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We analyze the acoustic collective excitations in two- and three-dimensional binary Yukawa sys-
tems, consisting of two components with different masses. Theoretical analysis reveals a profound
difference between the weakly and strongly correlated limits: at weak coupling the two components
interact via the mean field only and the oscillation frequency is governed by the light component.
In the strongly correlated limit the mode frequency is governed by the combined mass, where the
heavy component dominates. Computer simulations in the full coupling range extend and confirm
the theoretical results.

Recently there has been a great interest in the col-
lective excitations of Yukawa liquids and solids, cre-
ated by the emergence of the new field of complex
(dusty) plasmas [1]. Complex plasmas consist of highly
charged mesoscopic grains immersed in the background
of electrons and ions. It is the presence of the latter
that, by screening the bare Coulomb interaction between
the grains, generates an effective interaction that in a
good approximation can be represented by the Debye-
Hückel, or Yukawa potential φ(r) = Ze exp(−κr)/r (κ
is the screening parameter). The strength of the cou-
pling governing the behavior of the systems is conven-
tionally characterized by the nominal coupling constant
Γ = Z2e2/akT (a is the Wigner-Seitz radius and T is the
temperature). Due to the screening (κ > 0) the effective
coupling constant Γ∗ (defined in [2, 3]) may be substan-
tially smaller. The high value of the grain charge (Z ≫ 1)
ensures that the system is in the strong coupling (Γ∗ ≫
1) regime and consequently in the liquid or solid phase.
Both two-dimensional (2D) and three dimensional (3D)
Yukawa systems (YS) are of interest, although most of
the experimental work has focused so far on 2D systems.

Over the years the collective excitations in YS-s have
been studied experimentally, by computer simulations
and theoretically. The treatment of the crystalline solid
phase is feasible via the harmonic phonon model. More
challenging is the appropriate description of the liquid
phase: here various schemes have been attempted [4, 5],
out of which the Quasilocalized Charge Approximation
(QLCA) [6] has emerged with considerable success. All
these efforts have by now congealed in a reasonably com-
plete understanding of the collective mode spectra of liq-
uid and solid YS-s, both in 2D and 3D. In addition, the
YS has turned out to be a useful paradigm for other
strongly coupled many body systems [7, 8].

The restriction in almost all of the foregoing investi-
gations on collective excitations is that they address one
component YS-s (OCYS), where all the particles carry
the same charge number Z and the same mass, m. Only
a few exceptions are available, most notably the recent

experimental realization of a two-component (binary) bi-
layer [9]. Thus the collective mode structure of YS-s with
more than one component, that of the two-component bi-

nary YS (BYS) in particular, is still an open question.
It is also by no means a trivial generalization of the sin-
gle component problem: binary systems are well-known
to exhibit a wealth of novel physical features: a much
richer phase diagram, the degree of miscibility of different
phases, new modalities of disorder, the excitation of op-
tic modes are amongst them (e.g. [10]). The connection
to problems relating to other liquid or solid condensed
matter systems are more immediate than in the single
component case: the listing above provides a compass
and as systems of expected interest binary ionic mixtures
in white dwarf and giant planet interiors, ionic crystals,
liquid and solid alloys and semiconductor bilayers come
immediately to mind.

The asymmetry between the two components of a BYS
is characterized by three parameters: the mass ratio
m2/m1, the charge ratio Z2/Z1, and the density ratio
n2/n1. In a complex plasma these parameters are not
independent: most importantly, both the m2/m1 and
the Z2/Z1 ratios are determined by the relative grain
sizes. Theoretically and in simulation models, of course,
these parameters can be separated; indeed they should
be so distinguished, in order for one to be able to deter-
mine the different physical effects brought about by mass,
charge, etc. asymmetries. We have already shown in [11]
that for the purpose of calculating the dispersion rela-
tion the charge, mass and density ratios can be reduced
to two asymmetry parameters p2 = (Z2n2)/(Z1n1) and
q2 = (Z2m1)/(Z1m2).

This Letter addresses the issue of the collective spec-
trum of a BYS. We study the excitation of the longitu-
dinal acoustic mode and we investigate how the asym-
metry, the mass difference in particular, between the two
species affects the sound speed as the coupling strength
Γ is varied from the weak coupling Γ∗ ≪ 1 to the strong
coupling Γ∗ ≫1 regime.

Consider now a BYS, with masses and densities mA
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and nA (A=1,2), respectively. Each density can be as-
sociated with a Wigner-Seitz radius aA and a nomi-
nal coupling constant ΓA = Z2

Ae
2/aAkT . The intrac-

tion potentials are ϕ3D
A (k) = 4πZ2

Ae
2/(k2 + κ2) and

ϕ2D
A (k) = 2πZ2

Ae
2/
√
k2 + κ2. In a OCYS the longi-

tudinal collective mode is acoustic at long wavelength
(k → 0), and has a coupling dependent sound velocity
s [6, 12]. It is the equivalent of this mode in the BYS
that we concentrate on. In the calculations we parallel
the 2D and 3D results. In the weak coupling limit the
sound velocity is determined by the dispersion relation
obtained from the RPA (Random Phase Approximation
or Vlasov) dielectric function (see, e. g. [13]):

εRPA = 1−
∑

A

ϕA(k)χ
0
A(k, ω) ; χ0

A(k, ω) =
nA

mA

k2

ω2
.

(1)
For our purpose it is sufficient to use the T=0 “cold fluid”
result: temperature dependent terms slightly increase the
sound speed over this value. Eq. (1) yields the longitu-
dinal sound velocity s:

s3D = ω0/κ and s2D = ω0

√
a/κ ; (2)

ω3D
A =

√
4πZ2

Ae
2nA/mA, ω2D

A =
√
2πZ2

Ae
2nA/mAa.

ω0 =
√
ω2
1 + ω2

2 = ω1

√
1 + p2q2 is the total plasma fre-

quency and a=
√
a1a2. The salient feature of the RPA

result is that through the total plasma frequency the
sound speed is governed by the reduced mass. i.e. by
the light component and, with a sizable difference be-
tween the light and heavy masses, the presence of the
heavy component plays a negligible role.
In the strong coupling limit we calculate the dispersion

using the QLCA with the input of correlation functions
obtained from MD simulations. The QLCA is expected
to provide a reliable description of the strongly coupled
liquid system, as it is attested by its application both to
2D and to 3D OCYL-s. (see, e.g. [6, 14]. While we do
not know how faithfully the QLCA can describe the mode
structure in binary systems, there is little doubt that it
is reliable in the long-wavelength (k → 0) limit. This is
evidenced by the demonstration [15] that it provides a
smooth transition to the angle-averaged long-wavelength
phonon dispersion of a corresponding crystal lattice.
In the QLCA the central quantity is the longitudinal

dynamical matrix, CL
AB(k) dependent on the equilibrium

pair correlation function hAB(r). We note that since
masses do not affect equilibrium quantities, with appro-
priate scaling, all the hAB-s are identical and derivable
from h0(r), the pair correlation function for the single
component system. The dispersion relation expressed in
terms CL

AB(k) follows from

||ω2δAB − CL
AB(k)|| = 0. (3)

We consider first the 3D YBS. In the long-wavelength

(k → 0) limit of interest, the QLCA matrix elements are

CL
11(k → 0) = ω2

1

[
(1− U3D

11 )
k2

κ2
+

p2

3
W

]

CL
12(k → 0) = ω2

1

[
pq(1− U3D

12 )
k2

κ2
− pq

3
W

]

CL
22(k → 0) = ω2

1

[
p2q2(1− U3D

22 )
k2

κ2
+

q2

3
W

]
(4)

U3D
AB = − 2
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∫
∞

0

dy y

[
1 + y +

3

4
y2
]
e−yhAB(r),

W = 1 +

∫
∞

0

dy ye−yh12(r); y = κr.

Introducing the average charge and mass,

〈Z〉 = Z1n1 + Z2n2

n1 + n2

, 〈m〉 = m1n1 +m2n2

n1 + n2

,

we find that the crucial frequency parameter now is

ω̃3D =

√
4πn0e2

〈Z〉2
〈m〉 = ω3D

1

q(1 + p2)√
p2 + q2

, (5)

a quantity that has been dubbed in the literature as the
frequency related to “the pseudo-alloy atom” (FPAA)
[16], or to the average atom in the virtual crystal ap-
proximation [17–19]. From Eqs. (3) and (4) one now
readily obtains the 3D sound speed as

s3D =
ω̃3D

κ

√
1− U3D(Γ). (6)

A similar calculation in 2D leads to:

ω̃2D =

√

2πn0e2
〈Z〉2
〈m〉a , s2D = ω̃2D

√
a

κ

√
1− U2D(Γ);

U2D
AB = − 5
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∫
∞

0

dy
[
1 + y +

3

5
y2
]
e−yhAB(r). (7)

U3D and U2D in Eqs.(6) and (7), respectively, are calcu-
lated from U =

[
U11 + 2p2U12 + p4U22

]
/(1 + p2)2, using

the corresponding U3D
AB and U2D

AB values. Note that for
q = 1 we have ω̃ = ω0 and one recovers a quasi-single
component behavior [11].
There are two issues to be noted here: (i) ω̃, in con-

trast to ω0, is governed by the heavier component; (ii) the
leading terms in the equations for s3D and s2D are seem-
ingly coupling independent, although these equations are
valid in the strong coupling limit, since the QLCA is a
strong coupling approximation. The explicit coupling de-
pendence enters through the UAB(Γ) terms only.
Currently, there is no theoretical understanding of the

transition bridging the weak, light species dominated,
and the strong, heavy species dominated, coupling do-
mains. In order to follow the collective excitations in
this intermediate coupling region and to verify the pre-
dictions of the QLCA theory, we generate 3D and 2D
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MD simulation data for the longitudinal current-current
dynamical structure factors, from which we obtain the
acoustic speed, over a wide range of Γ values extending
well into the crystalline solid region. The lower limit of
Γ is set by the limitations of the simulation technique.
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FIG. 1. (color online) Longitudinal sound speed vs. Γ1 in
different systems, obtained from MD simulations. 3D: (a)
n2 = n1, κ = 1, (b) n2/n1 = 3, κ = 3. 2D: (c) n2 = n1, κ=1,
(d) n2/n1 = 0.5, κ=1. m2/m1=5 for all cases. The dotted
lines indicate the theoretical low Γ and high Γ limits; the con-
tinuous lines represents the results of the QLCA calculations.
The panels also illustrate the respective crystal structures in
the solid phases.

While the theoretical results are quite general, covering
the case of a binary Yukawa system for any asymmetry,
the simulations are confined to systems with m1 6= m2

but Z1 = Z2. We study both 2D and 3D systems, both
with equal densities (n1 = n2) and with unequal densi-
ties: for the latter we have chosen n2 = (1/2)n1 in 2D
and n2 = 3n1 in 3D.
At Γ ≥ Γm, the system is in the solid phase, in 2D

the underlying lattice structure is hexagonal; in 3D it is
bcc or fcc, depending on the value of κ [20]. With mass-
asymmetry only, the occupation of the lattice sites by the
two species would be random, since the potential energy
is independent of how particles are distributed, and en-
tropy prefers the disordered distribution. It is only when
in addition to unequal masses (m1 6= m2), the charges are
also unequal (Z1 6= Z2), that a particular crystal struc-
ture is generated over the lattice in order to minimize
the energy. Nevertheless, in this work, in anticipation to
its relevance to realistic systems, we have studied crystal

structures with maximally symmetric distribution of the
two components. The corresponding symmetric crystal
structures are shown in the insets in Fig. 1. (We have also
verified by simulation that the chosen structures would
be stable configurations for the Yukawa solids, should the
m2/m1 ratio be accompanied by Z2/Z1

∼= 3

√
m2/m1, as

it happens in dusty plasmas.) The sound velocities for
these crystal structures were calculated in the harmonic
phonon approximation; these were also confirmed by MD
simulations (of systems with Γ ∼ 104, initiated with lat-
tice configurations). These values and sound velocities
obtained from simulations for the disordered phase are
virtually indistinguishable.

Our main results for the sound speed are portrayed in
Fig. 1, where the four panels correspond to the four cases
listed above. In addition to the results of the MD simu-
lations, the QLCA prediction for the high Γ liquid, and
the results pertaining to the long wavelength phonons
in the respective crystal structures. For the weak cou-
pling domain we have indicated a representative value,
the “cold fluid” sound velocity [Eq.(1)]: inclusion of ther-
mal effects would only slightly increase this value. Fig. 1
shows the rather dramatic decrease of the sound velocity
with increasing Γ from the weakly coupled to the strongly
coupled regions. For high Γ, near Γm the agreement of
the MD results with the QLCA predictions is excellent.
There is also an almost perfect agreement near Γm be-
tween these two values pertaining to the liquid and the
crystal lattice values. The small discrepancy, visible for
the 3D n2 = 3n1 case can be attributed to the anisotropy
of the sound velocity in the fcc lattice: the liquid results
correspond to angle-averaged values, while the lattice re-
sult is given along the chosen {001} direction. This point
is further elucidated in Fig. 2, where the dependence of
the sound velocities on the mass ratio is shown for the
different crystalline solid phases and are compared with
the QLCA predictions.

Our calculations show (Fig. 1) that the Γ-dependence
of the sound speed is weak and that even at the crystal-
lization boundary it does not amount to more than 10%
of the leading term. In view of our earlier statement, it is
now safe to assume that the validity of the QLCA result
can be extended to the crystal lattice region. The impor-
tance of this observation lies in the fact that the notion
of FPAA has been successfully used for the description
of phonon dispersion for binary alloys [16, 17] and disor-
dered systems [18, 19], as a heuristic concept. Here we
have provided an analytic derivation of this behavior.

The physical effect that causes the lowering of the
sound velocity with increasing correlations may be at-
tributed to the binding of the lighter particles to the
heavier ones, resulting in a combined effective mass. This
latter, defined (e.g. in 2D) by

meff

m1

=
n1 + n2

n1

1

κa

1

(s2D/ω1a)2
, (8)
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FIG. 2. (color online) Longitudinal sound speed vs. m2/m1,
obtained from lattice calculations. The labels correspond to
the cases given in Fig 1. The symbols represent QLCA cal-
culation results for the strongly coupled liquid phase.
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FIG. 3. (color online) Effective mass vs. Γ1, obtained from
MD simulations, for 2D sytems at different mass ratios and
densities, at κ=1. The dotted lines represent extrapolation
to low Γ RPA values.

is displayed in Fig. 3, as a function of the coupling. It
may be noted that the binding seems to become quite
pronounced already at the relatively low Γ=5 value.
In summary, we have analyzed the behavior of the

acoustic excitation in a binary Yukawa system consisting
of two components with different masses, as a function
of the plasma coupling strength Γ. Our main focus has
been to see how correlations affect the way the two masses
bind into an effective mass. Theoretical analysis at the
weakly and strongly correlated limits shows that while in
the weakly correlated (Γ < 1) system the effective mass
forms as the reduced mass (“parallel connection”), in the
strongly correlated liquid or solid phase (Γ ≫ 1) the ef-
fective mass is the weighted average of the two masses
(“series connection”). As a result, the sound speed is
substantially diminished in the strong coupling domain,
as compared to its weak coupling value. Our MD simu-
lations of the longitudinal acoustic mode, straddling the
intermediate coupling range, have confirmed the result
and have mapped the variation of the sound speed over

a wide range of Γ values, both for 3D and 2D systems.

A remarkable feature of the derivation is that the lead-
ing term in the strong coupling expression is formally
correlation independent: it is a consequence of the lo-
calization of the particles, inherent in the model. Thus,
even though our analysis pertains only to systems inter-
acting through a Yukawa potential, one may expect that
it has a more general validity and other binary systems
with an acoustic or quasi-acoustic type excitation (a two-
dimensional Coulomb liquid in particular) would follow
a similar pattern.

From the experimental point of view, we note that in
alloys – bearing a great deal of similarity to Yukawa solids
– the notion of the “pseudo-alloy atom” is heuristically
well established (see e.g. [16] and references therein). As
to complex plasmas, laboratory experiments on binary
systems could be more feasible in 3D than in 2D, where
they should require levitating grains with two different
Z/m ratios.
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