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We calculate the phase diagram of two component fractional quantum Hall effect as a function
of the spin / valley Zeeman energy and the filling factor, which reveals new phase transitions and
phase boundaries spanning many fractional plateaus. This phase diagram is relevant to fractional
quantum Hall effect in graphene and in GaAs and AlAs quantum wells, when either the spin or the
valley degree of freedom is active.
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The interplay between the Coulomb interaction and
the electron spin degree of freedom has led to an im-
pressive amount of physics in the fractional quantum
Hall effect (FQHE). Phase transitions have been ob-
served as a function of the Zeeman splitting, EZ, in
transport,1–6 optical7–10 and NMR experiments.11–15 Re-
cent years have witnessed a remarkable resurgence of
interest in multicomponent FQHE due to the experi-
mental observation of FQHE in systems with both spin
and valley degrees of freedom, such as AlAs quan-
tum wells,16–18 graphene,19–21 and H-terminated Si(111)
surface.22 These enable new and more powerful methods
of controlling the relative strengths of the (spin or valley)
“Zeeman” splitting and the interaction, thus opening the
door into investigations of the physics of multicomponent
FQHE states over a broad range of parameters.

We consider FQHE for SU(2) electrons, applicable to
parameter regimes in which either the valley or the spin
degree of freedom is active. For simplicity, we will refer to
the two components generically as “spins.” Phase transi-
tions at the isolated filling factors ν = n/(2pn±1), n and
p integers, were studied theoretically previously.23–27 We
obtain in this Letter the more complete EZ−ν phase dia-
gram, which reveals many phase boundaries arising from
a competition between the Zeeman and the Coulomb en-
ergies.

In the filling factor range of interest below, elec-
trons capture two vortices to transform into composite
fermions (CFs).28–31 Composite fermions fill ν∗ Landau-
like levels called Λ levels (ΛLs), where ν and ν∗ are re-
lated by ν = ν∗/(2ν∗ ± 1). In general, ν∗↑ spin-up and
ν∗↓ spin-down ΛLs are occupied, with ν∗ = ν∗↑ + ν∗↓ . The

corresponding state, labeled (ν∗↑ , ν
∗
↓), has spin polariza-

tion P = (ν∗↑ − ν∗↓)/ν∗. (We take below the convention

ν∗↑ ≥ ν∗↓ .) Which state is favored is an energetic question
that requires a precise quantitative understanding of the
various states. We begin by making certain simplifying
assumptions. We will assume that only one of the ΛLs is
partially occupied, so one of ν∗↑ and ν∗↓ is an integer and
the other will be written as j+ ν̄, where 0 ≤ ν̄ ≤ 1 is the
filling factor of the partially filled ΛL. This assumption
is valid for weakly interacting composite fermions. We
neglect the skyrmion physics32; as discussed below, it is
not relevant at the phase boundaries of interest in this
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FIG. 1. Schematic depiction of the states with different po-
larizations in the filling factor range 1 < ν∗ < 2 (top),
2 < ν∗ < 3 (middle) and 3 < ν∗ < 4 (bottom). Composite
fermions are pictured as electrons carrying two arrows (rep-
resenting bound vortices). The horizontal lines represent the
CF ΛLs, with the spin-up ΛLs on the left and spin-down ΛLs
on the right. The states are labeled (ν∗↑ , ν

∗
↓ ); the filing factor

of the partially filled Λ level is ν̄.

work. We also neglect disorder and LL mixing. Fig. 1
schematically depicts all the states between 1/3 and 4/9
that we have studied below.

To proceed further, we need a realistic model for the
state of composite fermions in the partially filled ΛL,
which is dictated by the weak residual interaction be-
tween composite fermions. For small ν̄ (small 1 − ν̄),
we expect the formation of a crystal of CF particles (CF
holes). We will model the entire range 0 < ν̄ < 1 as a
crystal, and for completeness, we will consider both the
particle and hole crystals for the entire range.The validity
of various approximations is discussed below.

With these assumptions, it is possible to construct a
wave function for the FQHE state at ν following standard
methods.28 We fist construct the wave function χν∗ of
electrons at ν∗:

χν∗ = A[Φν∗↑ ,ν∗↓{z1, · · · zN}u1 · · ·uN↑dN↑+1 · · · dN ] (1)

Φν∗↑ ,ν∗↓ = Φν∗↑{z1, · · · zN↑}Φν∗↓{zN↑+1 · · · zN} (2)
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Here zj = xj + iyj denotes the position of an electron; u
and d are the up and down spin spinors; A indicates an-
tisymmetrization; and Φν∗↑ and Φν∗↓ are wave functions of

spin up and spin down electrons at ν∗↑ and ν∗↓ . One of the
two factors on the right hand side of Eq. 2 corresponds
to integer filling, and is thus a single Slater determinant.
We have two possible choices for the other factor at fill-
ing j + ν̄: (i) crystal of electrons on top of j filled LLs,
or (ii) crystal of holes on top of j + 1 filled LLs. Be-
cause the Coulomb interaction commutes with spin, the

many body eigenstates must be eigenstates of ~S2. For the
states relevant to our current study (Fig. 1), all occupied
orbitals of spin-down electrons in Φν∗↓ are definitely occu-

pied for spin-up electrons Φν∗↑ ; the product wave function

Φν∗↑ ,ν∗↓ is therefore annihilated by the spin lowering op-

erator. In other words, it satisfies the Fock condition,34

which guarantees that it is an eigenstate of both Sz and
~S2 with S = Sz.

We next composite-fermionize this wave function to
construct the trial wave functions for the FQHE state at
ν:

Ψν = A[ΨCF
ν∗↑ ,ν

∗
↓
{z1, · · · zN}u1 · · ·uN↑dN↑+1 · · · dN ] (3)

ΨCF
ν∗↑ ,ν

∗
↓

= PLLL

N∏
j<k=1

(zj − zk)2χν∗↑ ,ν∗↓ (4)

Here the Jastrow factor
∏N
j<k=1(zj − zk)2 attaches two

vortices to each electron to convert it into a composite
fermion, and PLLL denotes lowest Landau level (LLL)
projection, evaluated using the method described in
Ref. 33. The spin quantum numbers are preserved29 un-
der composite fermionization, guaranteeing that the wave
function Ψν also has proper symmetry under rotation in
spin space. The determination of phase diagram requires
an evaluation of the interaction energy

E =
〈Ψν |V |Ψν〉
〈Ψν |Ψν〉

=
〈ΨCF

ν∗↑ ,ν
∗
↓
|V |ΨCF

ν∗↑ ,ν
∗
↓
〉

〈ΨCF
ν∗↑ ,ν

∗
↓
|ΨCF
ν∗↑ ,ν

∗
↓
〉

(5)

where V is the interaction, which will be evaluated by
the method of Metropolis Monte Carlo.

We will use the spherical geometry35 for our calcula-
tion, in which N electrons are confined to the surface of
a sphere with 2Q flux quanta passing through it. This
geometry is convenient as it has no complications due to
edges and enables a simple treatment of the interaction
with the background charge (taken as a single positive
charge at the center). A disadvantage appears, at first,
to be that a triangular crystal cannot be wrapped around
a sphere without creating defects. We overcome this by
exploiting J.J. Thomson’s famous plum pudding model
of the atom,36 wherein the locations of classical charged
particles on a sphere are obtained by minimizing their
Coulomb energy. (These positions have been obtained
by powerful numerical techniques, and tabulated in the
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FIG. 2. The energy per particle for various states (ν∗↑ , ν
∗
↓ ) in

the filling factor range 1 < ν∗ < 4. The energy E is quoted in
units of e2/ε`, where ` =

√
~c/eB is the magnetic length and

ε is the dielectric constant of the host material, and includes
interaction with a uniform neutralizing background. The dark
(open) symbols correspond to states in which the partially
filled ΛL contains a crystal of CF particles (holes).
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FIG. 3. Difference between the energies (per particle) of the
states with different polarizations, shown near each line, in
the filling factor range 1 < ν∗ < 4.

literature.37) As one may expect, this is essentially a tri-
angular crystal with a few defects introduced by the cur-
vature of the spherical surface. In the thermodynamic
limit one expects the effect of the defects to be insignif-
icant. We study a system with N = 84 particles for our
calculations below, varying the filling factor by consider
different possible values of 2Q. Our results represent the
thermodynamic limit, as seen by noting that the critical
Zeeman energies for 2/5, 3/7 and 4/9 agree with those
obtained previously by explicitly evaluating the thermo-
dynamic limit.24,26 Technical details of the construction
of the CF particle and CF hole crystals in the spherical
geometry are given in the Supplemental Material.38

Fig. 2 shows the Coulomb energies of the various
states as a function of the filling factor in the range
1/3 < ν < 4/9. The filled (open) symbols represent the
energies for states where the partially filled ΛL is mod-
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eled as a crystal of CF particles (holes). (In the range
3/7 < ν < 4/9 only the CF particle crystal has been eval-
uated.) The energies are shown for a system with N = 84
particles, but we have confirmed, by studying various N
values, that the N = 84 results are close to the ther-
modynamic limit. The energies include the interaction
with the uniform positive background. The energy dif-
ference between the CF particle and hole crystals for a
given polarization P is small compared to that between
states with different polarizations. Fig. 3 depicts the
energy differences between two consecutive states, where
we take the lower of the particle or hole crystal energies
for a given spin polarization. From the difference, it is
straightforward to determine the critical EZ ≡ κ(e2/ε`)
for the various transitions, plotted in Fig. 4. (In both
Figs. 3 and 4 the curves have been smoothened to elim-
inate fluctuations due to finite system size. The uncer-
tainty in the curves due to finite size effects is estimated
to be δκ ≈ 0.001.) The phase diagram in Fig. 4 is the
main result of our paper.

A striking feature of the phase diagram is the presence
of lines that extend across many FQHE plateaus. For
sufficiently large κ, the state is fully polarized at all fill-
ings, as expected. Interestingly, for a range of κ values,
the state at two consecutive fractions along the sequences
n/(2n+ 1) is fully spin polarized, but the state at inter-
mediate fillings is partially polarized. The measurements
of Tiemann et al. clearly show such behavior where both
1/3 and 2/5 are fully spin polarized but the intermediate
state is partially polarized. The inset in Fig. 4 shows the
spin polarization P = (ν∗↑−ν∗↓)/(ν∗↑+ν∗↓) as a function of

ν for several fixed values κ (as would be the case when ν
is varied by changing the density at a fixed B), indicating
complex κ dependent behavior. The blue triangles were
obtained previously in Ref. 24 and exhaust all spin polar-
ization transitions at ν∗ = integer. These are now seen to
continue, as ν∗ is varied, along phase boundaries that go
“sideways” (as opposed to connecting the adjacent blue
triangles). Additional phase transitions also appear as ν∗

is varied away from integer values of ν∗, although they
involve only a small change in spin polarization close to
ν∗ = integer.

A free-CF model provides useful insight into the struc-
ture of the phase diagram. This model considers nonin-
teracting composite fermions, with the CF cyclotron en-

ergy taken as2,7,11,24,29,30 ~ω∗c = me

m∗p

~ωc

2ν∗±1 ≡
1

α(2ν∗±1)
e2

ε`

at ν = ν∗

2ν∗±1 , where ωc = eB/mec is the cyclotron
energy, me is the electron mass in vacuum, and m∗p is

the CF “polarization mass.”7,11,24 (For GaAs parame-

ters, we have m∗p/me = 0.026α
√
B[T ].) Phase transi-

tions occur due to a competition between the CF cy-
clotron energy and the Zeeman energy. From an ele-
mentary calculation, this model predicts that the phase
boundaries between the different polarizations are given
by EZ = integer× ~ω∗c :

κ =
integer

α(2ν∗ ± 1)
(free CF model) (6)
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FIG. 4. The calculated polarization phase diagram of vari-
ous states (ν∗↑ , ν

∗
↓) in the CF filling factor range 1 < ν∗ < 4

(1/3 < ν < 4/9) as a function of κ = EZ/(e
2/ε`). The

thick blue lines are for a system of zero thickness; the dashed
red lines correspond to a quantum well width of 40 nm for
density 1011cm−2; and thin green lines indicate the phase
boundaries predicated by a model of noninteracting compos-
ite fermions. The blue triangles indicate the spin phase tran-
sitions at ν∗ = n identified previously.24 The yellow shade
depicts the region where skyrmions are present, and the ver-
tical blue shaded regions depict fillings where transitions take
place from one fraction to the next. The inset shows the po-
larization P = (ν∗↑−ν∗↓ )/ν∗ as a function of ν∗ for fixed values
of κ = 0.0225 (black solid line), 0.0125 (purple crosses) and
0.005 (red circles), as evaluated for a zero thickness sample.

where the integer goes from 1 to int(ν∗). We show the
phase diagram predicted by the free-CF model in Fig. 4
(thin lines), fixing α = 15.9 by requiring coincidence at
the blue triangle at ν = 2/5. (The polarization mass is
known to be much larger than the “activation mass” rele-
vant for transport experiments.7,11,24) The free CF model
reproduces certain qualitative features of the phase dia-
gram obtained from the microscopic theory. We stress
that the free CF model with an effective mass parame-
ter should only be treated as providing an approximate
intuitive interpretation of the accurate results obtained
from the microscopic calculation; the free CF model can
sometimes fail qualitatively.25

We have also studied the effect of finite thickness as-
suming a cosine shaped wave function in a square quan-
tum well, which leads to a width dependent effective
interaction.38 As an illustration, the phase diagram is
also shown (red dashed lines) for a quantum well of width
40 nm at a density of 1011 cm−2. Lower densities and
shorter widths produce a smaller deviation from the zero
width results.

We now discuss the validity of the assumptions made
in our calculation. (i) At κ = 0, the excitations of 1/3
are CF analogs of the ν = 1 skyrmions32 and involve
a macroscopic number of spin flips.39 The skyrmion size
rapidly shrinks with κ, and quantitative estimates show39
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that skyrmions at 1/3 occur only for κ < 0.007. Given
that there are no skyrmion excitations for the spin sin-
glet 2/5, the skyrmion region is roughly estimated to be
that shaded in yellow in Fig. 4. Here the phase will be a
crystal of skyrmions,40 with a spin polarization less than
(1 − ν̄)/(1 + ν̄) by an amount that depends sensitively
on κ. The phase boundaries calculated above are not af-
fected by this physics, because they occur at relatively
high values of κ where skyrmions are not relevant. (ii)
One of our main assumptions has been to model the state
in the partially filled ΛL as a crystal. This should be ac-
curate for filling factors close to ν∗=integer. How about
other phases of composite fermions, such as their stripes
or FQHE? For ν∗ > 2, a FQHE of composite fermions is
unlikely but a stripe phase is competitive;41 near ν̄ = 1/2,
the energy per particle of the stripe phase is estimated41

to be below the crystal by ∼ 0.001 e2/ε` or less, which is
much smaller than the energy difference between states
with different polarizations, and will therefore not affect
the phase boundary obtained above significantly. The
most interesting region is 1 < ν∗ < 2 (1/3 < ν < 2/5),
where certain FQHE states such as 4/11, 5/13, and per-
haps 3/8, are known to occur42 in very pure samples.
Inclusion of these states will distort the phase boundary
near these fillings in interesting ways, but our theoreti-
cal understanding of these states43 is currently not at a
level where quantitative statements can be made. (iii)
For graphene and other multi-valley systems, it will be
important to consider both the spin and valley indices
to bring out the full physics.19,44 The present work is
applicable when one of those two degrees is frozen. (iv)
Disorder, not included above, will affect our results in
several ways. Most importantly, the first order phase
transitions at the phase boundaries will turn into con-
tinuous percolation transitions in the presence of disor-
der, producing extended states that allow identification
of the phase transition in transport experiments (below).
Disorder will also affect the energies of the various states
differently, and thereby modify the phase boundaries. Fi-
nally, disorder will create spatial variations in the filling
factor, which will provide a correction to the “ideal” po-
larization. For example, while the ideal 1/3 state is fully
spin polarized for all κ, disorder will slightly diminish P
for κ < 0.03. (v) LL mixing should be small at large
magnetic fields, but at relatively low fields it will also
influence the phase boundaries, because it will affect dif-
ferently polarized states differently. LL mixing will affect
the filling factor regions 0 < ν < 1 and 1 < ν < 2 dif-
ferently. In the absence of LL mixing the latter region
maps into 0 < ν < 1 holes in the LLL, which have the
same interaction as electrons, and therefore the above
physics applies exactly (with composite fermions being
bound states of holes and vortices). In the presence of
LL mixing, the renormalization of the interaction by LL
mixing will be different for electrons and holes, and the
quantitative differences between the spin phase diagrams
in the two regions should serve as a useful test of our
understanding of the role of LL mixing. A reliable treat-

ment of LL mixing, however, is outside the scope of the
present work.

In light of the preceding paragraph, the phase diagram
in Fig. 4 is to be viewed as a first step. Further work
will be required for a more precise determination of the
phase boundaries. In particular, qualitative deviations
from the phase diagram in Fig. 4 will be indicative of the
formation of new correlated phases.

Transport measurements can identify the phase bound-
ary through the appearance of an Rxx peak as a function
of the EZ, which appears because of the presence of ex-
tended states (due to disorder) at the transition point.
These Rxx peaks are flanked by two states with the same
quantized Hall resistance Rxy. (These should be dis-
tinguished from the peaks at45 ν∗ = n + 1/2, shown
schematically as vertical shaded regions in Fig. 4, which
indicate transitions between states with different values
of the Hall resistance.) Such peaks have been seen in
a number of experiments, both at the special fractions
ν = n/(2n ± 1) and slightly away from it.2,3,5,13 Krauss
et al.13 have detected a sharp Rxx peak inside the resis-
tance minima near 2/3 and 3/5, and determined a phase
boundary of the type calculated here, clearly delineat-
ing states with various spin polarizations as a function of
the filling factor. Unfortunately, a technical difficulty in
dealing with reverse flux attachment makes the calcula-
tion of the phase diagram along the sequence n/(2n− 1)
much more challenging,23,27 and outside the scope of the
present work. However, the phase transition at 2/3 is
found to occur in Ref. 13 at ∼ 10T ; according to the
free CF model, this corresponds to α ∼ 19, which is in
the same ball park as the value obtained above (and, in
fact, somewhat higher, as expected from finite width cor-
rections). Resistance spikes have also been observed at
magnetic phase transitions in the integer quantum Hall
regime.46 We also note that because the phase bound-
ary involves a change of magnetization, it should exhibit
hysteretic behavior, as observed previously.3,5,12,46
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Technology Services at Pennsylvania State University, for
providing high-performance computing resources.
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