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Abstract 

A pure spin current generated within a nonlocal spin valve can exert a spin transfer torque on a 

nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices 

that do not require the application of large voltages across tunnel barriers that can suffer 

electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque 

using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the 

prediction of an effective circuit model for spin transport. Based on this model, we suggest 

strategies for optimizing the strength of nonlocal torque. 
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Spin transfer torque enables the efficient manipulation of magnetization in nanoscale 

magnetic devices [1-3]. Spin torque due to the flow of a spin-polarized charge current within 

conventional two-terminal magnetic tunnel junctions (MTJs) and magnetic multilayer devices 

has been studied intensively and is being developed for technology. In addition, it has been 

shown recently that in multiterminal device structures a spin torque can also be exerted by a 

nonlocal pure spin current (meaning a spin current associated with zero net charge flow, as 

distinct from a spin-polarized charge current) [4-7], in agreement with predictions [8]. This 

nonlocal spin torque can be sufficiently strong to cause magnetic reversal [4-7]. However, thus 

far the only means of detecting nonlocal spin torques in multiterminal devices has been to 

observe full magnetic reversal, which does not provide a quantitative torque measurement and 

which yields information only in the high bias regime. Here we report measurements of nonlocal 

spin torque using spin-torque-driven ferromagnetic resonance (ST-FMR) [9-14], a technique that 

is both quantitative and that operates for any applied bias. We compare the measured nonlocal 

torque to the prediction of an effective circuit model of spin transport, finding reasonable 

agreement, and we suggest strategies for further optimization. 

The device geometry we consider is a 3-terminal structure consisting of a lower all-metal 

spin valve with a MTJ on top [Fig. 1(a)]. Nonlocal spin-torque switching has been measured 

previously by the IBM group in devices with the same design, except for a slightly thicker spin 

injection layer [6]. An applied charge current passes from a bottom TaN electrode (terminal T1) 

approximately 100 nm in diameter through an exchange-biased PtMn(17.5 nm)/Co70Fe30(3.5 nm) 

bilayer (magnetic layer F1) and out of the device laterally through a PtMn(17.5 nm)/Co70Fe30(3.5 
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nm)/Cu(N)(30 nm) multilayer (terminal T2), where Cu(N) means nitrogen-doped Cu. This 

generates spin accumulation in the Cu(N) channel above the TaN contact. A pure spin current can 

then diffuse to a 2 nm Co60Fe20B20 layer (magnetic layer F2) positioned above the Cu(N) channel. 

This layer F2 will serve as the magnetic free layer in the experiment, reorienting in response to 

the nonlocal spin torque. The cross section of F2 is approximately an ellipse, 70 ×  150 nm2, 

with the long axis parallel to the exchange bias direction of F1. We have also measured 80 ×  

120 nm2 and 90 ×  200 nm2 devices with similar results. The device structure is completed by 

an MgO-based MTJ positioned above F2, whose magnetoresistance (measured between 

terminals T2 and T3) depends on the orientation of F2. We will discuss data for a sample with a 

MTJ resistance of 30.9 kΩ in the parallel magnetic state with a tunneling magnetoresistance of 

39%, and with a metallic channel resistance (between the contact pads of terminals T1 and T2) of 

23 Ω.  

 To perform an ST-FMR measurement of the nonlocal spin torque, we first apply a magnetic 

field H in the sample plane approximately perpendicular to the exchange-bias direction so as to 

turn the magnetization of the free layer F2 away from the magnetization of F1 and F3. Layer F2 

has a small coercive field (~ 30 Oe), so that to a good approximation in a magnetic field of order 

1 kOe it aligns to the field direction. Layers F3 and F1 are reoriented by lesser amounts because 

F3 is part of a synthetic antiferromagnet and F1 is subject to an approximately 1.1 kOe exchange 

bias through interaction with PtMn (see Figs. 1(b,c)). The next step of the measurement is to 

apply a pulsed microwave-frequency current with magnitude applied
RFI  between the contact pads 

leading to terminals T1 and T2. This produces an oscillatory nonlocal spin torque that causes the 
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magnetization of the free layer to precess. We measure the precession by detecting a dc voltage 

that results across the MTJ (between terminals T2 and T3) as a consequence of mixing between 

the oscillating resistance of the MTJ and an oscillating current leakage
RFI  of order 310 applied

RFI−  that 

flows through the MTJ. (If leakage
RFI  had been too small to provide a mixing measurement of the 

resonance, we could also have applied a separate microwave current directly to the MTJ to give 

the same effect.) All measurements are performed at room temperature, and we use the 

convention that positive currents correspond to electron flow in the direction of the arrows in Fig. 

1(a) (giving a torque favoring parallel alignment between F2 and F1). 

Figure 1(d) shows an example of a nonlocal ST-FMR resonance peak measured for a 

fixed microwave frequency / (2 )ω π  = 12 GHz, for a swept magnetic field oriented 75° from the 

exchange bias direction of layer F1 and for a dc current SV
dcI  = 5 mA applied between terminals 

T1 and T2. We used excitation currents applied
RFI  < 1.9 mA, and verified that the output mixing 

signal scaled ( )2applied
RFI∝  so that the magnetic response is in the linear regime.  

The lineshapes of the nonlocal ST-FMR signals can be understood by modeling the 

dynamics of the magnetic free layer in a macrospin approximation and adapting the theory used 

to analyze ST-FMR in a 2-terminal MTJ [14], with the result that the resonant part of the signal 

should have the simple form [15]: 

  Resonance ∝ cS S(ω , H ) + cA A(ω , H ) .       (1) 

Here 
  
S(ω , H ) = 1+ ω − ωm(H )( )2

/ σ 2⎡
⎣⎢

⎤
⎦⎥

−1

≈ 1+ (H − Hm )2 / (ΔH )2⎡⎣ ⎤⎦
−1

 is a symmetric Lorentzian 

peak as a function of ω  or H, ( )( , ) ( ) / ( , )mA H H S Hω ω ω σ ω⎡ ⎤= −⎣ ⎦  is an antisymmetric 



5 
 

Lorentzian with the same linewidth, ω m  is the resonance frequency at a given value of H [15], 

σ  is the frequency linewidth, H m  is the resonance field at a given value of ω , and 

ΔH ≈ σ / [dωm / dH ]  is the field linewidth. The prefactors cS  and cA  are to a good 

approximation constant as a function of H in the region of the resonance, but they depend on the 

current and ω .  The measurement may also contain a nonresonant background that can depend 

weakly on H.  The linewidth parameter σ  is predicted [15] to depend on the magnitude of the 

in-plane component τ  of the spin transfer torque in the form  

  

σ ≈
αγ Meff (Nx + N y )

2
− γ

MsVol
∂τ ||( ISV ,θSV )

∂θSV ISV

.      (2) 

Here α  is the Gilbert damping coefficient, 2 /Bγ μ=  is the absolute value of the 

gyromagnetic ratio, 4π M eff  is the effective in-plane anisotropy of layer F2, eff4 /xN H Mπ= + , 

eff/yN H M= , SM Vol  is the total magnetic moment of F2; ISV  is the current in the spin-valve 

part of the device between terminals T1 and T2, and SVθ  is the offset angle between F2 and F1.  

For an all-metal spin valve, the spin torque should have only an in-plane component (i.e., in the 

direction m̂ × (m̂ × M̂ ) / m̂ × M̂ , where m̂  is the orientation of the free layer moment and M̂  is 

the orientation of the polarizer layer) [3], so Eq. (2) allows a measurement of the full nonlocal 

spin transfer torque. 

A fit of Eq. (1) to a measured resonance lineshape is included in Fig. 1(d), using the 

fitting parameters σ  = (5.94 ± 0.08) × 108 rad·Hz, and /S Ac c  = -1.33 ± 0.03. We allow for a 

linear dependence on H for the nonresonant background, but ignore the weak dependence of SVθ  

and σ  on H near the resonance. The fit in Fig. 1(d) is excellent, and we observe a similar 
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quality of agreement for different values of ω , field angle, and ISV .  From the measured 

resonance frequencies we determine eff4 Mπ  = 13 ± 1 kOe [15]. 

The strength of the nonlocal spin torque can be determined most accurately [15] from the 

resonance measurement by using Eq. (2) to analyze the dependence of the resonance linewidth 

on  ISV . A similar approach has been used previously to measure the spin torque due to pure spin 

currents generated by the spin Hall effect [16,17]. We show in Fig. 2(a) the measured evolution 

of the resonance as a function of SV
dcI  (the dc component of ISV ), for / (2 )ω π  = 12 GHz and a 

field orientation 75° relative to the exchange bias direction. We observe that the linewidth 

depends linearly on SV
dcI  [Fig. 2(b)]. By fitting to Eq. (2) and using as above that eff4 Mπ = 13 ± 

1 kOe (with SM = 1100 emu/cm3 [11] and with the free-layer volume Vol  = 1.7 × 10-17 cm3), 

we determine || /
SV

SVI
θ

∂τ ∂ = 0.05 ± 0.01 ( / 2 ) e  and α  = 0.012 ± 0.002 for these 

experimental conditions.  

We have carried out similar measurements of linewidth versus SV
dcI  for field angles of 

60° and 75° and for field magnitudes yielding resonance frequencies from 8 to 12 GHz. When 

comparing results for different fields, we take into account that the nonlocal spin torque should 

be proportional to the component of the spin current perpendicular to the free layer 

magnetization, so that || ||( / 2 ) sinSV SVe Iτ η θ=  (or ( )|| ||/ / 2 cos
SV

SV SV SVI
e Iτ θ η θ∂ ∂ = ), where ||η  

is a dimensionless efficiency. We estimate SVθ  by assuming that the magnetization of F2 aligns 

with the applied field and calculating the magnetization angle of F1 by assuming that it responds 

as a macrospin to the combined action of H and the exchange field Hex = 1.1 ± 0.2 kOe [18]. 
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Figure 2(c) shows separate measurements of the spin-torque efficiency ||η  for a range of field 

magnitudes (0.6 - 1.3 kOe at an angle of 75°), that correspond to resonance frequencies of 8-12 

GHz and offset angles SVθ  between 49° and 35°. Our final overall value for the efficiency of the 

nonlocal spin torque is ||η  = 0.10 ± 0.02.  

Sun et al. [6] performed spin-torque switching experiments with devices of the same 

structure except with a slightly thicker injection layer F1, and obtained a zero temperature 

critical switching current 0cI = -6.84 mA for SVθ  near 180° and 0cI = 7.20 mA for SVθ  near 0° 

for a device cross section of 69 ×  161 nm2. For an in-plane magnetized free layer in zero 

external field, 0 ||(2 / )( / )c SI e M Volα η≈  [19].  Therefore the switching measurement can also 

be used to estimate the spin torque efficiency ||η  if α  and eff4 Mπ  are known. Using the 

values obtained above from our resonance measurements, α  = 0.012 ± 0.002 and eff4 Mπ = 13 

± 1 kOe, the switching currents from ref. [6] correspond to in-plane torkance ||η  = 0.07 ± 0.02, 

consistent with our ST-FMR result.  

 The value of the nonlocal torque that should be expected theoretically can be estimated 

using an effective circuit model [20-23] for spin transport.  For the case SVθ = 90°, the simple 

effective circuit in Fig. 3 applies.  (For other angles, as noted above, we expect the spin torque 

should be proportional to sinθSV .) In this circuit model, we assume that the spin accumulation 

relaxes only by flow to the free layer F2 or by flow through the normal contact N’ toward T2. 

Using materials parameters appropriate to our sample geometry, we estimate that the 

spin-dependent resistances appropriate for N’, the spin injector layer F1, the Cu(N) spacer N, and 
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the free layer F2 are approximately 'NR ≈ 0.6 ± 0.2 Ω, F1R↑ ≈ 0.07 Ω, F1R↓ ≈ 0.29 ± 0.08 Ω, 

NR ≈ 0.44 Ω, and F2R⊥ ≈ 0.016 Ω [15]. Solving the circuit, the calculated spin torque efficiency 

is  

( )
( )( ) ( )

' F1 F1

circuit F1 F1 F2 ' ' F2

2 0.14 0.04.
2

N
S

N N N N
SV

R R RI
I R R R R R R R R

η ↓ ↑

⊥ ⊥↓ ↑

−
≡ = ≈ ±

+ + + + +
    (3) 

The prediction of the circuit model is therefore in quite reasonable agreement with our 

measurement. 

To achieve optimal efficiency based on Eq. (3), the device parameters should satisfy 

three conditions: (i) a large intrinsic injector polarization ( ) ( )F1 F1 F1 F1/P R R R R↓ ↑ ↓ ↑= − + , (ii) a 

small spin resistance for electrons going from the injector to the magnetic free layer to apply 

a spin torque, F2 F1 F1NR R R R⊥ ↓ ↑+ + , and (iii) a large spin resistance for electrons flowing 

toward terminal T2, ' F2N NR R R⊥ + , so as to prevent spin current from escaping by this path 

rather than applying a torque to F2. However, in the existing device design, neither 

conditions (ii) or (iii) are fully satisfied. To improve the spin torque efficiency, the effective 

resistance of the spin injector (layer F1) can be increased relative to NR , perhaps by using 

tunnel-barrier injection, by decreasing the thickness of the Cu(N) layer below 30 nm, and/or 

by reducing the resistivity of the Cu(N) layer. The device performance can also be improved 

by increasing 'NR  relative to NR  by reducing the thickness of the 30 nm Cu(N) layer 

and/or by increasing the spin relaxation length 'N
SFl  by eliminating the PtMn/Co70Fe30 layers 

underneath the portion of the Cu(N) layer not adjacent to the injector region. If conditions (ii) 

and (iii) are fully met, then the optimum nonlocal spin torque efficiency should equal the 
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injector polarization, circuit Pη = , meaning that the nonlocal spin torque can be made just as 

efficient as the spin torque in conventional 2-terminal devices.  

In summary, we have performed an ST-FMR measurement of the nonlocal spin torque 

due to a pure spin current in a 3-terminal device. We measure a spin torque efficiency 

( )|| / 2 / sin 0.10 0.02SV SVI eτ θ∂ ∂ ⎡ ⎤ = ±⎣ ⎦ . This agrees well with the efficiency expected within an 

effective circuit model. Based on the circuit analysis, we estimate that the nonlocal device 

geometry can be optimized so that the strength of the nonlocal torque should reach 

|| / sin  / 2SV SVI P eτ θ∂ ∂ = , the same value expected for the local spin torque in 2-terminal devices. 

Due to the low resistance of the spin-valve current channel in the 3-terminal devices, the ratio of 

the spin torque to the applied power is already much greater in the existing 3-terminal devices 

than in 2-terminal MTJs. The nonlocal spin torque in 3-terminal devices therefore possesses a 

combination of virtues relative to conventional MTJs -- reduced susceptibility to tunnel barrier 

breakdown and reduced power consumption together with high spin torque efficiency -- that can 

make this device geometry an interesting candidate for applications.  

 

We thank Erich Mueller and Bo Xiang for helpful discussions. Cornell acknowledges 

support from ARO, NSF (DMR-1010768), and the NSF/NSEC program through the Cornell 

Center for Nanoscale Systems. We also acknowledge NSF support through use of the Cornell 

Nanofabrication Facility/NNIN and the Cornell Center for Materials Research facilities 

(DMR-1120296). 
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FIG. 1. (a) Illustration of the ST-FMR circuit. (b) Orientations of the magnetic moments of layers 

F1, F2, and F3 when a magnetic field of 1.3 kOe is applied 75° from the exchange bias direction. 

(c) Differential resistance vs. external magnetic field applied 75° from the exchange bias 

direction. The resistances for parallel and antiparallel alignment between F2 and F3 are indicated. 

(d) (points) Measured ST-FMR signal at 12 GHz for a magnetic field orientation 75° from the 

exchange bias direction ( 35SVθ ≈  at resonance) with SV
dcI = 5 mA. (line) Fit to Eq. (1) assuming 

a linear dependence on H for the background.  
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FIG. 2. (a) ST-FMR signals measured, for different values of SV
dcI , at 12 GHz for a magnetic 

field orientation 75° from the exchange bias direction ( 35SVθ ≈  at resonance). Curves are offset 

vertically by 0.2 mV. (b) Dependence of resonant linewidth σ  on SV
dcI  for the data in (a). (c) 

Efficiency of the in-plane spin torque, defined as ( )|| ||2 / cos /
SV

SV SV SV I
e Iη θ τ θ= ⎡ ⎤∂ ∂⎣ ⎦ , determined 

from ST-FMR measurements of σ  vs. SV
dcI  together with Eq. (2), for different values of 

resonant microwave frequency.  
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FIG. 3. Effective circuit for modeling spin currents when SVθ  = 90°. The total current of spin 

angular momentum absorbed by layer F2 is ( )2 / 2 Se I .  
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