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Recent experiments suggest that membranes of living cells are tuned close to a miscibility critical
point in the 2D Ising universality class. We propose that one role for this proximity to criticality in
live cells is to provide a conduit for relatively long-ranged critical Casimir forces. Using techniques
from conformal field theory we calculate potentials of mean force between membrane bound inclu-
sions mediated by their local interactions with the composition order parameter. We verify these
calculations using Monte-Carlo where we also compare critical and off-critical results. Our findings
suggest that membrane bound proteins experience weak yet long range forces mediated by critical
composition fluctuations in the plasma membranes of living cells.

PACS numbers: 87.15.kt, 87.15.Ya,87.16.dt

Cellular membranes are two-dimensional (2D) liquids
composed of thousands of different lipids and membrane
bound proteins. Though once thought of as uniform
solvents for embedded proteins, a wide array of bio-
chemical and biophysical evidence suggests that cellular
membranes are quite heterogeneous (reviewed in [1, 2]).
Putative membrane structures, often termed ‘rafts’, are
thought to range in size from 10 — 100nm, much larger
than the a ~ 1Inm size of the individual lipids and pro-
teins of which they are composed. This discrepancy in
scale presents a thermodynamic puzzle: naive estimates
predict enormous energetic costs associated with main-
taining heterogeneity in a fluid membrane [3].

Parallel work in giant plasma membrane vesicles (GP-
MVs) isolated from living mammalian cells presents a
compelling explanation for the physical basis of these pro-
posed structures. When cooled below a transition tem-
perature around 25°C, GPMVs phase separate into two
2D liquid phases [4] which can be observed by conven-
tional fluorescence microscopy. Quite surprisingly, they
pass very near to a critical point in the Ising universality
class at the transition temperature [5]. Near a miscibil-
ity critical point, the small free energy differences be-
tween clustered and unclustered states could allow the
cell to more easily control the spatial organization of
the membrane, lending energetic plausibility to the pro-
posed structures. Although analogous critical points can
be found in synthetic membranes [6-8] these systems re-
quire the careful experimental tuning of two thermody-
namic parameters, as in the Ising liquid-gas transition
where pressure (equivalent to the Ising magnetization)
and temperature must both be tuned. Although it has
been suggested that biological systems frequently tune
themselves towards dynamical and other statistical crit-
ical points [9], so far as we know membranes are the
clearest example of a biological system which appears to
be tuned to the proximity of a thermal critical point.

Other plausible theoretical models have focused on 2D
micro emulsions (stabilized by surfactants [10], coupling
to membrane curvature [11], or topological defects in ori-

entational order [12]) but none have emerged from di-
rect, quantitative experiments on membranes from living
cells. It has been argued that Ising fluctuations should
have vanishing contrast between the two phases [11].
While this is true of macroscopic regions, a region of
radius R of lipids of size a ~ 1nm should have contrast
~ (R/a)™P/" = (R/a)~'/8, leading to predicted com-
position differences of 0.7 at the physiologically relevant
20nm scale, and differences of 0.5 at R = 400nm scale of
fluorescence imaging [5]; on the length scales of interest
there is plenty of contrast. Indeed, our calculations of
Ising-induced forces take place at and above the critical
point, where the macroscopic contrast is of course zero.

How might a cell benefit by tuning its membrane near
to criticality? Presuming that functional outcomes are
carried out by proteins embedded in the membrane,
we focus on the effects that criticality might have on
them. For embedded proteins, proximity to a critical
point is distinguished by the presence of large, fluctu-
ating entropic forces known as critical Casimir forces.
Three dimensional critical Casimir forces have a rich his-
tory of theoretical study[13]. In more recent experimen-
tal work [14] colloidal particles clustered and precipi-
tated out of suspension when the surrounding medium
is brought to the vicinity of the liquid-liquid miscibility
critical point in their surrounding medium. Two dimen-
sional Casimir forces like the ones studied here have been
investigated for the Ising model using numerical transfer
matrix techniques [15], for a demixing transition using
Monte-Carlo [16] and for shape fluctuation using per-
turbative analytical methods [17, 18]. Here we estimate
the magnitude of composition mediated Casimir forces
arising from proximity to a critical point, both in Monte-
Carlo simulations on a lattice Ising model, and analyt-
ically, making use of recent developments in boundary
conformal field theory(CFT) [19-21]. Our motivation
is biological: in a cellular membrane, these long ranged
critical Casimir forces could have profound implications.
More familiar electrostatic interactions are screened over
around 1nm in the cellular environment, whereas we find



the composition mediated potential can be large over tens
of nanometers.

Critical Casimir forces are likely utilized by cells in
the early steps of signal transduction where lipid medi-
ated lateral heterogeneity has been shown to play vital
roles. Many membrane bound proteins segregate into one
of two membrane phases when biochemically extracted
with detergents at low temperatures [22], or when pro-
teins are localized in phase separated GPMVs [5]. Fur-
thermore, there is evidence that some receptors change
their partitioning behavior in response to ligand binding
or down-stream signaling events [23]. Modeling this as
a change in the coupling between the receptor protein
and the Ising order parameter predicts that these bound
receptors will see a change in their interaction partners.
Supporting this view, ligand binding to receptor is often
accompanied by spatial reorganization in which receptors
and downstream molecules move into close proximity of
one another [1, 24], perhaps because they now share a
preference for the same Ising phase. Perturbations to
the lipid composition of the membrane, like cholesterol
depletion [25], typically disrupt this spatial reorganiza-
tion [24] and have dramatic effects on the final outcomes
of signaling [26-28], in our view by taking the membrane
away from its critical point and interfering with the re-
sulting long ranged forces.

We take three approaches to estimating the form of
these potentials. We first consider two point-like pro-
teins which interact with the local order parameter like
local insertions of magnetic field hy and ho at = 0
and x = d. To calculate the resulting potential we
write a Hamiltonian for the combined system of the
Ising model with order parameter ¢(x) plus proteins as
H([$(a)] ,d) = Hising([6(2)]) + h16(0) + hoo(d). We
then write a partition function for the combined system
Z(d) = [ D[p(z)] e PH(=):d) and solve to lowest or-
der in h giving the potential Uesr(d) = —log(Z(d)) +
log(Z(00)) = —h1h2C(d) with C(d) = (¢(0)¢(d)) the
correlation function. C(d) ~ d~7 when d <« £ with
the Ising model n = % and C(d) ~ d='/2 exp(—d/¢) for
d > &. The potential is attractive for like and repul-
sive for unlike insertions of field, in agreement with the
scaling of the CFT result as we will show below. A pro-
tein which does not couple to the order parameter can
still feel a long-ranged force if it couples to the local en-
ergy density. The energy density is also correlated with
a d~? dependance. However, the magnitude of both of
these potentials, as well as their shape at distances d ~ r
require the Monte-Carlo and CFT approaches described
below.

Secondly, we numerically calculated potentials using
Monte-Carlo on the lattice Ising model for like and un-
like disk-shaped inclusions. Although absolute free ener-
gies are difficult to obtain from Monte-Carlo techniques,
differences between the free energies of two ensembles,
0F, conditioned on a subset of the degrees of freedom
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FIG. 1: Effective potentials between bound inclusions are
plotted on linear (top) and log-log (bottom) graphs, for in-
clusions where r1 = 7o = r. The CFT results for both like
and unlike interactions (thick dashed lines) and for potentials
containing a free BC agree with the power-law scaling of the
two-point function (thin black dashed line) at large lengths,
but separate at small separations. We also compare to Ben-
nett method simulations at T, as described in the text. We
run simulations for each of the blocky spheres shown in (C).
Each curve is plotted collapsed by using r as the distance to
the farthest point from its center, with no free parameters.
The results of our Monte-Carlo pair potentials are all shown
plotted against d/r (thin solid lines with colors as in (C)) with
the theory curves in dashed lines. The CFT prediction is in
excellent agreement with simulation data even for very small
inclusions well past the applicability of the power law predic-
tion of the perturbative approach. The value of the potential
is fit at the farthest accessible simulation point, where we add
the CFT prediction.

are readily available, provided the degrees of freedom in
the two ‘macro-states’ can be mapped onto each other
and have substantial overlap. This information is implic-
itly used in a Monte-Carlo scheme where both ‘macro-
states’ are treated as members of a larger ensemble and
are switched between so as to satisfy detailed balance.
The Bennett method [29, 30], uses this information more
explicitly, noting that exp (—=86F) = <e‘55E> can be es-
timated without bias from either distribution.

Our ‘macro-states’ are the location of two blocky
‘disks’ as shown in fig 1C. All spins either contained in
or sharing a bond with these disks are constrained to be
either all up or all down. We map the degrees of freedom



in one macro-state to a neighboring one by moving all
of the spin values 1 lattice spacing to the right or left of
the fixed spin region onto fixed spins on the other side.
By integrating our measured B0F = —log (exp(—B0E))
over many sites outwards to infinity, we can in principle
measure this potential to arbitrary distance. However,
because the potential is long-ranged at 7., we integrate
it out to 50 lattice spacings and add the CFT predic-
tion for the potential at that distance as described be-
low. We perform simulations using the Wolff Algorithm
on 500 x 500 lattices under the constraint that any clus-
ter which intersects a disk is rejected, enforcing our fixed
boundary conditions. We supplement these with individ-
ual spin flips near the inclusions where almost all Wolff
moves are rejected. The resulting potentials are plotted
in fig. 1A. We collapse the Monte-Carlo curves by using
the the effective radius given by the farthest point from
the origin contained in the blocky lattice inclusion as the
effective radius.

Finally, we use conformal field theory to make an an-
alytical prediction for the form of these potentials. Our
calculation makes extensive use of the conformal invari-
ance of the free energy which emerges at the critical
point. An element from the global conformal group can
take us from the configuration in fig. 2A to that shown
in fig. 2B where the two disks are concentric with spatial
infinity in fig. 2A now lying between the two cylinders on
the real axis. The radius of the outer circle R(d,r1,72)
is now given by:

e24y/(@=2)24 _ (d+2m)(d42r2) (1)
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R(d,r1,72) =

The much larger local conformal group, particular to
2D, is the set of all analytic functions. We use the trans-

formation 2’ = % gluing together the boundaries at
x =1 and x = 0 to give the cylinder shown in fig. 2C

with a circumference of 1 and length:
7(d,r1,72) = ilog(R(d,r1,72)) /27 (2)

This transformation breaks global conformal invariance
and so increases the free energy by clog(R)/12 [20], where
¢ = 1/2 in the Ising model. Defining a 1+ 1 dimensional
quantum theory on the cylinder (see [20]) with ‘time’,
t running down its length, our Hamiltonian for ¢ trans-
lation is H = 2m(Lo + Lo — 15), where Lo + Ly is the
generator of dilation in the plane.

Partition functions in this geometry are linear sums of
characters of the conformal group. The representations
of the conformal group particular to the Ising universality
class have characters given by [20, 31]:
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FIG. 2: We consider potentials of mean force in configuration
(A), with disks of radius r1 and ry separated by a distance
d with boundary conditions A and B. We conformally map
this to configuration (B), where both disks are centered on
the origin, with the first at radius 1 and the second at radius
R(d,r1,72). We then map this to a cylinder shown in (C)
of circumference 1 and length —it = log(R)/2m where we
associate restricted partition functions in an imaginary time
1 4+ 1D quantum model with potentials of mean force in the
original configuration.

where ¢ = exp (in7), with n(7) the Dedekind n function
and with 6(7) the Jacobi, or elliptic Theta functions.

Conformally invariant boundary conditions (BCs) can
be deduced by demanding consistency between two pa-
rameterizations of the cylinder [31]. In one, time moves
from one BC to the other across the cylinder with the
usual Ising Hamiltonian. Alternatively, time can move
around the cylinder with the BCs now entering into the
Hamiltonian. There are three allowed BCs [31] which,
by considering symmetry can be associated with ‘up’,
‘down’ and ‘free’. These three BCs have four non-trivial
potentials between them; a repulsive ‘unlike’ interaction
between ‘up’ and ‘down’ BCs, an attractive ‘like’ inter-
action between ‘ups’ and ‘ups’ or ‘downs’ and ‘downs’,
an attractive ‘free-free’ (Fr-Fr) interaction between two
‘free’ BCs and a repulsive ‘free-fixed’ (Fr-Fx) interaction
between a ‘free’ BC and either an ‘up’ or a ‘down’.

The free energy in the configuration shown in figure 2A
can be interpreted as a potential of mean force between
the bound inclusions. Choosing the convention that the
potentials go to 0 as d — oo, the potential is given by
U(d) = Fap(1) — Fap(c0). After undoing the mapping
which changes the free energy by a central charge depen-
dent factor so that Fap(7) = —log Zap(7)+cn7/6 (with
kpT = 1) the potentials are given by:

Ulike(d, 71, 72)
= —log (xo(27) + x1/2(27) + V2x1,16(27)) + 3%
Uunlike(d7 T, 7’2)
= —log (xo(27) + x1/2(27) — V2x1/16(27)) + 15
Urr-re(d, 71,72) = —log (Xo(QT) + X1/2(27)) + %
UFT-FX(d7 71, TQ) = IOg (X0(2T) - X1/2(27—)) + % ( )
4
with x5 as defined in eq. 3, and 7 as defined in egs. 1
and 2. These potentials are plotted on regular and log-
log graphs in figure 1. Their form is in agreement with the
numerical results obtained using transfer matrix methods



in [15].

At large d, we can examine the asymptotics of the po-
tentials using the form of each potential in eq. 4 and
the series expansion of the characters as shown in eq. 3.
For fixed BCs, the leading contribution to the poten-
tial of mean force is equal to i\/2(r1r2)1/4d_i, with a
sign which differs depending on whether the two BCs are
like or unlike, in agreement with the point like approx-
imation. For potentials that involve at least one ‘free’
BC, similar analysis shows that the leading contribution
is proportional to d=2. All four potentials diverge at
short distances like +d~/? where in all cases the sign
is positive unless both BCs are identical. We note that
the origins of the two techniques leading to the curves
shown in fig. 1 are very different; arguably as different
from each other as each are from a lipid bilayer. The
very close agreement, even at lengths comparable to the
lattice spacing speaks to the power of universality.

We also compare the form of the potential with Monte-
Carlo results performed at temperatures away from the
critical point where the potential has a range given
roughly by £. In each case the resulting potential is a one
dimensional cut through a four dimensional scaling func-
tion which could depend nontrivially on d/rq,d/rs,d/&
and the ‘polar’ coordinate h/t?? [32] describing the prox-
imity to criticality. The dashed lines show the CFT pre-
diction for T = T,., with numerical results at 1.05,1.1
and 1.27,, all for the 2 x 2 block sphere shown at right
in fig. 3. The repulsive potential is both deepest and
sharpest at T, while the the attractive force is sharpest
slightly above T, with the final potential of very similar
magnitude.

We expect our results to apply, with a few caveats,
to proteins embedded in real cell membranes. Pro-
teins couple to their surrounding composition through
the height of their hydrophobic regions, interactions of
their membrane-proximal amino acids with their closest
lipid shell and by covalent attachment to certain lipids
which themselves strongly segregate into one of the two
low temperature phases. In simulation our proteins cou-
ple strongly to their nearest neighbor lipids leading to
potentials in excellent agreement with CFT predictions
that are very different in origin. These are expected to
describe any uniform boundary condition in an Ising lig-
uid, in the limit where all lengths are large compared to
the lattice spacing. When separated by lengths of order
a lipid spacing (1nm) we might expect additional correc-
tions to this form, and in particular, a weakly coupled
protein may have behavior intermediate between a ‘free’
and a ‘fixed’ BC. In addition, a protein that couples non-
uniformly around its boundary might have interesting be-
havior not addressed here. We note that our boundary
conditions couple to two long-ranged scaling fields- the
magnetization field which falls off with the a power of
—1/4 and the energy density which falls off with a power
of —2, both of which must be present in membranes or
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FIG. 3: We compare our critical results with potentials ob-
tained from Monte-Carlo simulations away from the critical
point along the temperature axis. As can be seen, the poten-
tials are longest ranged at the critical point. The repulsive
interaction is also steepest at the critical point, though the
attractive one has a larger force at short distances slightly
away from the critical point.

any other system near an Ising critical point.

It is interesting to compare this composition mediated
force to other forces that could act between membrane
bound proteins. Electrostatic interactions are screened
over around lnm in the cellular environment, making
them essentially a contact interaction from the perspec-
tive of the cell. There is an analogous shape fluctuation
mediated Casimir force that falls off like d=6 [17, 18],
and is therefore also very short ranged. Membrane cur-
vature can also mediate forces with a leading attractive
term that falls off like 2 and a leading repulsive term
that falls off like d~*. Although they decay with a much
larger power than the critical Casimir forces described
above, curvature mediated potentials depend on elastic
constants and are not bound to be of order kT allowing
them to become quite large at shorter distances. Us-
ing typical values [33] the potentials are comparable at
lengths ~ 5 — 10nm to the composition mediated po-
tential we find here [34]. There are numerous examples
of biology using these relatively short ranged but many
kpT potentials for coordinating energetically expensive
and highly irreversible events like vesiculation [33]. We
propose that critical Casimir forces could mediate long
ranged and reversible interactions useful for regulating
a protein’s binding partners. More generally, this work
demonstrates that the hypothesis of criticality enables
a quantitative understanding of the broad range of phe-
nomena frequently associated with ‘raft’ heterogeneity in
cell membrane.
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