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We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyper-
fine interactions for a single electron confined within a double quantum dot. A simple toy model
incorporating both direct decay to the ground state of the double dot and indirect decay via an
intermediate excited state yields an electron spin relaxation rate that varies non-monotonically with
the detuning between the dots. We confirm this model with experiments performed on a GaAs
double dot, demonstrating that the relaxation rate exhibits the expected detuning dependence and
can be electrically tuned over several orders of magnitude. Our analysis suggests that spin-orbit
mediated relaxation via phonons serves as the dominant mechanism through which the double-dot
electron spin-flip rate varies with detuning.

Controlling individual spins is central to spin-based
quantum information processing [1–3] and also enables
precision metrology [4, 5]. While rapid control can be
achieved by coupling the spins of electrons in semiconduc-
tor quantum dots [1, 2] to electric fields via the electronic
charge state [3, 6–15], spin-charge coupling also leads
to relaxation of the spins through fluctuations in their
electrostatic environment. Phonons serve as an inherent
source of fluctuating electric fields in quantum dots [2]
and give rise to both charge and spin relaxation through
the electron-phonon interaction. In GaAs quantum dots,
the direct coupling of spin to the strain field produced by
phonons is expected to be inefficient [16, 17]. The dom-
inant mechanisms of phonon-induced spin relaxation are
therefore indirect and involve spin-charge coupling due to
primarily spin-orbit [16–22] and hyperfine [23–28] inter-
actions. Confining an electron within a double quantum
dot (DQD) provides a high degree of control over the
charge state [29–32], so that relaxation rates can be var-
ied over multiple orders of magnitude by adjusting the
energy level detuning between the dots [26, 33–36].

Here, we investigate the interplay of spin and charge
relaxation via phonons for a single electron confined to
a DQD in the presence of spin-orbit and hyperfine in-
teractions. We present a simple model together with
measurements of the electron spin relaxation rate in a
GaAs DQD, both of which yield a non-monotonic depen-
dence on the detuning between the dots (see Fig. 3).
The experiments provide confirmation of the model and
demonstrate the existence of spin “hot spot” features [19–
21, 37, 38] at nonzero values of detuning, where relax-
ation is enhanced by several orders of magnitude. The
opposite behavior is observed at zero detuning, where the
spin-flip rate exhibits a local minimum. Theoretically,
spin hot spots are predicted to occur due to the com-
plete mixing of spin and orbital states at avoided energy
crossings associated with spin-orbit coupling [19, 20, 37].
From a practical standpoint, adjusting the detuning to
these points represents a potential method for rapid all-
electrical spin initialization.

We describe a single electron confined within a DQD
(Fig. 1) using a toy model that includes only the lowest-
energy orbital level of each dot. This two-level approxi-
mation [29] enables the charge degrees of freedom to be
represented by the Pauli matrices σx, σy, σz in the basis
{|L〉 , |R〉}, where |L〉 (|R〉) denotes an electron in the left
(right) quantum dot and σz ≡ |L〉 〈L| − |R〉 〈R|. We can
then express the Hamiltonian of the system as

Hd = H0 +Hso +Hnuc, (1)

H0 =
ε

2
σz − tσx − ΩzSz, (2)

Hso = Kso · S σy, (3)
Hnuc = Knuc · S σz. (4)

The first two terms in H0 [Eq. (2)] specify the purely or-
bital part Horb ≡ (ε/2)σz − tσx of the electronic Hamil-
tonian in terms of the energy level detuning ε and the
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Figure 1: Electrochemical potential diagrams for a dou-
ble quantum dot (DQD), illustrating the measurement cycle
used to obtain the experimental spin relaxation rate (see main
text). Varying the detuning ε between the left (L) and right
(R) dots while keeping the tunnel coupling t fixed (stage 3)
tunes the relative energies of the charge states. Tunneling of
the electron between the dots is accompanied by spin rotation.



tunnel coupling t between the two dots (Fig. 1). Diago-
nalization of Horb yields the eigenstates

|+〉 ≡ cos
φ

2
|L〉 − sin

φ

2
|R〉 ,

|−〉 ≡ sin
φ

2
|L〉+ cos

φ

2
|R〉 , (5)

where φ varies with ε and t according to tanφ = 2t/ε.
The corresponding eigenvalues are separated in energy
by a gap ∆ = E+ − E− =

√
ε2 + 4t2 [see also Fig. 2(a)].

Spin dependence is introduced into the Hamiltonian
via the last term in H0, together with Hso and Hnuc [see
Eqs. (2)-(4)], where the vector of electron spin oper-
ators is denoted by S = (Sx, Sy, Sz). The term Hso

describes spin-orbit coupling which is linear in the elec-
tron momentum p. The general form given in Eq. (3)
takes into account both the Rashba [39, 40] and the lin-
ear Dresselhaus [41] forms of spin-orbit interaction, with
strengths and orientations that are specified by the vec-
tor Kso ≡ (r, s, q). Note that Hso acts as σy within
the orbital subspace, which follows from parity selection
rules for the matrix elements of p in the basis {|L〉 , |R〉}.
Thus, Hso describes tunneling between the dots accom-
panied by a spin flip (Fig. 1) [13, 14].

The remaining spin-dependent terms in Hd represent
forms of the Zeeman interaction that are distinguished by
their action within the orbital subspace. The final term
in H0 represents the coupling of the electron spin to a
magnetic field of strength B = Ωz/ |g|µB that is uniform
over the two dots, where g is the electron g-factor and
µB is the Bohr magneton. The vector Knuc ≡ (u, v, w)
in Hnuc specifies the strength and orientation of a mag-
netic field gradient across the two dots. Hnuc acts as σz
within the orbital subspace. For GaAs quantum dots,
Hnuc can be used to model the hyperfine interaction be-
tween the electron spin and the ensemble of nuclear spins
with which the electron wavefunction overlaps. The as-
sociated intrinsic magnetic field gradient is assumed to
originate from an effective nuclear field Bnuc with a ran-
dom, spatially-varying orientation described by a Gaus-
sian distribution and magnitude Bnuc given by the root-
mean-square (rms) value [24–26, 28, 42].

Figure 1 illustrates the scheme used for the measure-
ment of the spin relaxation rate. The experimental setup
is described in [43]. In the first step of the measurement
cycle, a single electron spin is initialized by emptying the
DQD and then letting a single electron tunnel into the
left dot far from the degeneracy of |L〉 and |R〉. The elec-
tron spin is randomly up or down. Next, a voltage pulse
adjusts the electrochemical potential of the right dot to
tune the detuning closer to the degeneracy to a value ε
for a wait time τ . After the wait time, the electrochemi-
cal potential is pulsed back and the spin of the electron is
read out using energy-selective spin-to-charge conversion
[44]. This cycle is repeated for a given ε and τ to obtain
an average spin-down probability at the end of the cycle.

For each series of measurements as a function of τ at a
fixed ε, the amount of detected spin-down is fitted with
an exponential decay, from which the spin-relaxation rate
at each ε is obtained as shown in Fig. 3.

The variation of the measured spin relaxation rate with
detuning can be understood in terms of the spectrum for
the one-electron double dot. Figure 2(a) shows an exam-
ple spectrum for Hd [Eq. (1)] as a function of detuning
[45]. In Fig. 2 and throughout the present work, we
consider the limit t� Ωz which corresponds to the mea-
surements described above (see [43]). The notation ↑, ↓
used to label the states in the figure refers to the com-
ponents of spin along the quantization axis defined by
the external magnetic field. In accordance with the ex-
periment [43, 46], we choose this field to be in the plane
of the quantum dots and parallel to the double-dot axis.
The in-plane crystal lattice orientation characterizing the
spin-orbit interaction [Eq. (3)] is parametrized by an an-
gle θ relative to this axis. Of particular consequence for
the present work is the fact that Hso gives rise to avoided
crossings in the spectrum at ε ≈ ±Ωz, where maximal
coupling of the states |+, ↑〉 and |−, ↓〉 occurs and leads
to the complete mixing of orbital and spin degrees of
freedom. These finite values of ε correspond to spin “hot
spots” [19–21, 37, 38] and are associated with enhanced
spin relaxation rates, as is shown below.

Including coupling to phonons in the description of the
single-electron double-dot system leads to the Hamilto-
nian H = Hd +Hep, where

Hep =
∑
ν,k

√
~

2ρ0V0cνk
(kβlδν,l − iΞ)

×
(
aν,k + a†ν,−k

)
eik·r (6)

is the electron-phonon interaction [47], expressed in
terms of the mass density ρ0, the volume V0, the phonon
speeds cν , the deformation potential βl, and the piezo-
electric constant Ξ. The operator a†ν,k (aν,k) creates
(annihilates) a phonon with wavevector k and polar-
ization ν [the sum over ν is taken over one longitudi-
nal (l) mode and two transverse (t) modes], and δν,l
is the Kronecker delta function. Fermi’s golden rule
for the rate Γ of phonon-induced relaxation of the elec-
tron from state |i〉 to state |f〉 of the double dot gives
Γ ∼ |〈f |Hep |i〉|2 ρ (∆d), where ρ (∆d) is the phonon den-
sity of states evaluated at the gap ∆d between levels i and
f that determines the energy of the emitted phonon.

We first consider a qualitative model for Γ, where we
estimate the transition matrix element 〈f | eik·r |i〉 (see
[43]) by writing eik·r ≈ 1+ik·r and determining the corre-
sponding matrix element of the dipole operator d = −er
(here, e denotes the magnitude of the electron charge).
To evaluate dipole matrix elements, we define Gaussian
wavefunctions ψL(R) (r) ≡ 〈r| L (R)〉 which are shifted
along the dot axis by±a/2 for the left-localized and right-
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localized orbital states. While ψL and ψR are not orthog-
onal, their overlap is small. We neglect corrections due
to this overlap in our calculations. Using these wavefunc-
tions, we find d = Dẑ with D = (ea/2)σz. The qualita-
tive form of the relaxation rate can then be approximated
by Γ ∼ |d|2 F (∆d) , where d denotes the first-order term
of 〈f |D |i〉 and F (∆d) represents the dependence of the
rate on the gap energy ∆d (see [43] for more details).

To identify the states of the double dot between which
phonon-induced relaxation occurs, we treat V ≡ Hso +
Hnuc [Eqs. (3) and (4)] as a perturbation with re-
spect to H0 [Eq. (2)] and use nondegenerate pertur-
bation theory (which is valid away from ε ≈ ±Ωz)
to find the first-order corrections to the energies and
eigenstates of H0. We denote the corrected states by{∣∣(−, ↑)′〉 , ∣∣(−, ↓)′〉 , ∣∣(+, ↑)′〉 , ∣∣(+, ↓)′〉} and consider re-
laxation of the electron spin from the excited state∣∣(−, ↓)′〉 to the ground state

∣∣(−, ↑)′〉 of the DQD [see
Fig. 2(a)], which can occur directly as well as indirectly
via the excited state

∣∣(+, ↑)′〉 . Away from the avoided
crossing points, we note that

∣∣(+, ↑)′〉 ≈ |+, ↑〉 and∣∣(−, ↑)′〉 ≈ |−, ↑〉. The state
∣∣(+, ↑)′〉 therefore relaxes

rapidly to
∣∣(−, ↑)′〉, as effectively only orbital decay is in-

volved and no spin flip is required in this second step [48].
In the following, we assume that this charge relaxation
is instantaneous compared to the spin relaxation and use
the dipole matrix element for

∣∣(−, ↓)′〉→ ∣∣(+, ↑)′〉 to de-
scribe the full indirect transition.

We approximate the relaxation rates Γb and Γe [Fig.
2(a)] in the presence of both Hso and Hnuc by calculat-
ing the first-order terms db and de of the dipole matrix
elements

〈
(−, ↑)′

∣∣D ∣∣(−, ↓)′〉 and 〈(+, ↑)′∣∣D ∣∣(−, ↓)′〉, re-
spectively. These terms are functions of the spin-flipping
components r, s, u, and v in Eqs. (3) and (4). Averaging
over the nuclear field distribution [24–26, 28]

P (Knuc) =
1

(2πb2nuc)
3/2

exp

(
−|Knuc|2

2b2nuc

)
, (7)

where bnuc ≡ |g|µBBnuc =

√
〈|Knuc|2〉/3, gives 〈u〉 =

〈v〉 = 0 and 〈u2〉 = 〈v2〉 = b2nuc. We thus find

〈|db|2〉 =

[
ea

2

(
2t

∆

)
Ωz

(∆− Ωz)(∆ + Ωz)

]2
χ, (8)

〈|de|2〉 =

[
ea

2

( ε
∆

) 1

∆− Ωz

]2
χ, (9)

χ ≡

[
r2 + s2 +

(
2t

Ωz

)2 (
2b2nuc

)]
.

These expressions are plotted in Fig. 2(b). Note that
both Eqs. (8) and (9) are undefined at the avoided cross-
ing points in Fig. 2(a), where ∆ = Ωz. Thus, the curves
shown in Fig. 2(b) are valid only away from these points
(i.e., where nondegenerate perturbation theory is a rea-
sonable approximation). Both 〈|db|2〉 and 〈|de|2〉 are only
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Figure 2: (a) Spectrum of Hd [Eq. (1)] as a function of
detuning ε for the case t � Ωz, in the presence of spin-orbit
coupling (Kso 6= 0, Knuc = 0). Correspondence with the
eigenstates of H0 [Eqs. (2) and (5)] is indicated for relevant
regions of the spectrum. Avoided crossings due to spin-orbit
coupling occur at ε ≈ ±Ωz. The spectrum shown corresponds
to t = 10 µeV [43], B = 6.5 T [43, 46], the dot size σ = 15 nm
and interdot separation a = 110 nm, the GaAs effective mass
m∗ = 0.067me (where me is the free-electron mass) and g-
factor g = 0.36, the Rashba and linear Dresselhaus spin-orbit
strengths α0 = 3.3× 10−12 eV·m and β0 = 4.5× 10−12 eV·m,
respectively, and θ = π/8. The values of α0, β0, and θ are used
to determine Kso = (r, s, q) . (b) Dipole-dependent factors
〈|db|2〉 and 〈|de|2〉 [Eqs. (8) and (9)] used to qualitatively
model the relaxation rates Γb and Γe in (a), as a function of
detuning for Bnuc = 0 (solid lines) and Bnuc = 3 mT (dotted
lines), with α0 = 3.3×10−14 eV·m and β0 = 4.5×10−14 eV·m.
All other parameters are identical to those used in (a). Units
for the dipole are given in terms of the Bohr radius a0. The
dipole model is not valid in the shaded region. (c) Relaxation
rates Γa, Γb, and Γe as a function of detuning. The rates are
calculated using ρ0 = 5.3 × 103 kg/m3, cl = 5.3 × 103 m/s,
ct = 2.5 × 103 m/s, βl = 7.0 eV, and Ξ = 1.4 × 109 eV/m
[21], together with the parameter values used in (b). Lines
are guides to the eye.

slightly modified by the coupling of the electron spin to
an effective nuclear field of rms strength Bnuc = 3 mT
[26], as expected from Eqs. (8) and (9) in which the
nuclear field term is scaled with respect to the spin-orbit
terms by a factor (2t/Ωz)

2 � 1 [13]. Saturation of 〈|db|2〉
occurs at zero detuning for both the Bnuc = 0 and the
Bnuc = 3 mT cases. On the other hand, 〈|de|2〉 vanishes
at ε = 0 regardless of the value of Bnuc. As the experi-
mental relaxation rate contains a local minimum at zero
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Figure 3: Experimental detuning-dependent single-spin re-
laxation rate (Γexpt) and comparison with the toy model de-
scribed in the present work (Γth) for both zero and finite
temperature. Error bars depict 90% confidence intervals for
the data [43]. The parameter values used to calculate Γth are
the same as those used in (b) and (c) of Fig. 2.

detuning (see Fig. 3), the present analysis suggests that
the direct transition

∣∣(−, ↓)′〉→ ∣∣(−, ↑)′〉 alone does not
account for the observed spin relaxation and that indi-
rect relaxation via the excited state

∣∣(+, ↑)′〉 potentially
plays a significant role in the spin-flip rate. The relative
contributions of the direct and indirect transitions to the
overall rate are explored in [43].

To compare our theoretical predictions more directly
with the experimental results, we carry out the full cal-
culation of the relaxation rates for both direct and indi-
rect transitions to the ground state by applying Fermi’s
golden rule to relaxation induced by Hep [Eq. (6)]. De-
tails are given in the Supplemental Material [43]. We set
Knuc = 0 for simplicity, as the preceding analysis based
on dipole matrix elements suggests that the hyperfine
term Hnuc represents only a small correction to the de-
cay rate [see Eqs. (8), (9) and Fig. 2(b)]. Application
of a Schrieffer-Wolff transformation [49] enables diago-
nalization of the full double-dot Hamiltonian Hd for all
ε, including the avoided crossing points ε ≈ ±Ωz, and
the eigenstates of Hd are used to calculate the relaxation
rates via Eqs. (S1)-(S3) [43].

Relevant portions of the curves for the decay rates Γ21,
Γ31, and Γ32 (where we number the levels according to
their energy eigenvalues and use Γif to denote the rate of
relaxation from level i to level f) are plotted together in
Fig. 2(c). The rate Γa is associated with mainly charge
relaxation and is given by Γ21 (Γ31) for |ε| . Ωz (|ε| &
Ωz), while Γb is associated with mainly spin relaxation
and is given by Γ31 (Γ21) for |ε| . Ωz (|ε| & Ωz). The
rate Γe corresponds to a combination of spin and charge
relaxation and is given by Γ32 for all |ε|. Note that Γa �
Γe, which is consistent with our prior assumption that
the effective rate for indirect relaxation to the ground

state is determined by Γe.
For |ε| . Ωz, indirect spin relaxation occurs by a tran-

sition to the lower-energy intermediate state via phonon
emission [Fig. 2(a)]. On the other hand, the indirect
transition for |ε| & Ωz requires phonon absorption in
order to excite the electron to the higher-energy inter-
mediate state. Using the Einstein coefficients and the
Bose-Einstein distribution 〈n〉 = 1/ [exp (∆d/kBT )− 1]
(where kB is the Boltzmann constant and T is the tem-
perature) to express the rates of spontaneous emission,
stimulated emission, and absorption associated with the
lowest three double-dot levels in Fig. 2(a) in terms of
Γa, Γb, and Γe [33], we take the full theoretical detuning-
dependent spin relaxation rate Γth to be given by Γb+Γe
for |ε| . Ωz and by Γb + Γe 〈n〉 / (〈n〉+ 1) for |ε| & Ωz.
This rate is plotted together with the zero-temperature
limit of the model and the measured rate Γexpt in Fig. 3
for T = 250 mK [43, 46]. At the avoided crossings asso-
ciated with spin-orbit coupling (ε ≈ ±Ωz), we find peaks
in Γth that resemble the spin hot spot peaks observed ex-
perimentally. The zero-detuning minimum found in the
measurements appears in both the zero- and the finite-
temperature models. In addition, close qualitative agree-
ment between the finite-temperature model and experi-
ment is observed for a wide range of detuning values.
While limitations of our theoretical description arise from
the two-level approximation we use for the orbital states,
we have nevertheless shown that several characteristic
features present in the measured detuning dependence of
the double-dot spin relaxation rate can be understood
within this simple model.

The results of the present work therefore suggest that,
in accordance with the case of single lateral GaAs quan-
tum dots [22], the observed variation of the spin re-
laxation rate with detuning in double dots is predomi-
nantly due to spin-orbit mediated electron-phonon cou-
pling. The spin-orbit interaction may thus provide the
key to rapid all-electrical initialization of single spins.

Note added. During the preparation of this
manuscript, we became aware of a recent experimental
observation of a spin hot spot in a Si quantum dot [50].
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