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We examine nuclear scission within a fully quantum-mechanical microscopic framework, focusing
on the non-local aspects of the theory. Using 240Pu hot fission as an example, we discuss the iden-
tification of the fragments and the calculation of their kinetic, excitation, and interaction energies,
through the localization of the orbital wave functions. We show that the “disentanglement” of the
fragment wave functions is essential to the quantum-mechanical definition of scission and the calcu-
lation of physical observables. Finally, we discuss the fragments’ pre-scission excitation mechanisms
and give a non-adiabatic description of their evolution beyond scission.

PACS numbers: 24.75.+i,21.60.Jz,25.85.-w

Nuclear scission, the process wherein a nucleus breaks into two or more fragments, poses a fundamental challenge
to quantum many-body theory: scission implies a separation of the nucleus into independent fragments, while the
Pauli exclusion principle introduces a persistent correlation between the fragments, no matter how far apart they are.
The objective of this paper is to resolve this paradox by disentangling the fragments in a fully quantum-mechanical
description that is consistent with experimental data. In addition to shedding light on fundamental aspects of many-
body physics, a microscopic theory of scission is needed to make reliable predictions of fission-fragment properties,
such as their excitation and kinetic energies, and their shapes. In particular, we revisit in a microscopic approach the
question of the energy partition between light and heavy fragments which was addressed in a recent letter [1] within a
statistical-mechanic treatment. While many technical challenges remain in the 70-year quest to develop a predictive
theory of fission, understanding scission, remains a formidable conceptual obstacle to such a theory.
Previous descriptions of scission have always been formulated within the context of a local nuclear density, with an

identifiable neck joining two pre-fragments. The neck ruptures at some point along its length, and all the matter to one
side or the other of the rupture is relegated to the corresponding fragment. Despite its usefulness, this is ultimately
a classical view of scission. In 1959 [2], this picture was used to qualitatively account for the different observed mass
divisions in fission and the well-known “sawtooth” shape of the average neutron-multiplicity distribution. Later on,
a more quantitative description of the nuclear shape was introduced [3], and scission was equated with a vanishing
neck size. This criterion was later improved [4] by requiring that scission occurs when the Coulomb repulsion exceeds
the attractive nuclear force between the fragments. Nörenberg [5] took a step toward a more microscopic description
using a molecular model of fission calculated in a two-center Hartree-Fock+BCS approach. Bonneau et al. [6] used
separate microscopic calculations of each fragment and a phenomenological nuclear interaction between them to define
a scission criterion based on the ratio of their mutual nuclear and Coulomb energies. In recent calculations [7, 8, 10]
the entire fissioning nucleus was treated within a single microscopic framework and the properties of the nucleus at
scission were calculated. In those calculations however, the identification of scission and calculations of fragment
properties still relied on the nuclear density. In contrast to previous approaches, we present here a fully quantum-
mechanical description of scission that accounts for the nonlocality of the many-body wave function of the nucleus.
The need for, and difficulty of disentangling the fragment wave functions was alluded to in [6]. Our solution is in
the spirit of the Localized Molecular Orbital (LMO) technique used in molecular physics [9]: as explained below, we
extend the LMO concept to localize individual quasiparticle orbitals on the fragments while the nucleons themselves,
described by a Bogoliubov vacuum built from these states, remain delocalized. In this way, we are able to recognize
the fragments and their interaction energy progressively, as we approach scission. This powerful technique has never
been used to describe nuclear scission before.
The work described in this paper is based on constrained Hartree-Fock-Bogoliubov (HFB) calculations of 240Pu with

a finite-range (D1S) interaction. Details of the calculation are given in [10]. We have chosen to focus on the hot-scission
point with constrained quadrupole moment Q20 = 370 b [17], and used the constraint on neck size, QN , to approach
scission. This constraint, defined in [10], lets us vary the number of particles in the neck region. HFB calculations
produce self-consistent solutions that minimize the total energy of the nucleus. In order to describe the nucleus
near scission, we introduce here the additional requirement that the interaction energy between pre-fragments must
be minimized. This criterion is consistent with the physical picture of the pre-fragments evolving into independent
fragments that move increasingly further apart. We have shown in previous work [10, 11] that the pre-fragments in
the HFB solutions near scission generally exhibit “tails”, portions of contributions to the total density from individual
quasiparticles (qp) that extend into the complementary fragment. Our calculations show that the size of these tails
is closely related to the strength of the interaction between the fragments. Therefore, minimization of the interaction
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energy between fragments is essentially equivalent to localization of the qp orbitals on the fragments.
Hartree-Fock methods in molecular (or nuclear) physics generally produce single-particle atomic orbitals that are

not spatially localized within a molecule (nucleus). However, it was observed early on [9] that any unitary trans-
formation applied to the single-particle components of a Slater determinant does not affect the global properties of
the corresponding system. Since then, unitary transformations have been routinely used to localize electron orbitals
and thereby define such chemically meaningful concepts as core and bond orbitals. In nuclear fission, we will extend
the concept to localize nuclear qp states on the nascent fragments, taking advantage of the fact that the Bogoliubov
vacuum is only defined up to a unitary transformation of the qp destruction operators. More precisely, for each qp i,
we calculate its contribution ρi (~r) to the total density. Integration of ρi (~r) with respect to ~r defines an occupation

probability v2i of the qp. We introduce occupations
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for each qp. A value ℓi = 0, for example, corresponds to a completely delocalized qp. Our goal then is to maximize
the ℓi (or equivalently, minimize the tails) by mixing pairs of qp together. Thus, pairs (i, j) of qp are mixed by an
orthogonal transformation with angle θij chosen to maximize the quantity v2i (θij) ℓ

2

i (θij) + v2j (θij) ℓ
2

j (θij). Through
a systematic search algorithm, a set of qp pairs and their mixing angles is therefore found that minimizes the summed
tail size of the two fragments. In selecting these pairs, we have required that the level energies of the qp pairs are no
more than 2 MeV apart (the localization procedure is most effective for states that are close in energy). The interest
of this process is that, as the neck decreases, one can identify pre-fragments built from qps that are spatially localized.
In particular, the density matrix ρ̂ (and pairing tensor κ̂) can be decomposed as a sum of predominantly left (ρ̂L)
and right (ρ̂R) terms. Of course, high-energy (continuum) orbitals can never be well localized, but their occupations
are very small and therefore they do not contribute significantly to expectation values of operators. The interaction
energy between fragments can now be identified as the contribution to the total energy from cross terms, ρ̂L with ρ̂R

(and κ̂L with κ̂R for pairing). The nuclear component of that interaction energy (i.e., excluding the direct Coulomb
repulsion between fragments) is plotted in Fig. 1 before and after tail reduction. In both cases individual qps are
assigned to one fragment or the other based on their spatial localization relative to the neck position. The effect of
the tail reduction can be rather substantial even when the neck between the fragments is small, e.g. by ∼ 20 MeV
even when QN < 0.5.

We show in Fig. 2 more details concerning the localization of the qps with occupation v2 according to whether
they are preferentially holes (v2>1/2) or particles (v2<1/2). We observe that the effect of the localization is most
visible for the hole states with v2 > 0.7. Note in particular the pair of deeply-bound states in the top panel of Fig.
2 with v2 ≈ 1 and ℓ ≈ 0 (i.e., fully delocalized), both with K quantum number 1/2 and only 7 keV apart in energy.
These two states become fully localized in the bottom panel. Notice also that a great number of well-localized qps of
particle type can combine with well-localized qps of hole type to provide a rich spectrum of two-qp states, themselves
well localized on each of the two pre-fragments. These simple excitations or combinations of them describe excited
fragments. We were able to construct such 2-qp excitations of up to 20 MeV, localized on the fragments. Not all
states are fully localized by the algorithm above, in particular a 2-MeV, K = 1/2 neutron state remains in the bottom
panel with v2 ≈ 0.16 and ℓ ≈ 0.53 (which means that ≈ 25% of that qp’s occupation probability is in its tail), but
the overall effect on the fragment densities shown in the inset in Fig. 1 is significant. The effect of the localization
on the interaction energy is even more striking, as shown in Fig. 1. We point out that this analysis includes ≈ 1100
proton and neutron qp states.
If we faithfully apply the variational principle to the fissioning nucleus in order to minimize the total energy (by the

HFB method), the result will be two infinitely separated fragments in their respective ground states. Experimental
observables–neutron emission and kinetic energies–clearly indicate that we must depart from this adiabatic picture.
In fact, the point where the evolution of the fissioning nucleus ceases to be adiabatic could be taken as a definition
of scission. For practical applications, we give the following 3 criteria that define the scission point: 1) the repulsive
Coulomb force between fragments greatly exceeds their mutual nuclear attraction, 2) the exchange contribution to the
interaction between fragments is small, which means that we can neglect the antisymmetry between their constituents
and describe the system as two separate Bogoliubov vacua beyond the scission point, and 3) in each fragment, we
can excite a set of two-qp states that remain localized on the fragments, so that the fragments can be considered as
separate entities with their own excitations and in interaction through a repulsive force acting only on their respective
centers of mass. As the neck is reduced in our 240Pu calculation, the point at QN = 0.35 is the first for which all three
criteria above are simultaneously verified, and the results in Figs. 2 and 1 (inset) were calculated for this scission
point. Scission may occur at other nearby points, but this one is representative. At QN = 0.35, the Coulomb force is
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≈ 30 times larger than the nuclear one, the two-body exchange contribution is only -0.7 MeV (Fig. 1), and a set of
2-qp states can be constructed from localized states in Fig. 2 that remain localized within a fragment. The pairing
tensor κ is non-local and provides an additional test of the localization of the fragments. We find that the correspond
pairing energy is also only -0.7 MeV between fragments at scission out of -20 MeV for the entire nucleus. Thus, for
the first time in the literature, we give a definition of scission that does not ignore the non-local aspects of quantum
mechanics.
This leads us to describe our system after scission in the Hill-Wheeler approximation as Ψ =

∫

f (d) Φddd where d
is the relative distance between the fragments, and Φd ≡ Φ1Φ2 is the two fragments’ wave function. We obtain the
collective Hamiltonian [12],

Hcoll ≡
~p2d

2µm
+ V (d) + C

where ~pd is the momentum operator corresponding to d, µ is the reduced mass of the fragments with masses A1 and
A2, and m is the nucleon mass, V (d) is the fragment interaction potential, and C = Ei + ε0 is a constant, with Ei

(i = 1, 2) the internal fragment energy, and ε0 a zero-point correction,
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Note that V (ds)+C is nothing but the total Bogoliubov energy at the scission point (i.e., at d = ds). The form of ε0
is due to the fact that we subtract the center of mass energy, ~p2/2mA, of the mass-A fissioning nucleus throughout
the fission process.
Thus we propose the following two-stage description of fission: 1) the nucleus deforms until it reaches a scission

configuration determined with the criteria given above at which point the fragments are “frozen” in their configu-
rations and 2) as a result of their strong mutual repulsion move apart essentially by spatial translation. Eventually
these fragments will decay by neutron and gamma emission to their respective ground states. This is essentially a
picture of fission in the sudden approximation. Note that all approaches that study the scission point depend on sim-
plifying approximations (e.g., sudden approximation in the liquid-drop model [4]) or strong hypotheses (e.g., thermal
equilibrium [1]).
This microscopic picture of scission can be readily integrated into the larger context of the time-dependent generator-

coordinate method (TDGCM). For example, in a two-dimensional description in terms of the Q20 and Q30 moments
of the nucleus, we identify a set of points in this Q20 −Q30 space that define a boundary between an internal region
(pre-scission) and an external region (post-scission) using the scission criteria above [10]. The Hill-Wheeler equation
constructed in the internal region then allows us to follow a wave packet from the first well to this boundary [7], and
therefore to deduce the probability of populating different scission configurations.
In the following we investigate the extent to which this picture is consistent with experimental observables. Let us

first discuss our predictions assuming a one-dimensional path leading to the hot fission point and that the collective
dynamic is adiabatic from the saddle to the scission point. Starting with zero energy at the saddle we are at ≈ 25
MeV above the scission point. With our assumption this energy must be interpreted as a collective pre-kinetic energy.
Now, the kinetic energy acquired by the fragments after scission is simply given by V (ds)− V (∞) = V (ds) which is
≈ 170 MeV according to our calculations. Adding this pre-kinetic energy, our description gives a total kinetic energy
(TKE) of 195 MeV which exceeds by only 10 MeV the experimental value 184.8 ± 1.7 MeV obtained by averaging
the data sets available in the literature [13–15].
The calculation of the fragment excitation energies requires their corresponding ground-state energies, obtained by

HFB calculations without the constraint on neck size. Excitation energies of 4.5 MeV and 7 MeV were obtained for
the heavy (average mass number ≈ 132) and light (average mass number ≈ 108) fragment, respectively. Together,
these yield a total excitation energy (TXE) of ≈ 11.5 MeV. By contrast, the average TXE expected from empirical
arguments [16] in thermal fission on a 239Pu target is ≈ 26 MeV, thus leaving a ≈ 15-MeV discrepancy which we
address next.
It is believed that three collective degrees of freedom (Q20, Q30, Q40), if not four (triaxial mode), are the barest

minimum needed to describe the collective dynamics of fission. If so, one could expect that part of the available
energy in the descent from saddle to scission would be transferred to two or three modes transverse to the fission
direction. This possibility was studied previously [17] with two degrees of freedom (Q20, Q40). That work showed
that ∼ 2 MeV are already taken by one transverse mode. With two other degrees of freedom a total of 4 or 5 MeV
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could be taken up in these collective modes, at the expense of the fragment kinetic energy. Finally an other source
of dissipation can result from the coupling of the collective dynamic with internal excitations [18]. A derivation of
such coupling can be obtained in the framework of a generalization of the generator coordinate method including two
quasiparticle excitations [19]. These degrees of freedom provide the means to dissipate part of the available 25 MeV
from saddle to scission, without invoking statistical-mechanics arguments for low-energy fission.
Let us therefore consider different damping scenarios. Suppose that the 25 MeV potential energy liberated in the

fission of 240Pu is shared in a 50/50 split between pre-scission fragment kinetic and excitation energies, then our
prediction (TKE = 182.5 MeV and TXE = 24 MeV) precisely matches the experimental values. Even if we take a
more conservative 25/75 distribution, one way or the other, the scenario we propose is still in good agreement with
observations. It is rather striking that, without adjustable parameters, we obtain numbers that are simultaneously
consistent with experiment for both the kinetic and excitation energies in this case. Although the results in this letter
concern the most likely scission configuration, preliminary calculations of the kinetic energy for 240Pu for a wide range
of scission configurations (symmetric to very asymmetric) are already showing a similar agreement with experiment.
Finally, let us mention that the concept of localization could have interesting applications as we approach the scission

point. In effect, as we recognize pre-fragments, the values of the global constraints split into the contributions from
those pre-fragments. Accordingly, we expect that the correct description of the system will rely on separate collective
coordinates for those individual fragments. Although it remains to be verified, we believe that the localization of Fock
space could provide a way to impose constraints separately on the pre-fragments, and thereby give a richer description
of the fission mechanism.
This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.
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Figures

Figure 1: (Color online). Interaction energies plotted as a function of neck size (QN). The solid black and red dashed curves
are the nuclear interaction energies before and after localization respectively (energy scale on left y axis), and the dotted green
curve is the exchange part of the 2-body component of the interaction energy (energy scale on right y axis). The inset shows
the effect of the localization on the densities of the fragments at scission.

Figure 2: (Color online) individual quasiparticle states before (top panel) and after (bottom panel) localization at scission.
Proton states are shown as red crosses, and neutron states as black disks. The x axis gives the occupation (v2i ) of the state,
while the y axis gives its localization (ℓi) .
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