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We investigate the nucleation of ordered phases, their symmetries, and distributions in dense
frictional hard sphere packings as a function of particle volume fraction φ, by imposing cyclic shear
and constant applied pressure conditions. We show, with internal imaging, that the nucleating
crystallites in the bulk consist of 10 − 60 spheres with hexagonal close packed (hcp) order and
non-spherical shape, that are oriented preferentially along the shear axis. Above φ = 0.62 ± 0.005,
crystallites with face centered cubic (fcc) order are observed with increasing probability, and ordered
domains grow rapidly. A polycrystalline phase with domains of fcc and hcp order is observed after
hundreds of thousands of shear cycles.

PACS numbers: 45.70.Qj, 05.65.+b

The nucleation and growth of crystals from initially
disordered packings is fundamental to material science,
and important to self-assembly of ordered solids from dis-
crete elements. It is well known that thermal frictionless
hard sphere systems undergo a glass transition above a
volume fraction φg ∼ 0.58, and crystallization above φg

upon application of shear [1, 2]. Experiments with col-
loidal systems have shown the nucleating crystal to be
non-spherical, containing about a hundred particles, with
a random hexagonal close packed (rhcp) structure [3].

Here, we consider the development of ordered phases in
disordered frictional granular sphere packings. Granular
materials are athermal and energy has to be input con-
tinuously to rearrange particles. Furthermore, friction
forces alter the stability criterion at contact compared
with frictionless case, reducing the number of contacts
required for stability from 6 to 4 [4]. Both these facts
make it difficult to directly apply what has been learned
in frictionless hard sphere systems to granular systems.
While simulations have shown that friction can affect
packing [5] and increase the volume fraction at which dis-
order can persist in sheared granular flows to well above
those seen in frictionless systems [6], ordered packings
have been observed upon application of prolonged peri-
ods of shear in granular spheres [7, 8]. However, nucle-
ation of ordered phases, their symmetry during nucle-
ation, and evolution upon prolonged shear need to be
investigated to gain a deeper understanding of crystal-
lization in granular systems.

We address these issues with experiments using a cyclic
shear apparatus which is amenable to three dimensional
visualization with a refractive index matching technique.
While this technique has been used recently to examine
perturbations to disordered packing [9, 10], we perform
the experiments over unprecedented long periods to ob-
serve development of crystals. It is noteworthy, that it
is difficult to eliminate the gravitational field in three
dimensional granular packings, and implement constant
volume conditions. Therefore, we do the experiments
under constant pressure conditions to have the simplest
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FIG. 1: (a) The volume fraction as a function of shear cycle
number measured inside the viewing volume (red/grey) and
in the entire cell (black). Inset: schematic diagram of the
shear cell and the central region selected for analysis. (b-c)
Transversal view of the shear cell 10mm from the top of the
system: the initial packing, before applying shear deforma-
tions (b), and after 5× 105 shear cycles (c).

prescribed conditions. In spite of the many differences,
we find remarkable similarity in the development of order
in our experiments on granular spheres when compared
with those reported in colloidal systems [3].

A schematic diagram of the shear cell filled with glass
beads with a diameter d = 1.034± 0.03mm is shown in
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the inset to Fig. 1(a). A normal stress of σz = −0.4kPa
is applied on the top boundary of the cell which is free
to move vertically as the packing fraction changes upon
application of shear. This stress is an order of magnitude
greater than the weight of the grains and is observed to
remove the effects of gravitational gradients on the ob-
served packings. A refractive index matched interstitial
liquid [24] with a small amount of fluorescent dye is il-
luminated with a laser light sheet. The particles appear
dark in contrast and are imaged with a digital camera
from an orthogonal direction. A stack of images is then
obtained by linearly translating the plane of illumination
along with the camera to measure the position of all par-
ticles with a precision of 0.1d in three dimensions using
standard image processing. The side walls of the cell are
slowly tilted between ±π/36 radians to quasi-statically
shear the system and avoid any lubrication effects due
to the interstitial liquid. A more detailed description of
the apparatus and the imaging technique can be found
in Ref. [10].

The volume fraction of the glass beads φ in the entire
system is obtained by measuring the height of the top
surface of the cell as a function of shear cycle Nsc ap-
plied over a 4 month period [25]. The volume fraction is
observed to increase well above the random close packing
fraction φrcp of 0.637 [11] over hundreds of thousands of
shear cycles. A cross sectional image of the initial random
packing and the polycrystalline phase which develops af-
ter Nsc = 5 × 105 is shown in Fig. 1(b) and Fig. 1(c),
respectively. While ordered regions appear aligned near
the boundaries, crystalline phases in the central regions
are not aligned with the boundary. We simultaneously
recorded a stack of images in a 44d× 7d× 17d volume in
a central region of the cell 6d from the front wall and the
bottom of the cell as indicated in Fig. 1(a) to avoid direct
boundary effects. Figure 1 shows that φ obtained in this
region follows, up to Nsc ∼ 1000 the overall trend except
with larger fluctuations due to the smaller size of the ob-
servation window. For the next Nsc ∼ 100000 the volume
fraction of the entire cell is systematically larger than in
the central region. This difference could be explained by
the fact that the boundary induced crystallization starts
to grow inside the packing. At Nsc ∼ 100000 a significant
increase in the value of the packing volume fraction in the
central region can be observed which coincides with the
beginning of the crystal growth in bulk, as will be dis-
cussed later in the text. After half million shear cycles
the packing volume fraction of the entire cell and in bulk
converge to similar value as the entire packing becomes
a polycrystalline structure.

Fig. 2(a) shows the radial density distribution function
g(r) as a function of distance r to characterize the devel-
opment of spatial order with φ. In the case of a random
system (liquid or amorphous solid) there is only short
range order and therefore only the nearest coordination
shells are visible, while for a crystalline solid, g(r) exhibit
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FIG. 2: (a) A curtain plot of the radial distribution function
g(r) as a function of normalized distance r/d for several vol-
ume fractions. Above φ = 0.63 several peaks corresponding
to a fcc/hcp lattice become visible. (b) Plot of Q6,global ver-
sus φ. The sudden increase in Q6,global value indicates the
beginning of the crystallization. Inset: the layers indicated
by A,B,C repeat with different periods for hcp and fcc sym-
metries.

sharp peaks. Fig. 2(a) shows that the system remains in a
disordered state until φ ∼ 0.62, when a small shoulder in
the second peak of g(r) signals the appearance of ordered
domains [12]. The bond orientation order parameter, Q6

is typically used to characterize the appearance of global
hexagonal order and is obtained using [13, 14]:

Ql ≡

(

4π

(2l + 1)

m=l
∑

m=−l

|< Ylm(Θ(~r),Φ(~r)) >|
2

)1/2

, (1)

with l = 6. Here, Ylm are the spherical harmonics, Θ(~r)
is the polar angle, Φ(~r) is the azimuthal angle, ~r is the
vector between a particle and its pair, and the angled
brackets indicate averaging over particle pairs. If averag-
ing is performed over all pairs of particles in the system,
then one obtains a measure of the global orientational
order Ql,global in the system. Whereas, if the averaging
is performed over nearest neighbors - defined as particles
within the distance to the first minima in g(r) - then a lo-
cal measure of orientational orderQl,local is obtained. For
disordered structures, Q6 goes as the inverse of the num-
ber of particle pairs used in the average and is small [15].
But, its value becomes significantly larger for ordered sys-
tems and reaches 0.575 for a fcc crystal [15]. In Fig. 2(b),
we plot global Q6,global as a function of φ averaged over
a small 0.05 interval of φ to reduce noise. The value of
Q6,global is close to zero for packing fractions less than
φ = 0.62, but is then observed to increase sharply consis-
tent with the onset of crystallization. Both these global
measures show that an ordering transition indeed occurs
in our granular system around the random close packing
fraction φrcp.
To identify the development of crystallites and their

symmetry, we calculate the local bond orientation or-
der metric Q4,local and Q6,local for each particle in the
observation window. Making a scatter plot of these
two measures helps us distinguish clearly if hexagonal
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FIG. 3: Scatter plot of Q4,local versus Q6,local for the packing
(a) before shear is applied, φ = 0.59 and (b) Nsc = 5 × 105,
φ = 0.65. Each point correspond to a particular particle. At
φ = 0.65, most of the points are located near hcp and fcc
regions.

(a) (b)

(c) (d)

FIG. 4: A series of snapshots of the crystallization process; the
red/dark grey spheres and the blue/light grey ones represent
the particles with hcp and fcc symmetry, respectively. The
particles in a random configuration are represented with a
reduced size for clarity. (a) Nsc = 1, φ = 0.59; (b) Nsc =
5 × 104, φ = 0.62; (c) Nsc = 1.5 × 105, φ = 0.64, and (d)
Nsc = 5× 105, φ = 0.65.

close packed (hcp) or face centered cubic (fcc) symme-
try are present (see inset to Fig. 2(b)). Fig. 3 shows
that the points are broadly distributed before application
of shear, but clearly cluster around the values expected
for fcc and hcp structure for Nsc = 5 × 105. Lack of
any other peaks also implies that no other type of crys-
talline order develops in our system. In subsequent anal-
ysis, we choose a narrow range 0.08 ≤ Q4,local ≤ 0.16,
0.46 ≤ Q6,local ≤ 0.5 to label hcp, and Q4,local ≤ 0.175,
Q6,local ≤ 0.54 to label fcc regions.

Figure 4 shows particles in the mid-plane of the pack-
ings with different shades depending on if they belong to
fcc or hcp configuration. (The entire sequence is shown
as a movie in the supplementary documentation.) It can
be noted that even for φ < φrcp, small hcp clusters are
distributed inside the system. These ordered clusters
were initially observed to appear and disappear quite fre-
quently, but become more stable with increasing φ. By
following the crystallites from one shear cycle to the next,
we determined the probabilities pg and ps with which the
crystallites grow or shrink [3]. Because these two prob-
abilities are equal at the critical size, we plot in Fig. 5
(a) the difference between pg and ps as a function of the
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FIG. 5: (a) The difference between the probabilities of a crys-
talline nucleus to grow and shrink as a function of the number
of particles in the crystallite. When these two probabilities
become equal the nucleus reaches a critical size. (b) Square
root of the eigenvalues of the moments of inertia tensor as a
function of the number of particles in the nucleus. (c) The
histogram of the polar angle and the azimuthal angle made by
the longest axis of the ellipsoid associated to each cluster.(d)
The number of nuclei N(A) as a function of the nucleus sur-
face area, approximated by the area of a prolate spheroid.
The line represents an exponential fit to the initial decay.

number of particles in the crystallite. From this plot we
estimated the critical size of nuclei to be 10 - 60 particles.
Remarkably our results are similar to experimental stud-
ies of thermal colloidal suspensions [3], even though that
study was conducted at constant volume with thermal
frictionless hard spheres.
To test if shear has influence on shape and orientation

of the nucleating clusters, we calculate the moment of
inertia tensor associated with each cluster of size 5 ≤
N ≤ 50:

Ijk =

N
∑

i=1

(

r2i − xi,jxi,k

)

. (2)

Where N is the number of particles in a cluster, i labels
the particles, j,k label the components of ~r, the vector
from particle i to the cluster’s center of mass. The square
root of the eigenvalues of the moment of inertia tensor
denoted by λ1,2,3 are shown in Fig. 5(b). For a spher-
ical nucleus these values should be identical. Because
the principal radii of the ellipsoid fitting the cluster is
inversely proportional to λ1,2,3, we find that the average
shape of the nuclei is non-spherical, with the principal
radii being roughly in a 2:1:1 ratio (see Fig. 5(b)). The
eigenvectors of the moment of inertia tensor then allow
us to determine the orientation of the nuclei. We plot
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FIG. 6: (a) The fraction of each crystalline species as a func-
tion of packing volume fraction. (b) Correlation length ξ of
crystalline clusters normalized by the particle diameter. The
dashed curves are drawn as a guide to the eye.

the histogram of the polar angle θ from the positive z
axis (shear gradient direction), and the azimuthal angle
φ, in xy plane from the x axis (shear direction), made by
the longest axis of the ellipsoid, in Fig. 5(c), respectively.
The peaks are observed at θ = π/2 and φ = 0, show-
ing that the orientation of the long axis of the clusters is
predominantly aligned with the shear axis.

In classical nucleation theory [16], free energy of an
ordered nucleus that emerges from a disordered liquid
contains two terms: the bulk term, which is negative
and proportional to the volume of the nucleus, and the
surface term which is proportional with the liquid-solid
surface free energy, γ and the area of the interface, A.
For small nuclei (N ≪ Nc) the surface term dominates
and the number of the crystallites is expected to be:
N(A) ∝ exp [−γ′A/d2] [3], where γ′ is a dimensionless
term corresponding to the surface free energy. We cal-
culate the surface area of a crystallite as the area of the
ellipsoid associated with it and plot the corresponding
histogram in Fig. 5(d). From the exponential fit to the
initial decay, we determine γ′ ≃ 0.023± 0.002. Both the
overall decay and the scale of the decay is consistent with
that obtained in experiments with thermal colloids [3],
but it is difficult to extend this analogy further to calcu-
late the surface tension because temperature is not well
defined in granular systems.

Next we turn to how the crystallites grow beyond the
nucleation phase, where some nuclei which reached the
critical size start to grow, while new critical nuclei con-
tinue to be formed. Above φ ≃ 0.64 all nuclei reached
the critical size and the growing process becomes more
accelerated, with the growth of large clusters at the ex-
pense of the smaller ones (Fig. 4(c)-(d)). In Fig. 6(a)
we show the fraction of each crystalline species observed
in our experiments as a function of φ. We observe that
once the crystal starts to grow above φ ∼ 0.62, the num-
ber of fcc like particles jumps, with greater fraction at
the highest volume fraction reached in our experiments.
Recent studies with colloidal hard spheres have reported
a random stacking in the crystal nuclei [3, 17]. However

in slowly grown colloidal crystals, a clear tendency to-
wards fcc order has been seen [18]. These results can be
explained by the fact that for hard spheres systems, the
free energy difference between hcp and fcc order is very
small and the equilibration time is very long [19–21]. In
order to have an estimate of the scale of the crystal do-
mains in our experiments, we calculate the correlation
length corresponding to the size of the observed domains
of fcc and hcp phases [22]:

ξ =
2
∑

s Rg
2(s)s2ns

∑

s s
2ns

. (3)

Here ns is the number of clusters of size s and Rg(s) is
their radius of gyration. Fig. 6(b) shows that the cor-
relation length of the fcc clusters increases more rapidly
than the correlation length of the hcp clusters above φrcp.
Thus we conclude that the two phases, fcc and hcp, are
well separated in our system and distinct from a rhcp
phase, in addition to the observation that the fcc phase
becomes more abundant. A similar evolution has also
been observed in numerical simulations with hard spheres
as well [23].
In summary, we have shown with delicate experiments

that sheared granular systems undergo homogeneous nu-
cleation in addition to inhomogeneous nucleation at side-
walls. We measured the size and the symmetry of the or-
dered phases in athermal frictional hard sphere systems
for the first time, and showed the influence of shear on
the shape and orientation of the crystallites. The process
of nucleation is also surprisingly similar to the one ob-
served in computer simulations [17] and experiments [3]
on thermal colloidal hard sphere suspensions, suggesting
that the development of crystallization in hard sphere
systems is far more universal than previously anticipated.
We thank V. Kumaran and H. Gould for stimulat-

ing discussions. This work was supported by the Na-
tional Science Foundation under NSF Grant No. CBET-
0853943.
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