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Abstract

We show that thin sheets under boundary confinement spontaneously generate a universal self-

similar hierarchy of wrinkles. From simple geometry arguments and energy scalings, we develop a

formalism based on wrinklons, the transition zone in the merging of two wrinkles, as building-blocks

of the global pattern. Contrary to the case of crumple paper where elastic energy is focused, this

transition is described as smooth in agreement with a recent numerical work [1]. This formalism

is validated from hundreds of nm for graphene sheets to meters for ordinary curtains, which shows

the universality of our description. We finally describe the effect of an external tension to the

distribution of the wrinkles.
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The drive towards miniaturization in technology is demanding for increasingly thinner

components, raising new mechanical challenges [2]. Thin films are however unstable to

boundary or substrate-induced compressive loads: moderate compression results in regular

wrinkling [3–7] while further confinement can lead to crumpling [8, 9]. Regions of stress

focusing can be a hindrance, acting as nucleation points for mechanical failure. Conversely,

these deformations can be exploited constructively for tunable thin structures. For example,

singular points of deformation dramatically affect the electronic properties of graphene [10].

Here, we show that thin sheets under boundary confinement spontaneously generate a

universal self-similar hierarchy of wrinkles; from strained suspended graphene to ordinary

hanging curtains. We develop a formalism based on wrinklons, a localized transition zone

in the merging of two wrinkles, as building-blocks to describe these wrinkled patterns.

To illustrate this hierarchical pattern, we show in Fig. 1a wrinkled graphene sheet along

with an ordinary hanged curtain. These patterns are also similar to the self-similar circular

patterns first reported by Argon et al. for the blistering of thin films adhering on a thick

substrate [11]. The diversity and complexity of those systems, characterized by various

chemical and physical conditions, could suggest, a priori, that the underlying mechanisms

governing the formation of these patterns are unrelated. However, these systems can be

depicted, independently from the details of the experiments, as a thin sheet constrained at

one edge while the others are free to adapt their morphology. These constraints can take the

form of an imposed wavelength at one edge or just the requirement that it should remain

flat.

As illustrated in Fig. 1 and 2, sheets made from various materials constrained at one

edge by an imposed sinusoidal profile spontaneously develop a hierarchical pattern of folds

or wrinkles. At first sight, as quoted by numerous authors [9, 11–17], these patterns consist

of a hierarchy of successive generations of folds whose typical size gradually increases along

x (Fig. 1b). We propose to rationalize these various hierarchical patterns by considering the

evolution of the average wavelength, λ, with the distance to the constrained edge, x. This

evolution is adequately described by a simple power law, λ ∼ xm, see Fig. 1c, which confirms

the self-similarity of these patterns as hypothesized in previous theoretical studies [9, 12–14].

Interestingly, curtains made of various materials with contrasted properties exhibit similar

exponents. We observe values close to 2/3 for “light” sheets and to 1/2 for “heavy” sheets.

Therefore the exponent m is a robust feature of these folding patterns.

2



0.25

0.20

0.15

0.10

0.05

0.00

λ
(m

)

3.53.02.52.01.51.00.50.0

x (m)

Short fabric curtain (220µm)

Paper Curtain (125µm)

Long fabric curtain (220µm)

Latex curtain (400µm)

Ballasted latex curtain (400µm)

Latex curtain (220µm)

Ballasted latex curtain (220µm)

0.4

0.3

0.2

0.1

λ
(µ

m
)

1.51.00.50.0

X (µm)

Graphene sheet

c

Graphene sheet

y

x
a b

FIG. 1: a, SEM image of a graphene bilayer thin sheet suspended across pre-defined trenches on

Si/SiO2 substrates (scale bar: 1µm). b, Hierarchical pattern of folds obtained for a long suspended

curtain made of a thin sheet of rubber (scale bar: 25 cm). c, Evolution of the average wavelength,

λ, with the distance from the constrained edge, x, for various curtains as indicated in the legend.

Power law fits are added (the power exponents, m, are close to 2/3 for the short fabric and the

paper curtains and 1/2 for the long fabric and the rubber curtains). Inset: Evolution of λ with x

for the graphene sheet (m is equal to 0.45 ± 0.02). The experimental parameters are detailed in

the supplementary information.
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In this work, we describe in terms of simple scaling laws the theoretical arguments de-

veloped in the mathematical studies of the von Karman equation [9, 13, 14, 16] and infer

the properties of the hierarchical patterns. We also compare these results with extensive

experimental data. To the best of our knowledge, the experimental characterization of these

patterns had not been carried out before.

Assuming inextensibility of the sheet along the y direction, the imposed undulation along

this direction exactly compensates for an effective lateral compression of the membrane by

a factor (1 − ∆) defined as, (1 − ∆) ≡ W/W0 = W/
∫W
0

√
1 + (∂z/∂y)2 dy, where W0

and W are the curvilinear and projected width of the curtain, respectively, and z(x, y) is

the out-of-plane deformation of the sheet. At any position along the x axis, the function

z(x, y) is typically sinusoidal along y, with an amplitude A(x) and a wavelength λ(x). The

inextensibility hypothesis along the y axis imposes ∆ ∼ (A/λ)2 at the lowest order, where

the lateral compression is assumed to be constant throughout the length of the curtain. The

undulations of the sheet along y are characterized by a curvature κ ' ∂2z/∂y2 whose typical

value, varying along x, is of order κ(x) ∼ A/λ2. The corresponding energy per unit area, ub,

for bending the membrane is thus of order ub ∼ Eh3 κ2 ∼ Eh3∆/λ2, where E is the Young

modulus and h the thickness of the sheet. Since ub is proportional to 1/λ2, the membrane

adopts the largest possible wavelengths, in order to minimize energy. This tendency to

increase the wavelength, combined with the constraint imposed at the boundaries, is the

source of the observed hierarchical wrinkling pattern.

Inspired by previous models based on successive period-doubling transitions [1, 9, 14], we

consider that the allometric laws mentioned above can be derived by considering that the

global pattern results from the self-assembly of building-blocks which we denote wrinklons. A

single wrinklon corresponds to the localized transition zone needed for merging two wrinkles

of wavelength λ into a larger one of width 2λ. This transition requires a distortion of the

membrane which relaxes over a distance L. In other words, each wrinklon is characterized by

a size, L, which depends on the material properties and on the wavelength λ. To investigate

the properties and behavior of wrinklons, we have performed model experiments using thin

plastic sheets. The sheets were constrained with sinusoidal clamps: two opposite edges

are constrained by a wavelength λ (amplitude A) and 2λ (amplitude 2A), respectively, see

Fig. 2a,b. The normalized size of the wrinklons, L/λ, is plotted in Fig. 2c as a function of

the normalized amplitude, A/h; the data collapse on a single curve defined by L/λ ∼
√
A/h.
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This relation implies that L ∝ λ3/2 since A ∼ λ
√

∆.

In a further step, the wrinklons can be assembled to mimic the behavior of a complete

hierarchy. Indeed, if L is the distance over which the wavelength increases from λ to 2λ,

its variation, dλ/dx, is thus of order λ/L. Hence, the evolution of λ as a function of the

distance from the constrained edge, x, is given by

dλ

dx
' λ

L
. (1)

Considering the scaling L ∝ λ3/2 deduced from the single wrinklon experiments, equation (1)

indicates that the wavelength along the sheet should evolve like λ ∝ x2/3. The excellent

agreement between this power law and the experimental data measured for light sheets

(Fig. 1c) provides a strong support to the concept of wrinklons as building-blocks. Equa-

tion (1) can now be regarded as a tool that connects the properties of single wrinklons to

the features of the full wrinkling-cascade pattern.

We now focus on the description of an elementary building block. For confined thin sheets,

stretching deformations are costly as compared to pure bending. The sheet tends to adopt

an isometric (developable) shape [8]. However, the only developable solutions compatible

with boundary conditions generally include flat domains surrounded by edge or point-like

singularities. These singularities, which focus the elastic energy into narrow regions, have

been classified as developable cones [18, 19], ridges [8, 20], or curved ridges [21]. In our

case, the scenario is however significantly different: in contrast to crumpling, stretching is

smoothly distributed in the transition zone as pointed out recently in numerical simulations

of deformed membranes [1]. The necessary stretching required for connecting the periodic

patterns can be illustrated by a simple origami model made with a sheet of paper (see supp.

info.). The stretching energy can be estimated through the elongation strain of the sheet

along x within a transition domain. The typical value of the strain along x is of order α2,

where α ∼ A/L ∼ λ∆1/2/L is the average slope of the membrane. The stretching energy

thus reads Us ∼ Eh (α2)2Lλ ∼ Ehλ5∆2L−3.

As observed in Figs. 1 and 2, wrinklons should also include a tip singularity (a small

region where Gaussian curvature is large). This singularity can be described as a semi-

circular fold of radius ρ (Fig. 2b). The energy of these singularities has been derived by

Pogorelov [21] in a study of deformed shells. In our context, the energy of such curved

folds reads Ucf ∼ Eh5/2 α5/2ρ1/2 ∼ Eh5/2 ∆5/4λ7/2L−3, where the radius at the tip of the
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wrinklon is taken as ρ ∼ λ2/L as suggested by the roughly parabolic shape of the crest

of the defect (Fig. 2b). Nevertheless, the ratio of the curved fold energy to the stretching

energy of the wrinklon, Ucf/Us ∼ (h/A)3/2, is very small in our experiments : the effect of

this concentrated region can therefore be neglected in the following.

The total energy of a wrinklon, of characteristic area Lλ, is thus given by Utot = Us+Ub '

Ehλ5∆2L−3 + Eh3∆Lλ−1. The size of a single wrinklon is finally obtained by minimizing

Utot with respect to L, yielding

L(λ) ∼ ∆1/4 λ3/2h−1/2. (2)

This scaling emerges from a balance between bending and stretching energies and was pre-

viously reported for other situations, such as the decay length of an imposed curvature in a

sheet [20] or the extension of a pinch in a pipe [22]. The scaling for the wavelength describing

the whole hierarchical pattern is obtained by integration of equation (1) with L(λ) given by

equation (2) and is found to be

λ(x)∆1/6

h
∼
(
x

h

)2/3

. (3)

The scaling law, λ ∝ x2/3, is in very good agreement with the observed power laws for light

curtains, e.g. made of fabric or paper sheets (Fig. 1c). In addition to yielding the proper

exponent, this relation enables the comparison of the data obtained from seemingly dis-

parate systems, over a wide range of lengthscales and independently of material properties.

Figure 3a provides a remarkable collapse of the evolutions of the wavelengths measured with

light curtains and various thin plastic sheets.

Heavy curtains, made from fabric or rubber, and constrained graphene bilayers do not

follow this behaviour (instead, they obey λ ∝ x1/2). In these experiments, an additional

tensile force is acting on the sheet. This tension, T , is given by the longitudinal tensile strain

induced by thermal manipulation in the case of graphene sheets [6] and by gravity for heavy

curtains (T = ρcgh(H − x) ∼ ρcghH, where ρc, g, h, and H are the density of the curtain,

the gravity constant, the thickness and the height of the curtain). These systems can also

be compared to the cascade of wrinkles observed for compressed thin polystyrene films on

an air-water interface [15] since the surface tension of water at the free edges pulls the thin

sheet.

The tension exerted along x per unit width, imposes an additional stretching energy

given by Ut ∼ T α2 Lλ ∼ T∆λ3L−1, and becomes dominant when Ut > Us, that is when
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T > Eh2∆/A. The total energy of the distorted membrane thus becomes Utot = Ut + Ub.

The length of a wrinklon found from the minimization of Utot is

L(λ) ∼ λ2

h

√
T

Eh
. (4)

Similar relations, reflecting a balance between tension and bending energies, were previously

proposed for single wavelength patterns in stretched sheets and heavy curtains [4, 17]. As

expected, the tensile force increases the length of wrinklons for a given wavelength [16]. By

integration of equation (1) with L(λ) given by equation (4), we obtain the corresponding

spatial evolution of the wavelength along a heavy sheet

λ(x)

h
∼
(
Eh

T

)1/4 (
x

h

)1/2

. (5)

This scaling is in excellent agreement with the power laws observed for heavy curtains and

graphene bilayers, (Fig. 1c). The data of various macroscopic curtains, graphene bilayers

and nanometric polystyrene indeed collapse onto a single master curve without any fit-

ting parameters (see Fig. 3b). Our formalism is thus validated from hundreds of nm for

graphene sheets to meters for rubber and fabric curtains, which shows the universality of

our description. The transition between the stretching and tension regimes can be obtained

by comparing the relations (3) and (5). The critical distance from the edge at which this

transition occurs is given by x?/h ∼ (Eh/T )3/2∆. In gravity dominated systems, the ten-

sion T ' ρghH, gives the typical curtain length Hc ∼ h(E/ρgh)3/5∆2/5 above which tension

dominates. Curtains shorter than Hc (about 1m for our fabric) were used to observe the

regimes dominated by stretching (“light sheets”), whereas the top part of longer curtains

were used for experiments concerning “heavy sheets”.

In summary, we showed that the self-similar patterns observed in sheets constrained at

one edge cannot be described with d-cone or ridges singularities. In contrast, they can

be built by stitching together building-blocks, called wrinklons characterized by a diffuse

stretching energy. The self-similar structure is then related to the size of these wrinklons

that depends on material properties and the local wavelength. Interestingly, we also show

that these building-blocks can be readily manipulated through the size and energy cost of a

single wrinklon by applying a tension. For large values of tension, we even expect a transition

towards a purely cylindrical pattern along the sheet with a single wavelength. Finally, we

can draw a parallel between this study and the previously reported fractal buckling of torn
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plastic sheets [23]. The imposed metric indeed determines the three-dimensional shape of

the distorted membrane, characterized by a superimposition of various modes. In contrast,

the patterns observed here for constrained thin sheets exhibit a continuous evolution of the

wavelength.
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FIG. 2: a, Schematic representation of the wrinklon experiments. b, Morphology of the transition

λ to 2λ for a constrained plastic sheet for A = 6 mm and λ = 8 mm. c, Evolution of the normalized

length of a wrinklon, L/λ, with the normalized amplitude, A/h (fixed wavelength, λ = 8 mm) for

different thicknesses as indicated.
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FIG. 3: Master curves gathering all data. a, Normalized wavelength, λ̃ = λ∆1/6/h, as a func-

tion of the normalized distance, x̃ = x/h, from the constrained edge for short light sheets (fabric

curtain, paper curtain and constrained plastic sheets). Dashed line: λ̃ = 2.89 x̃0.65. b, Nor-

malized wavelength λ̃ = λ/h as a function of the normalized distance from the constrained edge

x̃ = (x/h)(Eh/T )1/2 for sheets under tension: fabric curtains, rubber curtains, suspended bi-

layer graphene sheet and polystyrene thin films deposited on water from Ref. [15]. Dashed line:

λ̃ = 2.85 x̃0.52.
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