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We present a version of continuum elasticity theory applicable to aggregates of functional biomolecules at
length scales comparable to that of the component molecules. Unlike classical elasticity theory, the stress and
strain fields have mathematical discontinuities along the interfaces of the macromolecules, due to conforma-
tional incompatibility and large scale conformational transitions. The method is applied to the P-II to EI shape
transition of the protein shell of the virus HK97. We show that protein residual stresses generated by incompati-
bility drive a “reverse buckling” transition transition from an icosahedral to a dodecahedral shape via a “critical”
spherical shape, which can be identified as the P-II state.

PACS numbers: 87.10.Pq, 87.15.bk, 87.15.hp, 46.32.+x

Continuum physics describes materials in terms of contin-
uous fields, such as the stress and strain tensor fields of solids
[1], subject to conservation laws, and linked together by con-
stitutive relations. Whether the constituent components are
atoms or small molecules, the intercomponent spacing typ-
ically determines a characteristic length scale below which
continuum physics must be replaced by a discretized, atom-
istic description. Many of the materials important in cell bi-
ology, such as cytoskeletal protein filaments, chromatin, bac-
terial and plant cell walls, and lipid bilayer membranes, are
aggregates assembled from thousands to millions of macro-
molecular components (e.g., proteins, lipids, or even cells).
Continuum descriptions have been quite successful in repro-
ducing and explaining physical behavior of biological materi-
als on length scales large compared to that of the components
[2], but as micro-mechanical techniques continue to provide
experimental characterization at smaller and smaller length
scales, the need has grown to apply or extend continuum the-
ories to length scales comparable to that of the constituent
components. Intriguingly, because these macromolecules are
themselves already large compared to atomic length scales,
their mechanical function is generally determined more by
gross three-dimensional shape than by atomistic-scale struc-
ture and interactions, such that coarse-grained and continuum
elastic techniques have become standard tools for modeling
even single proteins [3].

Despite these successes, a fundamental obstacle remains
facing the application of continuum elasticity theory to protein
aggregates: a protein has in general an irregular, asymmetric
shape that is incompatible with the continuous tiling of planes
or the filling of space. Elasticity theory starts from the defini-
tion of a stress-free reference state from which displacements
are to be measured. Normally this state is globally compati-
ble, meaning that the reference geometry of elastic body can
be described mathematically by a continuous position map-
ping. However, this is not generally so for an aggregate of
macromolecules, which need not be geometrically compatible
with the final assembly state. When proteins are held together
in aggregates by attractive, non-covalent protein-protein in-

teractions, they will be deformed, necessarily producing in-
ternal “residual” stresses. Moreover, the proteins in an ag-
gregate are functional entities, possibly active as enzymes or
motor proteins, and can undergo independent conformational
motions involving large displacements and deformations that
may be discontinuous across protein-protein interfaces. These
considerations pose a fundamental problem for elasticity the-
ory: although the molecules may be large enough to justify a
continuum description, conformational incompatibility of the
subunits renders the stress-free reference state non-trivial, and
generally distinct from the experimentally observed structure.

In this letter we outline an elastic continuum theory for
aggregates of functional proteins applicable at length scales
comparable to that of the proteins themselves (or larger). It
differs from conventional elasticity theory in that stress and
strain fields are no longer continuous functions of location:
interfaces between the constituent components are lines of
mathematical discontinuity in the stress and strain fields.
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FIG. 1: Maturation of bacteriophage HK97 from “P-II” state to “EI-
II” state involves “unshearing” of skewed hexons.

The method is best illustrated by a concrete example: for
this we focusing on the thoroughly studied bacteriophage
virus HK97 [4]. The capsid of HK97 is a protein shell, sur-
rounding a double-stranded DNA genome. It is composed of
420 identical proteins arranged in a so called “T=7” icosa-
hedral lattice of 12 “pentons” and 60 “hexons” (see Fig. 1).
Viral capsids are not passive containers but macromolecular
machines able to perform specific tasks. In the present case,
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insertion of the viral genome molecule into the capsid trig-
gers a sequence of conformational changes, known as “matu-
ration,” that progressively strengthen the shell. The sequence
initiates with the “P-II to EI” transition [4] (see Fig. 1). Cryo-
EM pictures of HK97 show that this transformation is marked
by both a change in capsid shape from spherical to polyhe-
dral and a change in the shapes of the hexons from skewed or
“twisted” to symmetric (Fig. 1). Detailed X-ray reconstruc-
tions reveal that the transformation is driven by the release
of elastic energy, stored in the highly deformed hexons [4].
Although later stages in maturation involve the formation of
new covalent bonds among capsomers, the P-II to EI transi-
tion involves only changes in the shape or conformation of the
proteins, as is more common in maturation of other viruses.

The natural stress-free equilibrium reference state is the
“Caspar-Klug” (or CK) icosahedron, a perfect icosahedron the
flat facets of which are covered by twelve regular pentagons
and 10T − 1 regular hexagons (see Fig. 2A) for certain inte-
ger values T=1, 3, 4, 7, 13, . . . [5]. Apart from bending energy
costs associated with the sharp folds of an icosahedron, the
CK structure is stress-free. The introduction of bending and
stretching energies, according to classical elasticity theory, in-
troduces stresses and strains fields that are analytic functions
of position, except at the 5-fold symmetry sites, the locations
of 5-fold disclinations [6]. The nature of the capsid proteins
enters through the values of a (2-D) Young’s Modulus Y , a
Poisson ratio ν, and a bending modulus κ. A “buckling transi-
tion” takes place when the Föppl-von Kármán number (FvK),
γ = Y R2

κ exceeds a critical value of the order of 102. When
applied to the P-II to EI transformation, the theory would
describe the shape change as a buckling transition due to a
decrease of the FvK number across the buckling threshold.
However, the in-plane displacements (skew to symmetric) of
Fig. 1 do not match the predictions of the classical theory.

To account for the conformational change, the reference
state for HK97 is again a collection of hexons and pentons
distributed over a T=7 shell; but now they are considered as
if they were isolated. The hexons can undergo a large confor-
mational transformation indexed by a collective reaction co-
ordinate η: here the amplitude of hexon shear along a vertex-
vertex symmetry direction (see Fig. 1). A constrained hexon
equilibrium free energy f6(η), a “potential of mean force”
(PMF), is assigned to the hexons. The PMF may in general
be a multi-welled function depending on the detailed atomic
structure of the proteins but we only need the fact that, be-
cause of the 6-fold symmetry of hexons, f6(η) equals f6(−η)
so f6(η = 0) must be an extremum. In view of the thermody-
namic stability of the EI state in the absence of further chem-
ical reactions, this extremum is an absolute minimum. The
free energy difference between the EI and P-II states drives
the transformation.

The method to model hexon transformation is illustrated in
Fig. 2. Figure 2A shows a T=7 shell assembled from flat,
equilateral hexagons and pentagons following the CK con-
struction. Energy minimization of the CK icosahedron par-
tially relaxes bending at the icosahedral edges and vertices at
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FIG. 2: Model of incompatible conformational shearing of HK97
hexons. (A) T=7 icosahedral lattice. (B) Incompatible shearing
of hexons (η=0.2) by conformational deformation gradient tensor
G. White arrows indicate the direction of the conformational shear
n̂. (C) Equilibrium shape of a shell of sheared hexons (η=0.2) for
γ = 2000. Compatibility is restored by a deformation gradient ten-
sor A. Note the stress discontinuities. Black double-headed arrows
indicate the principal stress direction. (D) Equilibrium shape of shell
of symmetric hexons (η=0), for which the classical theory of [6] is
recovered. Note the facets and the absence of stress discontinuities.

the expense of some in-plane stretching, to yield the smooth
but aspherical shape in Fig. 2D, similar to the EI state. Note
that the tiling pattern is chirally asymmetric, which will play
an important role. Figure 2B shows what happens when the
isolated hexons undergo a pre-shear, denoted by deformation
gradient tensor G, consistent with Fig. 1: it spoils the tiling.
To restore the integrity of the shell, an additional deformation
is introduced, denoted by gradient tensor A.

Strains in a continuum containing residual stresses due to
plasticity or other forms of constitutive incompatibility may
be described rationally in large-strain continuum mechanics
theory by a “multiplicative split” [7] of the gradient tensor
F = ∇~y = AG of a (continuous, one-to-one) deformation
mapping ~y = ~y(~x) from position ~x in the (initial, prestressed)
reference configuration to deformed position ~y. Here, the con-
formational part of this decomposition, G = I + ηn̂ ⊗ m̂,
represents shear of a reference hexagon with reference to or-
thonormal unit vectors n̂ and m̂. As shown in Fig. 2B, these
shear directions are chosen to be compatible with that of
Fig. 1. As a result of this choice, the conformational move-
ment of the hexons constitutes a separate source for chirality.
The elastic in-plane strains are described by a right Cauchy-
Green deformation tensor C ≡ ATA. Accordingly, there are
now two sources of strain: strain generated by the need to de-
form sheared hexons so they can tile a closed shell, and strains
generated by the curvature along the edges of T=7 icosahedral
facets, as in the classical theory. The complete deformation
(and the actual form of C) from the initial state to the final
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state (see Fig. 2C) is obtained by free energy minimization.
The elastic free energy associated with the mapping is then

F = 1
2

∫
dA
[
κ(2H)2+K(J−1)2+µ

( trC
J
−2
)]

+60f6(η),

(1)
In the first term, κ is the bending modulus and H the mean
curvature. The second and third terms account for area di-
lation and isochoric shear. Here, K is the 2-D (area) bulk
modulus, J = (detC)1/2 is the deformed-to-reference area
ratio, and µ is the shear modulus. The last term describes the
internal energy of the hexons. In the limit of small strains
with η=0, this formulation recovers exactly the model of
[6]. We note also that in the general case of a multi-welled
PMF, f6(η), describing transitions between distinct confor-
mational states, the effective free energy obtained by indepen-
dent minimization or “static condensation” of the conforma-
tional/reference state η will be nonlinear in the deformation
F, much like the non-convex nonlinear strain energies com-
mon for modeling martensitic phase transitions in solids [8].

Equation (1) defines a variational energy for the shell from
which the deformation mapping ~y = ~y(~x) must be deter-
mined by minimization at fixed η. Constrained equilibrium
configurations of the shells were computed numerically by
minimizing a finite element discretization of Eq. (1) using
C0-Lagrange interpolation for stretching energies and C1-
conforming subdivision surface elements for bending energies
[9]. All integrals are computed over the icosahedral reference
configuration of Fig. 2A. The surface position map ~y(~x) of
the deformed shape has no discontinuities. Finally, the free
energy must be minimized with respect to η to set uncompen-
sated forces inside the hexons to zero.

Shells with symmetric hexons computed this way (Fig. 2D,
η=0) reveal the smoothly varying stress distribution predicted
by the classical theory: compressive stresses emanate from
the icosahedral vertices, relaxing to slightly tensile values
away from the pentons. The pronounced polyhedral shape of
Fig.2D indicates that the FvK Number (γ=2000) is well above
the critical value. In contrast, Fig. 2C shows that pre-shear
(η=0.2) produces a pattern of large jumps/discontinuities in
tangential stress across the capsomer interfaces. Coinci-
dent with this heterogeneous, discontinuous stress distribu-
tion, hexon pre-shear also produced a notable change in the
shape of the shell: the shell is close to spherical (Fig. 2C) even
though the FvK Number remains well above the critical value.
In other words, as a function of the hexon pre-shear, capsids
undergo a reverse buckling transition at fixed FvK Number.

Figure 3 illustrates a mechanism for reverse buckling. A
regular pentagon is surrounded by a ring of five regular
hexagons with the same edge length, all lying in a plane.
Gluing together the edges between the hexagons introduces
elastic stresses that can be eliminated by letting the structure
buckle out of the plane. Next, shearing the hexagons along the
dashed lines reduces the angular width of the gaps between
the hexons and thus the elastic stresses. The geometrical con-
struction of Fig. 3 in fact suggests that there may be a critical

Pre-Shear

FIG. 3: Schematic showing a ring of sheared hexons surrounding a
penton (gray). The shearing of the hexons both reduces the disclina-
tion angle, and elongates the hexon edges adjacent to the penton.

pre shear such that there is no buckling at all.
To locate this special pre-shear, we show in Fig. 4 the bend-

ing and stretching energies as a function of η for γ=2000. The
stretching energy is minimized for η=0, as would be expected,
but the bending energy is minimized at a finite η. The reason
becomes clear when one plots the asphericity of the shell —
the normalized standard deviation of the radius — as a func-
tion of η (solid line with dots): the asphericity attains a sharp
minimum value at η≈0.2. The capsid shape is spherical at
that point (see Fig. 4B), which indeed is the state of minimum
bending energy. The value of this special shear was found to
be insensitive to changes in the elastic moduli of the shell.

What happens if η is pushed past this “critical point?” The
deformed surface becomes flatter over the pentons while tri-
angular cusps appear at the three-fold symmetry sites in be-
tween the pentons. In fact, the capsid is now a dodecahe-
dron instead of an icosahedron (see Fig.4B). The critical η
thus marks a shape transition from icosahedral to dodecahe-

FIG. 4: Asphericity and energy vs. hexon shear, η. (A) Asphericity
A =

√
〈∆R2〉/〈R〉, normalized by that of an icosahedron, attains a

minimum at η≈0.2 for γ=2000. Total energy minimized at η≈ 0.08.
(B) Shape phase diagram of shells with pre-sheared hexons. Open
circles: critical FvK number γB at which the shell buckles. Solid
line: Equation 2. Dashed line: interpolation. Insets: equilibrium
shapes at η = 0, 0.2, and 0.35, contoured by radius, for γ=2000.
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dral facetting. Note from Fig.4A that negative values of η pro-
duce shell shapes with a level of asphericity that exceeds that
of an icosahedron. The 5-fold sites are then more “spiky” than
for a perfect icosahedron, resembling a stellated icosahedron.

One might speculate whether a description that includes the
internal degrees of freedom and incompatibility stresses could
be “coarse-grained” to produce a version of the classical the-
ory with a set of effective moduli, e.g., an effective FvK Num-
ber that depends on the internal coordinate η. Since there is
no icosahedral/dodecahedral transition in the classical theory,
this is not possible beyond the critical point. However, be-
low the critical point the computed capsid shapes indeed can
be approximated by the classical theory if one treats the FvK
Number as a fitting parameter. Figure 4B shows the effec-
tive critical FvK Number (at which the asphericity crosses the
buckling threshold) as a function of η (open circles). It in-
creases by an order of magnitude near the critical point.

An analytical expression for such an effective FvK Number
can be obtained from a simplified linear analysis of Fig. 3. As
described in detail in the supplement, we can approximate the
central penton as a disk of radius ap < R and the five hexons
as an annulus with radii ap < r < R surrounding the central
disk. Introduction of a 5-fold disclination at the center, and
a hexon shear stress of amplitude η 30 degrees from radial in
the annulus has two effects: (i) the annulus expands, opening
a gap along the cut, and (ii) the effective disinclination angle
of the annulus is reduced. Restoring compatibility by gluing
back the outer annulus to the central disk along the circular
cut generates a shear stress discontinuity along the cut, a slip
line. An exercise in classical linear elasticity (see supplement)
shows that the elastic stress generated by this operation re-
duces the in-plane elastic energy incurred by the disclination,
and produces an effective critical FvK number for buckling:

γB(η) =

(
1

γB(0)
−

5a2p
11R2

η

)−1

. (2)

This expression for γB(η) is plotted as a solid line in Fig. 4B,
with R/ap = 2 showing excellent agreement with values ob-
tained from the fully nonlinear numerical analysis with our
finite element model. With increased pre-shear the buck-
ling transition is pushed to increasingly larger values of γ.
Indeed, the theory predicts a divergence of γB → ∞ as
η → ηcrit = R2/24a2p, independent of the elastic moduli. For
η ≥ ηcrit there is no buckling transition: the shell should re-
main spherical no matter how small the bending modulus κ.
This simple theory obviously does not account for the appear-
ance of the dodecahedral shape.

Lastly we consider minimization of the total free energy
with respect to the pre shear. As expected, the elastic energy
has a minimum at a value of η in between the critical value
and zero, (roughly η≈0.1 γ=2000), because it is the sum of
stretching and bending energy (solid line in Fig. 4). Note that,
unlike f6(η), the elastic energy lacks symmetry under sign ex-
change of η. This is due to the chirality of the shear directions
on the T=7 shells. Though f6(η) has an absolute minimum

at η=0, the absolute minimum of the total free energy will be
at a positive value of η because of Fig. 4. Our theory thus
predicts that even in the EI state, there must be some (small)
residual hexon shear. For the P-II state, experimentally found
to be close to spherical, our theory makes an unambiguous
prediction: the hexon pre shear in the P-II state must be close
to 0.2 independent of the elastic moduli of the shell. In fact,
the predicted value is strikingly close to the skew observed
in the crystal structures of HK97 P-II, which is in the range
0.2–0.3 [4]. It is interesting to speculate why the P-II shell is
“critical.” It follows from Fig. 4 that, at the critical point, a
change in pre-shear from 0.2 to 0.1 changes the effective FvK
Number by two orders of magnitude. Because the critical state
is sensitive to small structural changes, it sets the stage for a
large conformational change in response to an external signal.

In summary, we are proposing a method for applying con-
tinuum elasticity to protein aggregates at length scales compa-
rable to that of the protein themselves. Stress discontinuities
act as slip planes, allowing for large-scale conformational in-
compatibility and protein motion. We show for the specific
case of the P-II to EI transformation of the capsid of the bac-
teriophage HK97 that the generalized theory qualitatively al-
ters the interpretation of continuum elasticity theory: the P-
II spherical shell is revealed as a “critical” structure and the
range of shapes encountered in the classical theory is extended
to include the dodecahedron and a (quasi) stellated icosahe-
dron.

More generally, we have shown that the inclusion of shape
incompatibility and pre-stress are essential components of the
elasticity theory of protein aggregates. To demonstrate this
general point we have constructed a highly simplified model,
assuming homogeneous shell thickness and material proper-
ties for the capsid proteins. Moreover we have avoided any
detailed consideration of chemical reactions and/or motor ac-
tivity that may be involved in driving conformational motion.
While the theory we’ve presented can be readily applied gen-
erally to any system in which the components retain their
functional identity inside the aggregate, the success of its pre-
dictions clearly relies on additional detailed information on
molecular mechanisms. One essential condition is the avail-
ability of high quality structural information concerning the
macromolecules, as was the case in the example we discussed
here. Furthermore, molecular dynamics simulation of more
realistic models could provide specific forms of conforma-
tional PMFs, such as f6(η), enabling the calculation of ther-
modynamic properties of aggregates, and also some under-
standing of the effects of structural and conformational non-
uniformity.
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