantum dynamical principles. As such, it
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FIG. 1: Schematic of a modular system. Arrows represent
transition dipoles of each chromophore, dotted lines their elec-
tronic couplings, and wavy lines exciton-bath couplings. The
grey region represents MED.

is difficult to establish connection between the observed
phenomenology and the key microscopic features.

In this work, we derive a generalized master equa-
tion (GME) for the time evolution of the exciton density
coarse-grained over a module, i.e., the modular exciton
density (MED). The resulting GME-MED complements a
recent analysis of coherence propagation between weakly
coupled multichromophore units[6], clarifies assumptions
underlying the use of multichromophoric Förster reso-
nance energy transfer (MC-FRET) rate[3, 21, 22] in a
PME, and provides its non-Markovian generalization.
We also demonstrate that the GME-MED serves as a
practical means to incorporate high level intra-module
quantum calculations into energy transfer simulation
over significantly longer length scales.

Consider a total Hamiltonian given by H = H0 + Hc,
where H0 represents noninteracting modules of excitons
plus their environmental degrees of freedom and Hc the
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couplings between different modules. Each module is de-
noted as n or m, and a chromophore in the nth module
is denoted as jn, kn, etc. Thus,

H0 =
∑
n

Hn =
∑
n

{He
n+

∑
in,jn

Binjn |in〉〈jn|+Hg
n} , (1)

with He
n the single exciton Hamiltonian of the nth mod-

ule, |in〉 the site excitation state of the inth chromophore
in the nth module, Binjn the bath operator coupled to
the excitonic term |in〉〈jn|, and Hg

n the bath Hamiltonian
(the Hamiltonian in the ground electronic state) of the
nth module. The inter-module coupling Hamiltonian has
the form:

Hc =
∑
n,m

∑
jn,km

Jjnkm |jn〉〈km| , (2)

where Jjnkm is assumed to be real and symmetric. By
definition, Jjnkm = 0 for n = m. For generality, we
assume that He

n, Binjn , and Hc are time dependent (al-
though not shown explicitly) but that Hg

n is time inde-
pendent. Figure 1 provides a schematic modular struc-
ture.

We denote the time evolution operator for the
interaction free Hamiltonian H0 as U0(t, t′) =

exp(+){−i
∫ t
t′
dτH0(τ)/~} =

∏
n Un(t, t′), where

Un(t, t′) = exp(+){−i
∫ t
t′
dτHn(τ)/~} with the sub-

script (+) implying chronological time ordering.
Assuming that the exciton is created at time t = 0,
we shall abbreviate U0(t, 0) and Un(t, 0) as U0(t)
and Un(t). The total density operator is denoted
as ρ(t). In the interaction picture with respect to

H0, ρI(t) = U†0 (t)ρ(t)U0(t) evolves according to
∂ρI(t)/∂t = −i[Hc,I(t), ρI(t)]/~ = −iLc,I(t)ρI(t), where

Hc,I(t) = U†0 (t)HcU0(t). The second equality defines
Lc,I(t). The ground state time evolution operator of
the nth module is denoted as Ugn(t) = exp{−itHg

n/~}.
Since |jn〉 represents the state where only the jnth
chromophore in the nth module is excited while all
other modules are in the ground electronic state,

〈jn|U0(t) =
(∏

m 6=n U
g
m(t)

)
〈jn|Un(t). Thus,

Hc,I(t) =
∑
n,m

∑
jn,km

JjnkmTjnkm(t) =
∑
n,m

Fnm(t) , (3)

where Tjnkm(t) = U†n(t)Ugn(t)|jn〉〈km|Ug†m (t)Um(t) and
the second equality defines Fnm(t). By definition, Fnm(t)
vanishes for n = m. We denote the identity opera-
tor in the single exciton space of each module as 1n =∑
jn
|jn〉〈jn| and that in the total single exciton space as

1 =
∑
n 1n. The equilibrium bath canonical density op-

erator of the nth module in the ground electronic state
is ρbn = e−βH

g
n/Trb{e−βH

g
n}.

The key idea in deriving the GME-MED is to introduce
the following modular projection super-operator P:

P(·) =
∑
n

ρbCnTrbCn{1n(·)1n} , (4)

where (·) represents an arbitrary operator, ρbCn =∏
m 6=n ρbn, and TrbCn represents the trace over all baths

except for those associated with the nth module. The
super-operator P projects the total density operator into
an independent sum of blocks, each representing a mod-
ule, and satisfies the required condition of P2 = P. It
also satisfies the identity of PLc,I(t)P = 0 ( see Supple-
mental Material (SM)). We assume a simple initial con-
dition at time t = 0 with no intermodule quantum coher-
ence because the likelihood of such a coherent state under
natural condition is very small, so that (1−P)ρI(0) = 0.
Then, from the well-known formal solution for PρI(t)
(see SM), it is easy to derive the following time evolu-
tion equation for the total nth module density operator,
ρn,I(t) = TrbCn {1nρI(t)1n}:

∂

∂t
ρn,I(t) = −

∑
m

∫ t

0

dτ 1nTrbCn

{
Lc,I(t)

×e−i
∫ t
τ
dτ ′(1−P)Lc,I(τ ′)

(+) Lc,I(τ)ρbCmρm,I(τ)

}
1n , (5)

which is formally exact but not amenable for practical so-
lution yet. Under the assumption that the inter-module
coupling Hc is small compared to H0, the approximation

e
−i

∫ t
τ
dτ ′(1−P)Lc,I(τ ′)

(+) ≈ 1 can be made in Eq. (5). This

results in the following 2nd order approximation with re-
spect to Hc:

∂

∂t
ρn,I(t) = −

∑
m

∫ t

0

dτ

1nTrbCn {Lc,I(t)Lc,I(τ)ρbCmρm,I(τ)} 1n . (6)

The above equation provides a complete prescription to
incorporate full quantum dynamics calculations for each
module (made using, e.g., the methods of [23, 24]) into a
consistent description of the dynamics across all coupled
modules. Note that the only assumption invoked here
is the smallness of Hc compared to H0. This assump-
tion can be used as long as a natural division into weakly
coupled modules exists. This can be justified in most
light harvesting super complexes, with the possible ex-
ception of the chlorosome of the green sulfur bacteria[25],
which appears to have an extended network of coupled
chromophores. However, even in this case, the excitons
have finite coherence lengths due to disorder or exciton-
phonon couplings and application of our formalism may
be feasible in this case by appropriately choosing modules
comparable to the coherence sizes of excitons [20].

When the main focus is on the exciton states, the equa-
tion for the reduced system density operator, σn,I(t) =
Trbn{ρn,I(t)}, can be obtained by tracing Eq. (6) over
the bath of the nth module and employing the explicit
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expression for Hc,I(t) of Eq. (3). The result becomes

∂

∂t
σn,I(t) = − 1

~2
∑
m 6=n

∫ t

0

dτ

(Trb {Fnm(t)Fmn(τ)ρn,I(τ)ρbCn}
+Trb {ρbCnρn,I(τ)Fnm(τ)Fmn(t)}
−Trb {Fnm(t)ρbCmρm,I(τ)Fmn(τ)}
−Trb {Fnm(τ)ρbCmρm,I(τ)Fmn(t)}) , (7)

where the fact that TrbnTrbCn = Trb has been used.
The integrands of Eq. (7) can be related to lineshape

operators of each module. For this, we introduce the
following exciton space operators:

In(t, τ) = Trbn
{
Un(t, τ)1nρbnU

g†
n (t− τ)

}
, (8)

En(t, τ ; ρn) = Trbn
{
Ugn(t− τ)ρn(τ)U†n(t, τ)

}
, (9)

where ρn(τ) = Un(τ)ρn,I(τ)U†n(τ). The Fourier trans-
form of In(t, τ) with respect to t−τ produces the absorp-
tion lineshape when contracted with transition dipole
vectors. A similar procedure with En(t, τ ; ρn) leads to the
time dependent emission lineshape depending on ρn(τ) as
its initial condition. For complete representation of all
the integrands of Eq. (7), we need to define additional
operators with specific coherence information built in as
follows:

In,j′′nj′′′n (t, τ) = Trbn {Un(t− τ)

×
(
Un(τ)|j′′′n 〉〈j′′n|U†n(τ)ρbn

)
Ug†n (t− τ)

}
, (10)

En,j′′nj′′′n (t, τ ; ρn) = Trbn {Ugn(t− τ)

×
(
ρn(τ)Un(τ)|j′′′n 〉〈j′′n|U†n(τ)

)
U†n(t− τ)

}
.(11)

Then, it is possible to show (see SM) that Eq. (7) is
equivalent to the following time evolution equation:

∂

∂t
〈j′′n|σn,I(t)|j′′′n 〉 = − 1

~2
∑
m6=n

∑
jn,km

∑
j′n,k

′
m

JjnkmJj′nk′m

×
∫ t

0

dτ
{
〈km|Im(t, τ)|k′m〉〈j′n|En,j′′nj′′′n (t, τ ; ρn)|jn〉

+〈k′m|I†m(t, τ)|km〉〈jn|E†n,j′′′n j′′n (t, τ ; ρn)|j′n〉

−〈j′n|I
†
n,j′′′n j

′′
n

(t, τ)|jn〉〈km|E†m(t, τ ; ρm)|k′m〉

−〈jn|In,j′′nj′′′n (t, τ)|j′n〉〈k′m|Em(t, τ ; ρm)|km〉
}
.(12)

The GME for the MED, pn(t) =
∑
jn
〈jn|σn,I(t)|jn〉,

can be obtained by summing the diagonal components
of Eq. (12) and utilizing the fact that In(t, τ) =∑
j′′n
In,j′′nj′′n (t, τ) and En(t, τ ; ρn) =

∑
j′′n
En,j′′nj′′n (t, τ ; ρn),

yielding

∂

∂t
pn(t) = − 1

~2
∑
m 6=n

∑
jn,km

∑
j′n,k

′
m

JjnkmJj′nk′m

×2Re

∫ t

0

dτ {〈km|Im(t, τ)|k′m〉〈j′n|En(t, τ ; ρn)|jn〉

−〈jn|In(t, τ)|j′n〉〈k′m|Em(t, τ ; ρm)|km〉} . (13)

Higher order versions of this equation can be obtained
from Eq. (5) by following similar procedures including
higher than second order terms[27, 28, 40]. In the limit
where each module consists of a single chromophore, the
GME-MED reduces to the GME for localized excitons[29,
30].

Equation (13) is the main formal result of the present
letter, but its solution requires full knowledge of the to-
tal density operator of each module, due to the depen-
dence of En(t, τ ; ρn) on ρn(τ). We now describe a generic
approximation removing such dependence, which is im-
plicit in applications employing MC-FRET rates in the
PME[14, 18, 20] and is believed to be appropriate for
many natural photosynthetic systems. To simplify the
argument, we shall assume that all Hn are time inde-
pendent. Then, Un(t, τ) = Un(t − τ) and In(t, τ) =
In(t − τ, 0) ≡ In(t − τ). If the dynamics driving intra-
module detailed balance are fast compared to the inter-
module population dynamics, one may invoke the follow-
ing steady state approximation: ρn(τ) ≈ ρsnpn(τ), where
ρsn = e−βHn/Trn{e−βHn}. This does not imply complete
time scale separation between intra-module and inter-
module dynamics, and takes the full effect of exciton-
bath entanglement into consideration through ρsn. With
this approximation, En(t, τ) ≈ Esn(t − τ)pn(τ), where
Esn(t) = Trbn

{
Ugn(t)ρsnU

†
n(t)

}
. Equation (13) then re-

duces to the following closed-form expression:

∂

∂t
pn(t) =

∑
m6=n

∫ t

0

dτ {Kn→m(t− τ)pm(τ)

−Km→n(t− τ)pn(τ)} , (14)

where

Kn→m(t) =
2

~2
Re

∑
jn,km

∑
j′n,k

′
m

JjnkmJj′nk′m

×〈km|Im(t)|k′m〉〈j′n|Esn(t)|jn〉 . (15)

The GME-MED of Eq. (14) can now be solved employing
the pre-determined kernels of Eq. (15). Alternatively, a
time-local version of Eq. (14) can also be derived follow-
ing a similar step but utilizing the cumulant expansion
approach[31]. This results in

∂

∂t
pn(t) =

∑
m 6=n

{Wm→n(t)pm(t)−Wn→m(t)pn(t)} .

(16)

where Wn→m(t) =
∫ t
0
dτKn→m(τ). In the Markovian

limit where all the intra-module exciton dynamics are
much faster than the inter-module dynamics, both Eqs.
(14) and (16) become equivalent and reduce to the PME
with the following MC-FRET rate[22]:

Wn→m(∞) =
∑
jnkm

∑
j′nk

′
m

JjnkmJj′nk′m

×
∫
dωE

j′njn
n (ω)I

kmk
′
m

m (ω) , (17)
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FIG. 2: (a) Decomposition of first four BChls of FMO com-
plex into two modules. The parameters defining He

n and Hc

(all in cm−1) are: E11 = 12, 400; E21 = 12, 520; E12 =
12, 200; E22 = 12, 310; ∆1 = −87; ∆2 = −53; J1112 = 5;
J1122 = −5; J2112 = 30; J2122 = 8. (b) Time dependent pop-
ulations of module 1 calculated with HEOM and with two
different approximations for GME-MED. Insets show HEOM
populations at each BChl. In all figures, numbers within
parentheses represent the site of initial excitation.

where I
kmk

′
m

m (ω) =
∫∞
−∞ dt eiωt〈km|Im(t)|k′m〉 and

E
j′njn
n (ω) = 2 Re

∫∞
0
dt e−iωt〈j′n|Esn(t)|jn〉. This analy-

sis clarifies the assumptions involved in the use of MC-
FRET in PME (see also Ref. 32), while also providing a
non-Markovian generalization of that approach.

As a simple demonstration of accuracy, we consider
a system consisting of bacteriochlorophylls (BChls) 1-4
in the Fenna-Matthews-Olson (FMO) complex and its
protein bath, using parameters adopted from previous
works[6, 8] and modeling them as a two-module system
(Fig. 2 (a)). The exciton Hamiltonian of each module is
given by He

n = E1n |1n〉〈1n|+E2n |2n〉〈2n|+∆n(|1n〉〈2n|+
|2n〉〈1n|), for n = 1, 2. Any type of spectral density for
the bath can be used for the GME-MED. However, in
order to make comparison with the hierarchical equa-
tion of motion (HEOM) approach[33], which is limited
to the Ohmic-Drude spectral density[6, 8], we use the
same spectral density, assuming the usual site-local reor-
ganization energy of λ = 35 cm−1 and Drude cutoff at
~ωc = 106 cm−1. The resulting modular excitonic den-
sities calculated for two different initial conditions, one
starting from |11〉 and the other starting from |21〉 are
shown in Fig. 2 as blue and red dashed lines, respec-
tively, at T = 150 and 300 K. Although the exciton
population at each BChl is sensitive to the initial condi-
tion and exhibits strongly coherent behavior (see insets),
the dynamics of modular exciton density is monotonic
and much less sensitive to the initial condition.

Employing Eq. (16), the time dependent MED was
then calculated with two approximations for Eq. (15).
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FIG. 3: Exciton dynamics between donor (D) and acceptor
(A) B850 units separated by the center-to-center distance of
80 Å. (a) Time dependent exciton population at the donor
B850 unit. (b) Plot of effective forward rate keff (see the
text and SM) from donor to acceptor with temperature. The
black solid line is based on GME-MED-1 and the red dashed
line its Markovian limit rate, which corresponds to the PME
with MC-FRET rates.

The first neglects the off-diagonal elements of exciton-
bath couplings in the exciton basis, while including all
the diagonal exciton-vibrational terms (GME-MED-1).
The second employs a second order time-local quantum
master equation approach neglecting initial exciton-bath
coupling (GME-MED-2). Detailed expressions are pro-
vided in the SM. The results in Fig. 2(b) show excel-
lent agreement of GME-MED-1 with the corresponding
HEOM populations, both in the initial times and the
steady state limits. In contrast, the GME-MED-2 results
are much less accurate.

The excellent agreement of GME-MED-1with HEOM
at both low and room temperatures suggests that
non-equilibrium effects, inter-module non-adiabatic cou-
plings, and quantum coherence, none of which are fully
accounted for here, have minor effects. Furthermore,
comparison with the results in the Markovian limit (not
shown) confirms that non-Markovian effects are also not
significant. On the other hand, the relatively poor per-
formance of GME-MED-2 demonstrates the importance
of an accurate description of the exciton-bath coupling,
some of which can be improved through non-perturbative
treatment of the initial condition through analytic con-
tinuation of time [32]. These results illustrate the impor-
tance of using sufficiently accurate lineshape expressions
for PME calculations[14, 17–20] to attain reliable accu-
racy.

As a further example demonstrating the capability
of GME-MED in simulating large scale systems com-
parable to those studied recently by phenomenological
approaches[20, 34, 35], we have calculated the exciton
population dynamics between a pair of B850 rings in ad-
jacent LH2 light harvesting complexes of a purple bac-
terium, Rps. Acidophila. Each ring constitutes a module
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containing 18 bacteriochlorophyll molecules, for a total
of 36 chromophores. Each B850 ring is described by a
well tested exciton Hamiltonian and spectral density[3].
The inter-B850 BChl electronic couplings are given by
transition dipole interactions, which is an accurate de-
scription at the typical distances in Rps. Acidophila
(≥ 2.5 nm). Figure 3(a) shows the time dependence of
exciton population in the donor B850 ring at three dif-
ferent temperatures calculated by GME-MED-1 (black
solid lines) and by its Markovian limit, PME with MC-
FRET rates (red dotted lines). At short times we see
significant differences between the GME-MED and MC-
FRET curves, which reflect the influence of the non-
Markovian bath dynamics in the GME-MED description
compared to the Markovian dynamics assumed in MC-
FRET theory. Figure 3(b) shows the temperature de-
pendence of the effective forward rate for GME-MED-
1, keff = PA(∞)/τtr, where τtr satisfies the condition
of ln(PD(τtr) − PA(τtr)PD(∞)/PA(∞)) = −1 (see SM),
and the Markovian MC-FRET rate, WD→A(∞). We note
that the effective rate reflecting the non-Markovian effect
is significantly smaller than the Markovian rate at low
temperatures, but approaches it at room temperatures
and above. GME-MED-1 is much more efficient than
the HEOM approach[10] (each calculation takes only a
few seconds on a typical desktop computer), and makes
it possible to simulate excitonic energy transfer between
e.g., larger aggregates of LH2 with incorporation of en-
ergetic disorder, a key feature to explain experimental
results[36, 37] and to understand the robustness of en-
ergy transfer dynamics in light harvesting systems over
a broad range of temperature.

In summary, we have presented a general derivation
of a generalized master equation describing the quantum
evolution of exciton density in modular materials, GME-
MED, which provides a rigorous derivation of the PME
with MC-FRET rates and offers its non-Markovian gen-
eralization. As a proof of principle demonstration, we
showed that this approach allows accurate description of
population dynamics between modules in sub-complexes
of FMO within which significant electronic coherence ex-
ists. As a further demonstration of its applicability to
large scale systems, we provided results for exciton en-
ergy transfer between B850 units of LH2 complexes that
revealed the significance of non-Markovian effects over a
range of temperatures. Taken together, these demonstra-
tions support the GME-MED approach as a novel route
to calculation of long range transfer of excitonic energy
between modules within which electronic coherence con-
tributes.
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(2001).
[31] F. Shibata and T. Arimitsu, J. Phys. Soc. Jpn 49, 891

(1980).
[32] L. Banchi, G. Costagliola, A. Ishizaki, and P. Giorda, J.

Chem. Phys. 138, 184107 (2013).

[33] A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130,
234111 (2009).

[34] T. Fujita, J. C. Brookes, S. K. Saikin, and A. Aspuru-
Guzik, J. Phys. Chem. Lett. 3, 2357 (2012).

[35] J. Huh et al., J. Am. Chem. Soc. 136, 2048 (2013).
[36] V. Sundstrom, T. Pullerits, and R. vanGrondelle, J.

Phys. Chem. B 103, 2327 (1999).
[37] R. Agarwal, A. H. Rizvi, B. S. Prall, J. D. Olsen, C. N.

Hunter, and G. R. Fleming, J. Phys. Chem. A 106, 7573
(2002).

[38] See Supplemental Material [url], which includes Refs. [39-
43].

[39] N. G. van Kampen and I. Oppenheim, J. Stat. Phys. 87,
1325 (1997).

[40] S. Jang, J. Cao, and R. J. Silbey, J. Chem. Phys. 116,
2705 (2002).

[41] S. Jang, J. Cao, and R. J. Silbey, J. Phys. Chem. B 106,
8313 (2002).

[42] S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312
(2003).

[43] P. Kumar and S. Jang, J. Chem. Phys. 138, 135101
(2013).


