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Abstract

Roughness-induced transient growth has emerged as a possible cause for transition in linearly-

stable boundary layer flows over spherical forebodies. This paper investigates the optimal growth

of perturbations in the axisymmetric, laminar boundary layer over a hemisphere placed in a Mach

7.32 free stream, with the goals of contributing further insights and revisiting highly successful,

transient-growth based prediction criteria for subcritical transition over blunt body configurations.

Earlier predictions based on local-similarity approximation to the basic state are extended to a

basic state that is obtained from the compressible Navier-Stokes equations, and hence, accounts

for the presence of the bow shock, the nonsimilar development of the boundary layer, and the

convex curvature of the body surface. The predicted transient growth characteristics are profoundly

different from the previous body of results for boundary layer flows over flat plates and circular

cones. More importantly, the selections of energy norm and objective function used to compute

optimal growth exert a crucial influence on the optimal growth characteristics of a blunt body. With

the conventional energy norm based on both kinetic and thermodynamic fluctuations, the highest

energy gain from the input station to the output station occurs over relatively short optimization

intervals in the vicinity of the stagnation point; however, the associated kinetic energy gain, which

is more closely linked to transition via streak instabilities, is rather small in magnitude. On

the other hand, the mean kinetic energy gain is maximized when the disturbance inflow location

nearly coincides with the location corresponding to peak wall shear associated with the basic state.

Assuming that the roughness-induced disturbance velocities are proportional to the roughness

height, the maximum disturbance kinetic energy would be reached in the vicinity of the sonic

point, which could explain the measured onset of transition within this region during prior wind-

tunnel and flight experiments.

∗ pedro.paredes@nasa.gov
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I. INTRODUCTION

The most common approach to transition prediction relies on modal growth, i.e., expo-

nential amplification of discrete eigensolutions. The classical linear stability theory is mainly

concerned with individual sinusoidal waves propagating in the boundary layer adjacent to

the wall. The stability characteristics are often evaluated by using the quasiparallel ap-

proximation that reduces the linearized equations of fluid motion to an eigenvalue problem

based on ordinary differential equations. In the limit of incompressible flows, this eigenvalue

problem corresponds to a combination of the Orr-Sommerfeld and Squire equations [1, 2].

Effects of weak boundary layer growth, i.e., mean-flow nonparallelism can be accounted for

by using multiple-scales theory (or other similar approaches) [3], which yields the leading

order correction to the local amplification rate and phase speed predicted by the quasi-

parallel theory. A more useful extension to the nonparallel stability theory was proposed

by Herbert [4], who introduced the concept of Parabolized Stability Equations (PSE). The

main advantages of the PSE technique with respect to the local multiple-scales approach

include its improved computational efficiency and the possibility of accounting for nonlinear

interactions [5]. Since then, the PSE technique has been applied to a variety of problems,

including the linear and nonlinear evolution of instability waves in 2D and 3D shear flows

across a broad range of speeds.

Besides the exponential growth characteristics of convectively unstable eigenmodes in a

boundary layer flow, external disturbances, e.g., freestream turbulence and surface rough-

ness, can also have a large influence on the transition process. An additional route to

transition may involve nonmodal growth, which refers to situations in which transient al-

gebraic growth of disturbance energy is observed even when the flow is modally stable,

i.e., all eigenmodes are damped. Mathematically, the transient growth is associated with

the nonorthogonality of the eigenvectors corresponding to the linear disturbance equations.

Physically, the main growth mechanism corresponds to the lift-up effect [6–8], which results

from the conservation of horizontal momentum in the course of spanwise varying wall-normal

displacement of the fluid particles. Schmid and Henningson [2] and Schmid [9] provide a

thorough review of transient growth theory and results.

Recently, transient growth has been suggested as a candidate mechanism for many cases

of bypass transition [10]. The term “bypass transition” has been historically used to dif-
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ferentiate the well known paths to transition via modal amplification of small-amplitude

disturbances from the transition phenomena that are not fully understood on a theoreti-

cal basis [11, 12]. Examples of bypass transition are the transition due to high levels of

free-stream disturbances, as for example in turbomachinery, or the subcritical transition

observed in Poiseuille pipe flow experiments [13–16], transition due to distributed surface

roughness on flat plates [17, 18] or cones [19], and subcritical transition observed on spherical

forebodies [20–26].

The present study focuses on the subcritical, bypass transition observed on spherical

forebodies at hypersonic speeds. The boundary layer flow over a blunt body, e.g., a reentry

capsule, does not support the growth of modal instability waves. Tollmien-Schlichting waves

are stable because of the strong favorable pressure gradient. The convex curvature of the

geometry prevents the growth of Görtler disturbances. Furthermore, the crossflow velocity

component of the boundary layer is small for spherical shapes, which excludes the appear-

ance of crossflow instabilities. However, several experimental measurements at different flow

conditions have demonstrated that transition does occur [20, 23, 26]. This problem has been

denominated the “blunt-body paradox.” [21]. The distinction between subcritical and su-

percritical roughness conditions is important because, in the limit of supercritical conditions,

i.e., large roughness elements, the modification of the mean flow by the roughness elements

is such that the flow can become globally unstable and transition occurs very close to the

roughness location [27–33]. For the subcritical conditions assumed in the present study,

empirical transition correlations [28, 34–36] have shown a good agreement with experimen-

tal measurements under the assumption that the receptivity of stationary disturbances to

distributed roughness is linear with the peak-to-valley height k, i.e., the initial amplitude

of the induced disturbance is proportional to k. The stationary disturbances induced by

discrete roughness elements are significantly different in shape from the theoretical opti-

mum, yet they can experience significant nonmodal growth depending on the roughness

characteristics [37–42].

As a result of the blunt-body paradox, transition onset over reentry vehicle nose tips is

commonly predicted via empirical transition correlations. One such well-known correlation

is based on the extensive set of measurements carried out under the PAssive Nosetip Tech-

nology (PANT) Program [43, 44]. In its original form, the PANT correlation was expressed
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as

ReΘ

(
k

Θ

Te
Tw

)0.7

=

 255 at Me = 1 : transition onset,

215 : onset location,
(1)

whereReΘ is the boundary layer momentum thickness Reynolds number, Θ is the momentum

thickness, Te is the edge temperature, Tw is the wall temperature, and Me is the edge Mach

number. In the PANT data, transition was usually observed to occur upstream of the sonic

point. The PANT correlation for transition onset is based on the observation that transition

onset only occurred in cases where the transition parameter on the left hand side of Eq. (1)

exceeded a value of 255 at the sonic point and the onset location itself correlated with the

position where this parameter equaled 215. The PANT correlation was examined by Reda

and Leverance [34] and Reda [35] for actual conditions of reentry environment as simulated in

a ballistic range. Significant discrepancies were noted between predicted and experimentally

observed transition zone behavior. By using the same form of Eq. (1), a modified correlation

was obtained through a curve fitting of the ballistic range data,

ReΘ

(
k

Θ

Te
Tw

)1.30

= 574. (2)

Recently, Reshotko and Tumin [36] developed a transition correlation based on “parallel”

transient growth results for self-similar axisymmetric stagnation point flow. Such parallel

transient growth analysis does not account for the downstream evolution of the boundary

layer and the geometry variation, because it assumes a spatially invariant base flow profile

at every streamwise station. Their correlation for the PANT wind-tunnel database, which

was also shown to correlate well with Reda’s ballistic-range data, was

ReΘ

(
k

Θ

)(
Te
Tw

)1.27

= 434. (3)

The form of this correlation is very similar to that of Reda from Eq. (2), with the main

difference being the exponent of the roughness-height parameter on the left hand side of

each correlation. The transition parameter in the Reshotko and Tumin correlation depends

linearly on k/Θ, because they assumed the initial disturbance amplitude to scale linearly with

the roughness-height parameter. Despite the favorable agreement between the correlation

from Eq. (3) and the available experiments, the accuracy of transient growth predictions

underlying Eq. (3) remains questionable because of the parallel-flow assumption together

with the neglect of surface curvature effects, and secondarily, the approximations involved

in basic state computations.
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Spatial transient growth analysis, including nonparallel effects, of the boundary layer over

a sphere at freestream Mach number of 6 was presented by Tumin and Reshotko [45] and

Zuccher et al. [46]. In these studies, the velocity and temperature profiles were calculated

using local-similarity approximation. Mack’s energy norm [47], which accounts for kinetic

and thermodynamic fluctuations as explained in Section II, was used to measure the growth

of the optimal initial perturbations. Their results showed that the optimal energy amplifi-

cation is stronger in the vicinity of the stagnation point and for short optimization intervals;

however, the optimal optimization intervals were not reported. Also, the streamwise convex

curvature was found to reduce transient growth. The results do not appear to explain the

experimental observation, that, when the roughness height is increased, the transition loca-

tion was first observed in the vicinity of the sonic point and then moved upstream up to a

certain distance from the stagnation point [23, 26, 44].

The nonparallel spatial transient growth analysis in the present paper is based on the

compressible Navier-Stokes (NS) computations [48] of laminar flow over a hemisphere of

radius R = 0.0889 m at zero angle of attack. The freestream conditions are selected to

match the experiments by Kaattari [49], namely, M∞ = 7.32, Re′ = 14.6 × 106 /m, and

T∞ = 65 K, and isothermal wall condition with Tw = 300 K. Recently, Li et al. [48] examined

the effects of outgassing on the modal instability of boundary layer flow over this body and

found the modal growth to be insignificant in the absence of any outgassing. The mass-

injection rate was defined as µin = ρwvw/(ρ∞u∞), where ρw and vw denote the density

and velocity normal to the wall, respectively, of the injected fluid, and the subscript ∞

denotes freestream values. First mode waves were observed to become marginally unstable

for µin ≈ 0.007, which is a value larger than those corresponding to typical injection rates.

The mass-injection rate needed to reach N -factor values of N = 7 to N = 13 were µin = 0.01

to µin = 0.013, respectively. Therefore, transition in zero or weak outgassing cases presents

yet another example of the blunt-body paradox. For the selected flow conditions, Kaattari

[49] experimentally studied the effect of mass injection on wall heat transfer. He observed

that, upon mass injection, the onset of transition begins a few degrees downstream of the

sonic point and moves upstream as the mass injection is increased.

The present transient growth analysis includes two separate definitions of the objective

function or energy gain; namely, the ratio between the energy norm at the outlet and inlet

locations, which was used by Refs. [45, 46], and the ratio between the mean energy norm
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along the optimization interval and the energy at the inlet location, which accounts for

possible overshoots in energy evolution across the optimization range. Furthermore, two

different energy norm definitions are selected. Besides the conventional energy norm used

for compressible boundary layer flows that includes kinetic and thermodynamic fluctuations

developed by Mack [47], the kinetic energy alone is also used as the energy norm. The

reason to look at the kinetic energy growth is the finding from the stability analysis of finite-

amplitude streaks in compressible boundary layers [50, 51] where the secondary instabilities

that would lead to bypass transition are driven by the strength of the streamwise velocity

shear of the streak. Therefore, secondary instabilities are expected to become unstable when

the transient growth is able to produce a disturbance with higher kinetic energy. Paredes

et al. [52] presented the nonlinear evolution of finite-amplitude optimal perturbations and

the instability analysis of the resulting streaks. Their results show that the boundary layer

perturbed by finite-amplitude streaks becomes unstable for streak amplitudes of Asu > 0.16,

where Asu(ξ) = [maxη,ζ(ũ)−minη,ζ(ũ)]/(2ū∞).

We note that the optimal growth theory does not address the generation (i.e., receptivity)

of streak disturbances responsible for bypass transition; and, in fact, disturbance profiles

resulting from realistic external disturbances usually result in suboptimal transient growth

[40, 53, 54]. While this represents a clear limitation of the optimal growth theory, it does

contribute useful insights by providing an upper bound on the nonmodal energy amplification

due to spanwise periodic disturbances. Indeed, for reasons that are not fully understood as

yet, transition correlations derived from optimal growth considerations appear to capture

the measured trends related to blunt-body paradox, as mentioned in the context of Eq. (3).

The present work may be viewed as an initial step toward the assessment and potential

improvement of such correlations, by extending the application of spatial transient growth

to nonsimilar flows.

The paper is organized as follows. Section II provides a summary of the optimal growth

theory based on the PSE. The results are presented in Section III that is subdivided into

three subsections. The characteristics of the laminar flow over the hemisphere are presented

in Subsection III A, together with the application of previous transition correlations to the

computed basic state. Transient growth results for the hypersonic spherical forebody are

presented in Subsection III B, including the comparison of predictions based on two separate

energy gain definitions; namely, the ratio between outlet and inlet disturbance energy norms
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and the ratio between mean and inlet disturbance energy norms. Also, results are obtained

for the optimization of the Mack’s energy norm that accounts for kinetic and thermody-

namic fluctuations and for optimization of the kinetic energy alone. In Subsection III C, the

implications of the transient growth predictions are investigated, especially in the context

of the correlations for roughness-induced transition and the experimental measurements by

Kaattari [49]. Conclusions are presented in Section IV.

II. METHODOLOGY

Transient growth analysis is performed using the linear PSE as explained in the literature

[55–58]. For completeness, the present section outlines the methodology, which bears strong

similarities with the optimization approach based on the linearized boundary layer equations

[59–61]. The advantage of the PSE-based formulation is that it is also applicable to more

complex base flows where the flow evolves along the streamwise direction and the boundary

layer approximation may not hold. The PSE approach can also be easily extended to un-

steady disturbances. While infinite Reynolds number asymptotic results cannot be directly

computed using this technique, good agreement is achieved between the two methodologies

for incompressible and compressible regimes as shown by Paredes et al. [58, 62].

In the PSE context, the perturbations have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η) exp

[
i

(∫ ξ

ξ0

α(ξ′) dξ′ + βζ − ωt
)]

+ c.c., (4)

where c.c. denotes complex conjugate. The suitably nondimensionalized, orthogonal, curvi-

linear coordinate system (ξ, η, ζ) denotes streamwise, wall-normal, and spanwise coordi-

nates and (u, v, w) represent the corresponding velocity components. Density and tem-

perature are denoted by ρ and T . The Cartesian coordinates are represented by (x, y, z).

The vector of perturbation fluid variables is q̃(ξ, η, ζ, t) = (ρ̃, ũ, ṽ, w̃, T̃ )T and the vector

of amplitude functions is q̂(ξ, η) = (ρ̂, û, v̂, ŵ, T̂ )T . The vector of basic state variables is

q̄(ξ, η) = (ρ̄, ū, v̄, w̄, T̄ )T . The streamwise and spanwise wavenumbers are α and β, respec-

tively; and ω is the angular frequency of the perturbation.

Upon introduction of the perturbation form (4) into the linearized NS equations together

with the assumption of a slow streamwise dependence of the basic state and the amplitude
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functions, thus neglecting the viscous derivatives in ξ, the PSE are recovered as follows

Lq̂(ξ, η) =

(
A + B

∂

∂η
+ C

∂2

∂η2
+ D

1

hξ

∂

∂ξ

)
q̂(ξ, η) = 0. (5)

The linear operators A, B, C and D are given by Pralits et al. [55] and hξ is the metric factor

associated with the streamwise curvature. The system of Eqs. (5) is not fully parabolic due

to the term ∂p̂/∂ξ in the streamwise momentum equation, and also due to the presence

of other terms that are quadratic in the streamwise wavenumber α [63–66]. However, for

the purely stationary disturbances of interest in this work, α = 0 and the pressure gradient

term ∂p̂/∂ξ can be dropped from the equations as justified by Refs. [56, 67], which found

that ∂p̂/∂ξ is of higher order for transient growth problems, and, therefore, can be neglected

without any significant loss of accuracy.

The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at

ξ0 that maximizes the objective function, J , which is defined as a measure of disturbance

growth over a specified interval [ξ0, ξ1]. The definitions used in the present study correspond

to the outlet energy gain J = Gout and mean energy gain J = Gmean and are defined as

Gout =
E(ξ1)

E(ξ0)
, (6)

Gmean =
1

ξ1 − ξ0

∫ ξ1
ξ0
E(ξ′) dξ′

E(ξ0)
, (7)

where E denotes the energy norm of q̃. The energy norm is defined as

E(ξ) =

∫
η

q̂(ξ, η)HMEq̂(ξ, η)hξ hζ dη, (8)

where hζ is the metric factor associated with the azimuthal curvature, ME is the energy

weight matrix and the superscript H denotes conjugate transpose. The selection of Gout

corresponds to the “outlet energy gain” that is commonly used in studies of the optimal-

perturbation problem [59, 60]. The selection of Gmean defines the “mean energy gain”

and corresponds to the optimization of the mean energy. This latter definition accounts

for a possible overshoot in the disturbance energy evolution that are not accounted for by

the former definition and is found to be present in the hemisphere case as documented in

Subsection III B.

The choice of the energy norm is known to influence the optimal initial perturbation as

well as the magnitude of energy amplification [46, 57, 61]. Here, we use the positive-definite
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energy norm derived by Mack [47] and Hanifi et al. [68], which is defined by

ME = diag

[
T̄ (ξ, η)

γρ̄(ξ, η)M2
, ρ̄(ξ, η), ρ̄(ξ, η), ρ̄(ξ, η),

ρ̄(ξ, η)

γ(γ − 1)T̄ (ξ, η)M2

]
. (9)

Additionally, the kinetic energy norm is also used for optimization in this paper. The kinetic

energy of a perturbation is defined by

K(ξ) =

∫
η

q̂(ξ, η)HMKq̂(ξ, η)hξ hζ dη, (10)

where

MK = diag [0, ρ̄(ξ, η), ρ̄(ξ, η), ρ̄(ξ, η), 0] . (11)

To differentiate when the total energy norm E or the kinetic energy norm K are used,

a corresponding subscript is added to the energy gain, resulting in four options for the

objective function; namely, Gout
E , Gmean

E , Gout
K , and Gmean

K .

The variational formulation of the problem to determine the maximum of the objective

functional J of Eq. (7) leads to an optimality system [58], which is solved in an iterative

manner, starting from a random solution at ξ0 that must satisfy the boundary conditions.

The PSE, Lq̃ = 0, are used to integrate q̃ up to ξ1, where the final optimality condition

is used to obtain the initial condition for the backward adjoint PSE integration, L†q̃† =

cmeanF (q̃), where cmean = 0 for the outlet energy gain optimization and cmean = 1 for the

mean energy gain optimization, and F (q̃) is a function of the direct solution [55]. At ξ0, the

adjoint solution is used to calculate the new initial condition for the forward PSE integration

with the initial optimality condition. The iterative procedure finishes when the value of J

has converged up to a certain tolerance, which was set to 10−4 in the present computations.

Nonuniform stable high-order finite difference schemes (FD-q) [69, 70] of sixth order are

used for discretization of the PSE along the wall-normal coordinate. The discretized PSE are

integrated along the streamwise coordinate by using second-order backward differentiation.

The number of discretization points in both directions was varied in selected cases to ensure

convergence of the optimal gain predictions. The wall-normal direction was discretized using

Ny = 201, with the nodes being clustered toward the wall [70]. No-slip, isothermal boundary

conditions are used at the wall, i.e., û = v̂ = ŵ = T̂ = 0. The amplitude functions are forced

to decay at the farfield boundary by imposing the Dirichlet conditions ρ̂ = û = ŵ = T̂ = 0,

unless otherwise stated. The farfield boundary coordinate is set just below the shock layer.

Verification of the present optimal growth module against available transient growth results

from the literature is shown in Refs. [58, 62].
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III. RESULTS

Transient growth results are presented for the hypersonic flow over an spherical forebody.

Firstly, the characteristics of the basic state are analyzed and transition correlation formulas

are applied to the computed basic state solution. Then, the transient growth analysis is

shown, including results for selected objective function definitions. Finally, the implications

of the transient growth predictions are investigated.

A. Basic state and transition correlations

Transient growth analysis is performed for a Mach 7.32 flow over a blunt, hemispherical

capsule at zero angle of attack. The freestream unit Reynolds number is Re′ = 14.6×106 /m,

the freestream temperature is T∞ = 65 K, and the total pressure pt = 5.5208× 106 Pa (800

psi). The isothermal wall condition is set with Tw = 300 K. The radius of the body is R =

0.0889 m. This flow configuration corresponds to one of the conditions from the experiments

presented by Kaattari [49]. The basic state boundary-layer flow over the hemisphere surface

was computed on various grids by using a second-order accurate algorithm as implemented

in the finite-volume compressible Navier-Stokes flow solver VULCAN-CFD (see Ref. [71]

and http://vulcan-cfd.larc.nasa.gov for further information about the solver). Details

about the numerical solution, together with the boundary conditions, and the convergence

study for the basic state are given by Ref. [48]. Specifically, the code uses an iterative shock

capturing adaptation of the grid and outflow nonreflective boundary conditions based on the

characteristics. Here, we use the solution obtained using 258 points along the hemisphere

surface and 706 points in the wall normal direction with at least 200 points in the boundary

layer. The Mach number contours are shown in Fig. 1(a). The boundary-layer edge Mach

number is subsonic over a significant portion of the body length and the maximum edge

Mach numbers within the peripheral region are low supersonic at most.

The computational coordinates, (ξ, η, ζ), are defined as an orthogonal body-fitted coor-

dinate system. The metric factors are defined as

hξ = 1 + κη, (12)

hζ = rb + η cos(φ), (13)

where κ denotes the streamwise curvature, rb is the local radius, and φ denotes the inclination
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FIG. 1. (a) Mach number contours of the basic state with sonic line in black color and (b) graphical

definition of angular coordinate, θ.

of the local tangent to the body surface, i.e., sin(φ) = drb/dξ. The angular coordinate, θ, is

related to the streamwise coordinate by ξ = θ R. Figure 1(b) shows a graphical definition

of the angular coordinate. The streamwise curvature is constant along the hemisphere,

κ = 1/R = 11.249 /m, and the local radius is rb = R sin(θ). Note that the spanwise

wavenumber β of Eq. (4) corresponds to a nondimensional, integer azimuthal wavenumber,

denoted by m. In what follows, the flow variables are nondimensionalized with freestream

values.

The streamwise evolution of basic state streamwise velocity ū, streamwise mass flux ρ̄ū,

convective momentum flux ρ̄ū2, temperature T̄ , and Mach number M , at the boundary-layer

edge is plotted in Fig. 2(a). The boundary-layer edge, ηe = δh, is defined as the wall-normal

position where h0/h0,∞ = 0.995, where h0 is the stagnation enthalpy. The edge streamwise

velocity and edge temperature exhibit a monotonic growth and decay, respectively, with

distance from the stagnation point. In agreement with inviscid flow theory, the streamwise

mass-flux peak is located at the sonic point, Me = 1, which is located at θ = 41.1◦. The

peak of the convective momentum flux at boundary-layer edge ρ̄eū
2
e occurs approximately 15◦

downstream of the sonic point. The boundary layer thickness δh, the momentum thickness Θ

and the boundary layer momentum-thickness Reynolds numberReΘ = ρ̄eūeΘ/µ̄e, are plotted

in Fig. 2(b). The momentum thickness is roughly 10 times smaller than the boundary layer

thickness δh.
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FIG. 2. Streamwise evolution of (a) basic flow variables at the edge of the boundary layer (ūe,

ρ̄eūe, T̄e, and Me), and (b) boundary layer thickness, δh, boundary layer momentum thickness, Θ

and boundary layer momentum thickness Reynolds number ReΘ.

The wall shear τw = (µ̄ūη)w and wall heat ratio qw = (κ̄T̄η)w are proportional to the

wall-normal derivative of streamwise velocity (ūη ≡ ∂ū/∂η) and temperature (T̄η ≡ ∂T̄ /∂η)

at the wall, respectively, for the present flow configuration with constant wall temperature.

Both quantities, (ūη)w and (T̄η)w, are plotted in Fig. 3(a). The wall shear distribution

peaks roughly 5◦ downstream of the sonic point. The wall heat flux monotonically decreases

from the stagnation point. Figure 3(b) shows the pressure gradient parameter in terms

of boundary layer scales, ρ̄eΘ
2/µ̄e × dūe/dξ. Although not shown, the pressure gradient

expressed as the Hartree parameter βH remains within 4% of the theoretical value (βH = 0.5)

up to θ < 30◦, but increases thereafter, reaching βH = 0.83 at θ = 85◦.

The profiles of the basic state variables are plotted in Fig. 4 for θ = 10◦, 30◦, 60◦,

and 90◦. At the locations closer to the stagnation point (θ = 10◦ and 30◦), the basic

state velocity profiles resemble those of the classical similarity solution for stagnation point

flow. Specifically, the wall-normal velocity is negative throughout the boundary layer, the

streamwise velocity increases with distance from the stagnation point, and the boundary

layer thickness remains nearly constant. At farther downstream locations (θ = 60◦ and 90◦),

the wall-normal velocity becomes positive and the boundary layer thickness increases with

θ. The local-similarity solution used by Refs. [45, 46] assumes a constant boundary layer

thickness, a linear acceleration of the streamwise velocity, and an unaltered negative wall-

normal velocity along the body length. As seen from Figs. 2(b) and 3(b), these assumptions

are clearly violated beyond the sonic point, but would also lead to appreciable quantitative
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(ū
η
) w
/(
ū
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(ūη)w/(ūη)w,max

(T̄η)w/(T̄η)w,max

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90

(ρ
e
Θ

2
/ν

e
)(
d
ū
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FIG. 3. Streamwise evolution of (a) wall-normal derivative of basic state streamwise velocity and

temperature variables at the wall normalized with the corresponding maximum value and (b)
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0

0.5

1

1.5

2

-5 0 5 10 15

η
(m

m
)

q̄

10 ū
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FIG. 4. Basic state variables at selected angular positions; namely, (a) θ = 10◦, (b) θ = 30◦,

(c) θ = 60◦, and (d) θ = 90◦. The horizontal dashed line represents the position of the boundary-

layer edge.

discrepancy up to that location.

Here, the transition correlations discussed in the Introduction are applied to the present

problem. As previously mentioned, the existing transition correlations relate the value of

ReΘ at the transition onset location to a local roughness parameter, which corresponds to

the nondimensional roughness height modified by a wall cooling factor, that achieves its

maximum value in the vicinity of the sonic point. The PANT transition correlation from

Eq. (1) assumed the empirical disturbance parameter (T̄e/T̄w)(k/Θ) to correlate with the

relative kinetic energy at the top of the roughness elements, ρ̄kū
2
k/ρ̄eū

2
e. In the correlation
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point.

developed by Reshotko and Tumin [36], the roughness-induced energy is assumed to be

proportional to the relative kinetic energy, ρ̄kū
2
k/ρ̄eū

2
e, the roughness-induced velocities are

assumed to be proportional to the roughness height, ūk/ūe ∝ k/Θ, and the wall-cooling

ratio T̄e/T̄w is assumed to be equal to ρ̄k/ρ̄e. Then, the input energy was assumed to be

Ein ∝ (T̄e/T̄w)(k/Θ)2. Furthermore, the energy norm at transition is related to this input

energy through the “parallel” transient growth energy gain G, i.e., Etr = GEin. The de-

pendence of the energy gain on the wall-cooling factor and Reynolds number was obtained

with parallel transient growth computations using self-similar stagnation flow profiles. Fi-

nally, the correlation constant on the right hand side of Eq. (3) was obtained by fitting with

the PANT wind-tunnel and Reda’s ballistic range databases [35, 44, 72]. The roughness

heights needed to meet the previously introduced boundary layer transition correlations for

the present configuration of a hemispherical forebody are plotted in Fig. 5 as a function of

the angular position. The roughness height needed for transition to occur as predicted by

the three correlations falls within the narrow range of k ∈ (0.045, 0.060) mm. The three

theories agree that the transition location would first occur upstream of the sonic point for

a uniform roughness height along the body surface.
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B. Transient growth characteristics

For a nonsimilar boundary layer such as the hemispherical forebody, both the initial and

final locations must be varied in order to obtain an overall picture of the optimal growth

characteristics. Thus, the computational effort involved is significantly greater than that of a

self-similar boundary layer such as a flat plate or a sharp cone. The transient growth results

are subdivided in two parts. First, the effect of inflow and outflow disturbance locations,

azimuthal wavenumber, and streamwise and azimuthal curvatures, as well as the definition

of the objective function corresponding to either outlet or mean energy gain definitions are

studied. Secondly, the overall results are presented for the mean total and kinetic energy

gains.

1. Effect of disturbance parameters and objective function definitions

First, we consider transient growth results based on the commonly used energy norm E

of Eq. (8), which accounts for both kinetic and thermodynamic fluctuations. Figures 6(a)

through 6(d) illustrate the effect of initial disturbance location θ0 and azimuthal wavenumber

m on the optimal outlet energy gain Gout
E at a fixed output location. Four different outflow

locations are chosen to cover a majority of the computational domain. They vary from

a location shortly downstream of the stagnation point (θ1 = 12.9◦) to the outflow of the

computational domain (θ = 90◦). For each of these outflow locations, several inflow locations

are chosen to help illustrate the overall trends in transient growth characteristics, which are

plotted in Fig. 6, for each of these optimization intervals (θ0, θ1). Results for the farthest

downstream outlet location (θ1 = 90.0◦) are shown in Fig. 6(a), whereas Fig. 6(d) displays

the results for an output location that is modestly downstream of the stagnation point (θ1 =

12.9◦). As shown in previous studies using self-similar boundary layer profiles over a sphere

[45, 46], the energy amplification is stronger for outflow locations closer to the stagnation

point (Fig. 6(d)). Results for θ1 = 64.5◦ and θ1 = 90.0◦ show a larger energy gain for shorter

optimization intervals, i.e., when the inflow location is only modestly upstream of the outflow

location, showing a maximum for θ0 ≈ 83.8◦ with θ1 = 90.0◦ and for θ0 ≈ 61.2◦ with θ1 =

64.5◦. Results for outflow locations closer to the stagnation point, i.e., θ1 = 32.2◦ (Fig. 6(c))

and θ1 = 12.9◦ (Fig. 6(d)), show a similar behavior to the transient growth results on the
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incompressible, stagnation, planar Hiemenz flow [62]. For these cases, as the inflow location

moves closer to the stagnation point from the inflow station corresponding to the first local

maximum in Figs. 6(c) and 6(d) (θ0 ≤ 16.1◦ for θ1 = 32.2◦ and θ0 ≤ 7.73◦ for θ1 = 12.9◦),

the optimal gain continues to increase in a monotonic fashion. As described by Paredes

et al. [62], this increase is accompanied by a change in the optimum initial disturbance. For

initial disturbance locations close to both planar and axisymmetric stagnation points, where

the basic state exhibits a strong negative wall-normal velocity relative to the streamwise

velocity, the wall-normal extent of the optimal disturbance shape function becomes much

longer than the thickness of the boundary layer. Figure 7(a) shows the initial and final

amplitude vectors for one such case where the initial position is close to the stagnation point,

specifically, θ0 = 9.67◦, θ1 = 32.2◦, and m = 130. Observe that the wall-normal velocity

component of the perturbation extends up to the shock layer (η ≈ 6.7 mm). For this case,

a Neumann boundary condition was set at the far field for all the perturbation variables.

As seen from Fig. 7(a), the resulting mode shapes do approach zero perturbation values in

the far-field boundary. The resulting gain was nearly unaffected and the most significant

impact was to allow a smooth perturbation decay outside the boundary layer up to the

far-field boundary. This boundary condition was also used to obtain the optimal energy

gain of Fig. 6(d) for θ0 = 3.22◦ and θ1 = 12.9◦. If the disturbance profiles were to extend

even further, i.e., up to the body-shock location, then the boundary conditions will need

to be modified to explicitly account for the shock [73]. However, the physical significance

of the parametric region where this change becomes necessary remains open to question,

especially in the context of problems where the suspected cause for transition is linked to

surface roughness. The long extent of the perturbation and the associated small optimal

azimuthal wavenumbers are unlikely to represent roughness-induced transition. Therefore,

the present results are confined to the (entire) region of initial locations where the initial

profiles are deemed to be not influenced by the shock. For the initial location corresponding

to the local maximum of energy gain for short optimization intervals, i.e., θ0 = 25.8◦ and

m = 320 in Fig. 6(c), Fig. 7(b) shows that the peak of the wall-normal velocity is located at

η ≈ 0.2 mm, and the disturbance components quickly decay to zero farther away from the

surface. In contrast to the differences in optimum initial profiles depending on the value of

θ0, the final disturbance profiles for both θ0 = 9.67◦ (Figs. 7(a)) and θ0 = 25.8◦ (Figs. 7(b))

are almost identical to each other.
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FIG. 6. Optimal outlet energy gain GoutE as a function of the azimuthal wavenumber m for selected

initial and final optimization positions; namely, (a) θ1 = 90.0◦, (b) θ1 = 64.5◦, (c) θ1 = 32.2◦, and

(d) θ1 = 12.9◦.
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ŵ

0

0.2

0.4

0.6

0.8

1

-3 -1.5 0 1.5 3

η
(m

m
)

102 q̂1

T̂ /M
ρ̂/M

û
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FIG. 7. Initial and final amplitude vectors for optimal outlet energy gain GoutE , θ1 = 32.2◦, and (a)

θ0 = 9.67◦ and m = 130 and (b) θ0 = 25.8◦ and m = 320. The profiles are normalized with the

local energy norm E. The horizontal dashed lines represent the boundary-layer edges.
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FIG. 8. Evolution of energy norm for highest outlet energy gain GoutE for selected initial location

for a fixed θ1: (a) θ1 = 64.5◦ and (b) θ1 = 32.2◦. The plots display energy evolution over the entire

length of hemisphere and the fixed value of θ1 in each case is indicated by the vertical dashed line.

Figure 8 shows the streamwise evolution of the energy norm E for optimal outlet energy

gain with optimal azimuthal wavenumbers and selected initial locations shown in Figs. 6(b)

and 6(c) with θ1 = 64.5◦ and θ1 = 32.2◦, respectively. Although the outlet energy gain

at θ = θ1 is being optimized, the location of maximum energy norm is located within the

range of optimization, i.e., at θ0 < θ < θ1, instead of at the outlet location θ1 for most of the

selected initial locations. This finding is a consequence of the geometry and flow acceleration

along the body. The subsequent decay in the energy norm up to θ = θ1 indicates that the

optimization of the mean energy gain Gmean
E might be more appropriate for this problem.

The effect of streamwise and azimuthal curvatures is studied in Fig. 9. Optimal outlet

energy gains as a function of the azimuthal wavenumber for the initial and final locations of

Fig. 6(b) are calculated using the same basic state profiles but by artificially setting hξ = 1

to neglect the effects of streamwise curvature (Fig. 9(a)) and hζ = 1 to neglect the effects

of azimuthal curvature (Fig. 9(b)). The comparison with results including the effect of both

curvature terms (dashed lines) shows that the streamwise curvature has a stronger effect

than the azimuthal curvature. As expected, the effects of the streamwise and azimuthal

curvatures become stronger as the optimization interval is increased. The maximum energy

gain is slightly reduced after dropping the azimuthal curvature terms, with a maximum

reduction that is less than a factor of 2 for θ0 = 19.3◦ in Fig. 9(b). However, neglecting the

streamwise curvature terms (Fig. 9(a)) changes the transient growth behavior, reaching the

maximum energy gain for a different azimuthal wavenumber and optimization interval, and
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FIG. 9. Optimal outlet energy gain GoutE as a function of the azimuthal wavenumber m neglecting

(a) streamwise curvature (hξ = 1) and (b) azimuthal curvature (hζ = 1) effects for selected initial

positions and same final position, θ1 = 64.5◦. For reference, results accounting for both curvatures

are added as dashed lines with the corresponding colors. Note that both subfigures share the same

legend.

increases the maximum energy amplification by a factor of approximately 3.

Results analogous to those in Figs. 6(b) and 6(c) but based on the alternate definition of

objective function corresponding to the mean energy gain are shown in Figs. 10(a) and 10(b),

respectively. By optimizing the mean energy gain over the streamwise domain, the results in

Fig. 10 account for the interior maximum in disturbance energy observed with the conven-

tional, outlet energy gain (Fig. 8). Figure 10(a) shows an important disparity between both

energy gain definitions for θ1 = 64.5◦. While the optimal outlet energy gain decreases as

the inflow location moves closer to the stagnation point, the optimal mean energy gain has

a local minimum for θ0 ≈ 45◦ and continues to increase for θ0 → 0. The optimal azimuthal

wavenumbers are consistently larger for the mean energy gain optimization at each initial

location. Results of Fig. 10(a) for Gmean
E and θ1 = 64.5◦ resemble those of Fig. 6(c) for Gout

E

and θ1 = 32.2◦, because the mean energy gain definition accounts for the nonmonotonic

evolution of E(ξ), which as will be shown next, reaches its maxima within the optimization

domain and close to θ ≈ 30◦ for θ0 = 12.9◦ and θ0 = 19.3◦. Figure 10(b) shows the effect

of initial location on the optimal gain for the final optimization location θ1 = 32.2◦. The

differences between the results with both energy gain definitions are less noticeable for this

case. The initial and final disturbance amplitude vectors corresponding to θ1 = 32.2◦ are

plotted in Fig. 11 for two combinations of initial locations and optimal azimuthal wavenum-
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FIG. 10. Optimal mean energy gain GmeanE as a function of the azimuthal wavenumber m for

selected initial and final optimization positions (a) θ1 = 64.5◦ and (b) θ1 = 32.2◦. The results with

J = GoutE are added for reference as dashed lines with the corresponding colors for each θ0.

bers. Specifically, Fig. 11(a) corresponds to θ0 = 9.67◦ and m = 130 whereas Fig. 11(b)

corresponds to θ0 = 25.8◦ and m = 400. The optimal initial perturbations based on the

two different objective functions are compared with each other for the fixed set of param-

eters corresponding to θ0 = 9.67◦, θ1 = 32.2◦, and m = 130. Between the initial profiles

corresponding to mean energy gain (Fig. 11(a)) and those based on the outlet energy gain,

the mean energy gain corresponds to wall-normal and azimuthal velocity profiles with a

shorter wall-normal extension and the peaks of these profiles are located closer to the wall.

Specifically, the peak of the wall-normal velocity moves closer to the wall by a factor of

approximately 4. Thereby, the choice of objective function based on the mean energy gain

appears more relevant to roughness-induced perturbation. The final perturbations are rather

similar for both objective functions. Analogous comparison for the shorter optimization in-

terval of θ0 = 25.8◦ and θ0 = 32.2◦ can be made on the basis of results for mean energy gain

with m = 400 in Fig. 11(b) and those for outlet energy gain with m = 320 in Fig. 7(b). In

this case, both initial and final perturbation profiles are similar for both definitions of the

energy gain, although the peak of the wall-normal velocity is again located closer to the wall

due to the combined effect of choosing mean energy gain as the metric for optimization and

the larger azimuthal wavenumber corresponding to the maximum gain in this case.

The streamwise evolution of disturbance energy based on the optimization of mean en-

ergy gain across the spatial intervals from Fig. 10 (and corresponding optimal azimuthal

wavenumbers), is plotted in Fig. 12. For most initial positions of interest, the disturbance
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FIG. 11. Initial and final amplitude vectors for optimal mean energy gain GmeanE , θ1 = 32.2◦, (a)

θ0 = 9.67◦ and m = 130 and (b) θ0 = 25.8◦ and m = 400. The profiles are normalized with the

local energy norm E. The horizontal dashed lines represent the boundary-layer edge.
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FIG. 12. Evolution of energy norm for highest gain in mean energy for selected initial location for

a fixed θ1: (a) θ1 = 64.5◦ and (b) θ1 = 32.2◦. The plots display energy evolution over the entire

length of hemisphere and the fixed value of θ1 in each case is indicated by the vertical dashed line.

energy obtained in this manner reaches larger values within the optimization domain than

those obtained by optimizing the outlet energy gain (Fig. 8).

2. Overall transient growth results

The optimal mean energy gain Gmean
E is plotted in Fig. 13(a) in the parameter space of

θ0 and θ1, for each corresponding optimal azimuthal wavenumber m. The domain of the

contour plot is limited by the line θ1 = θ0 (i.e., zero optimization interval or GE = 0) on

the bottom and by the line θ1 >> θ0 (i.e., rather larger optimization interval) on the top.
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The region beyond the upper boundary is excluded herein because the initial perturbation

profiles (particularly the wall-normal velocity) for these parameter values do not exhibit

sufficient decay at the wall-normal distance corresponding to the shock location and the

transient growth analysis is not able to converge to a satisfactory result. Therefore, this

portion of the plot is deemed unnecessary for the present analysis because the perturbations

with an extended wall-normal support are unlikely to be excited by wall roughness. Fig-

ure 13(a) confirms the previous observations based on the energy norm E from Eq. (8). The

highest energy gain occurs for relatively short optimization intervals in the vicinity of the

stagnation point as indicated by the black line nearly parallel to the lower boundary of the

plot. Figure 13(b) shows the evolution of the energy norm E for parameters that produce

the maximum mean energy gain at selected θ0. The maximum energy ratio is E/E0 ≈ 500.

The evolution of the kinetic energy budget for these perturbations is also shown in this plot.

Compared to the total energy norm E of Eq. (8), the kinetic energy norm K of Eq. (10)

exhibits a different trend as seen from Fig. 13(b). The kinetic energy growth for optimal

perturbations initiated near the stagnation point is negligible compared with the growth in

total energy E. Specifically, the maximum kinetic energy ratio for θ0 = 1.91◦ is K/K0 ≈ 2.

As the initial location is moved downstream, the kinetic energy content of the perturbation

increases and for θ0 = 51.0◦, the magnitude of kinetic and total energy norms are nearly

equivalent. The stability analysis of finite-amplitude streaks in compressible boundary lay-

ers [50, 51], as well as the analysis of Paredes et al. [52] for the present configuration, shows

that the secondary instabilities that can potentially lead to bypass transition are driven by

the strength of the streamwise velocity shear. Therefore, the reduced kinetic energy content

of the perturbations initiated near the stagnation point as seen in Fig. 13(b), motivates the

alternate selection of the energy norm for optimization, namely, one that is based on the

kinetic energy alone.

Figure 14(a) shows iso-contours of optimal mean kinetic energy gain Gmean
K in the pa-

rameter space of θ1 and θ0. Similar to Fig. 13(a), the results are delimited by θ1 = θ0

and θ1 >> θ0. The main difference between both figures is that for optimization of GK

there exists an optimum set of parameters that lead to a maximum Gmean
K in the interior

of the domain. Also, this interior peak exists only for θ0 > 15◦. Figure 14(b) shows the

evolution of the kinetic energy K and total energy E for the selected sets of parameters

that produce the maximum gain in mean kinetic energy at selected values of θ0. A similar
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FIG. 14. (a) Contours of optimal mean kinetic energy gain GmeanK and (b) evolution of K/K0 and

E/K0 for optimal combinations of θ0, θ1 and m. The solid line in the contour plot indicates the

value of θ1 corresponding to maximum GmeanK for a given θ0.

trend to Fig. 13(b) is observed; while the kinetic energy experiences a maximum growth of

K/K0 ≈ 90 for θ0 ≈ 44◦, the total energy growth is reduced for larger θ0. For the largest θ0

plotted, θ0 = 63.7◦, the total energy is almost equivalent to the kinetic energy.

The pairs of parameters θ1 and m that lead to the maximum values of Gmean
E and Gmean

K

for selected θ0 values are plotted in Fig. 15. As previously observed, Gmean
E experiences a

monotonic decay from θ0 ≈ 2◦ and Gmean
K reaches a maximum value for θ0 ≈ 44◦. For the

farthest downstream initial locations included in the plot, Gmean
E ≈ Gmean

K , i.e., nearly all of
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FIG. 15. (a) Optimal mean energy gains, GmeanE and GmeanK , as a function of θ0 and corresponding

optimization intervals, θ1 − θ0, and (b) azimuthal wavenumbers, m, and β = m/(R sin θ0).

the overall energy corresponds to the kinetic energy component. Thus, the thermodynamic

fluctuations do not experience any growth for those θ0. Despite the larger values of Gmean
E

with respect to Gmean
K , the kinetic energy contains the streamwise velocity perturbations

that lead to secondary instabilities, and subsequently, to the process of laminar breakdown

[50–52]. The evolution of Gmean
E and Gmean

K is rather similar to the evolution of basic state

quantities corresponding to the wall normal derivatives of temperature, T̄η, and streamwise

velocity, ūη, at the wall (Fig. 3(a)). The optimization interval (θ1 − θ0) that produces

the maximum Gmean
E and Gmean

K falls within the narrow range of (θ1 − θ0) ∈ (5◦, 6◦) for

θ0 > 10◦. The short optimization distance is in line with the findings by Theiss et al.

[74] pertaining to the wakes of isolated roughness element over a spherical forebody. The

laminar stationary wake of the roughness element experiences a growth and decay of the

streak amplitude within a short distance, equal to just a few roughness-element diameters

downstream of the element. The optimal azimuthal wavenumber m and corresponding local

spanwise wavenumber β = m/(R sin(θ0)) are plotted in Fig. 15(b). For initial locations lower

than θ0 = 45◦, the optimal azimuthal wavenumber shows a nearly linear trend with θ0, but

the optimal local spanwise wavenumber β = m/(R sin(θ0)) for optimal GE and optimal GK

is contained within the narrow ranges of βE ∈ (10, 10.7) 1/mm and βK ∈ (11.5, 12.5) 1/mm,

respectively.

Next, the transient growth amplification is plotted in terms of the logarithmic amplifi-

cation ratio, the so-called N -factor, based on the total energy norm NE, or kinetic energy
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FIG. 16. N -factor curves (thin lines) and envelope (thick line) based on (a) total energy growth

NE (b) kinetic energy growth NK . The optimal parameters for maximum (a) GmeanE and (b) GmeanK

are selected for each θ0.

norm NK , defined as

NE(ξ) = 1/2 ln[E(ξ)/E(ξ0)], (14)

NK(ξ) = 1/2 ln[K(ξ)/K(ξ0)]. (15)

Figure 16(a) and 16(b) show the NE curves with optimal parameters for maximum Gmean
E ,

and theNK curves with optimal parameters for maximumGmean
K , respectively. The envelopes

show a similar evolution to the optimal gains Gmean
E and Gmean

K , in Figs. 15(a). While the

maximum NE occurs close to the stagnation point, the maximum NK is found at θ = 47.5◦.

Figure 17 shows the effect of outflow location θ1 and azimuthal wavenumber m on the

evolution of the disturbance kinetic energy along the hemisphere, i.e., θ = [θ0, 90◦], for a

fixed initial position of θ0 = 44.7◦ that approximately corresponds to the optimal initial

location for the highest overall gain in mean kinetic energy. For increasing θ1, the cor-

responding optimal m decreases, compounding the increase in streak spacing because of

increased transverse radius at farther downstream locations. The maximum kinetic energy

is achieved for the conditions that coincide with those for the maximum mean kinetic energy

gain. Figure 17(b) shows the evolution of the kinetic energy at various values of m for a

fixed θ1 = 49.3◦. In this plot, only the curve with m = 721 corresponds to the optimal

wavenumber for the physical interval of interest, namely, (θ0, θ1) = (44.7◦, 49.3◦). Increasing

values of m are seen to reduce the streamwise length of the region over the disturbance

kinetic energy would exceed a specified threshold.
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FIG. 17. Effect of final optimization location θ1 and azimuthal wavenumber m on kinetic energy

evolution for optimal mean kinetic energy gain GmeanK and θ0 = 44.6◦. Subfigure (a) shows evolution

of optimal perturbations with combinations of θ1 and m, and subfigure (b) shows evolution of

optimal perturbations with suboptimal selected m with fixed θ1 = 49.3◦.

C. Implications of transient growth predictions

Herein, the results of this optimal growth analysis are used to reexamine the highly suc-

cessful transition criteria of Reshotko and Tumin [36] and the experimental observations of

transition near the sonic location of Kaattari [49]. Note that for short optimization inter-

vals, the initial optimal disturbance corresponds to pairs of counter-rotating vortices with

similar magnitudes of the wall-normal and spanwise velocity components, and with peak-

perturbation locations that are contained withing the boundary layer thickness, as shown

in Fig. 11(b). Numerical studies [33, 39, 40, 42, 75, 76] have shown that roughness elements

induce similar counter-rotating vortices that can experience transient growth. However,

the disturbance induced by roughness elements exhibits a significant streamwise velocity

component, which is not present in the theoretically optimal perturbations. Therefore,

roughness-induced transient growth is certainly possible, but always suboptimal. Despite

the reported low amplification ratios in the present configuration, the growth of transient

growth streaks induced by subcritical distributed roughness elements might lead to the onset

of non-stationary streak instabilities that induce transition shortly after their onset [52, 74].

As introduced by Reshotko and Tumin [36], the optimal kinetic energy gain can be related

to roughness-induced kinetic energy, Kin = ρ̄kū
2
k, by assuming that the roughness-induced

velocities are proportional to the roughness height ūk/ūe ∝ k/Θ, and that T̄e/T̄k = ρ̄k/ρ̄e,
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where T̄k = T̄w. Then, the induced kinetic energy can be written as

Kin ∝
T̄e
T̄w

(
k

Θ

)2

ρ̄eū
2
e. (16)

Here, ρ̄eū
2
e is not uniform along the streamwise direction (Fig. 2(a)) and therefore, is included

in Eq. (16). Note that this term was not included in the correlation derived by Reshotko

and Tumin [36], because they performed a local analysis and used the edge boundary layer

values for nondimensionalization, while here, the global freestream values are used to be

consistent with the transient growth analysis of Subsection III B.

Furthermore, the energy at the transition location is assumed to be

Ktr = GKKin ∝ Gmean
K

T̄e
T̄w

(
k

Θ

)2

ρ̄eū
2
e. (17)

Finally, in the spirit of an absolute amplitude criterion for transition, the transition onset

location is associated with a critical disturbance amplitude Atr =
√
Ktr ∝ ckk, where ck

is defined as the roughness-induced transfer function from roughness height to amplitude

disturbance,

ck =

√(
Gmean
K

T̄e
T̄w
ρ̄e

)
ūe
Θ
. (18)

This critical disturbance amplitude is assumed to corresponds to the amplitude required

for sufficient amplification of secondary instabilities to achieve subsequent breakdown. At

the location of maximum ck (θck,max
), the roughness height required to produce a certain

disturbance amplitude is minimum, i.e., θck,max
= θkmin

, and k ∝ 1/ck. Eq. 18 can be

related to the correlation of Eq. 3 derived by Reshotko and Tumin [36], by dropping ρe

and ue because of the local assumption used in their analysis and by assuming G1/2/ReΘ ∝

(2Tw/Te)
−0.77.

The optimal mean kinetic energy gain (previously plotted in Fig. 15(a)) divided by its

maximum value, GK,max = 59.6, is shown in Fig. 18(a), together with the locations corre-

sponding to the sonic point Me = 1 and maximum wall shear (or equivalently, the maximum

of (ūη)w for this case with constant wall temperature). The locations for maximum Gmean
K

and (ūη)w are almost at the same downstream position. This result is in agreement with

incompressible parallel transient growth theory, where the nonmodal growth is known to be

driven by the velocity shear [2]. Figure 18(b) shows that θkmin
= 39.2◦, which is slightly

upstream of the sonic location θMe=1 = 41.1◦. This result is in agreement with the experi-

mental observations of the PANT Program [43, 44], which reported that roughness induced
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FIG. 18. (a) Optimal mean kinetic energy gain and (b) roughness-induced transfer function and

roughness height. The values are normalized with their corresponding maximum or minimum. The

vertical lines denote the sonic point and the location for maximum wall shear.

TABLE I. Comparison of angular location of minimum required roughness height for transition

onset with predictions by PANT [43, 44], Reda [35] and Reshotko & Tumin (RT) [36] roughness-

induced transition correlations.

PANT Reda RT: Parallel, GE Nonparallel, GmeanK

θkmin
27.3◦ 34.8◦ 36.9◦ 39.2◦

transition flashed upstream from the cone to somewhere ahead of the sonic point when

ReΘ

(
k
Θ
Te
Tw

)0.7

≥ 255 at the sonic point. Furthermore, Table I shows that the location θkmin

is in agreement with the transition locations predicted by roughness-induced transition cor-

relations. The present geometry and flow conditions correspond to the experiment study of

Kaattari [49], who focused on the effects of mass addition on transition and heat transfer.

Transition onset was not observed for zero mass injection. As the mass injection rate was

increased, the transition location was first observed at θtr ≈ 45◦, which is in good agreement

with the present prediction, θkmin
= 39.2◦, taking into account that the optimization interval

is approximately 5◦ (Fig. 15(a)). Note that although the mass injection can be considered

as a wall roughness, it also modifies the boundary layer profiles [48] and the analysis pre-

sented here is performed for the zero mass addition case in the same way that the roughness

correlations are applied using boundary layer parameters evaluated for the no roughness

case.
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IV. CONCLUDING REMARKS

Optimal transient growth analysis has been conducted for the laminar flow based on

the solution of the Navier-Stokes equations over a hemisphere of radius R = 0.0889 m at

zero angle of attack and freestream conditions corresponding to the experiment of Kaattari

[49], namely, M∞ = 7.32, Re′ = 14.6 × 106 /m, and T∞ = 65 K. The parabolized stability

equations (PSE) were used in a variational approach to obtain the optimal initial disturbance

that leads to the maximum energy gain for a selected streamwise domain and azimuthal

disturbance wavenumber.

A commonly used objective function for optimal growth predictions corresponds to inlet-

to-outlet gain in the so called Mack’s energy norm, which combines the contributions from

both kinetic and thermodynamic fluctuations. For this choice of objective function, the

predicted trends based on the Navier-Stokes basic state are in agreement with the previous

results [45, 46] based on a local-similarity solution to boundary layer equations; specifically,

the transient growth is stronger in the vicinity of the stagnation point and the convex

curvature reduces the optimal energy amplification. The results are also consistent with prior

predictions for the incompressible, planar Hiemenz flow in that, for optimization domains

close to the stagnation point, the optimal azimuthal wavenumber becomes rather small

and the initial perturbation profile extends beyond the boundary layer edge [62]. In the

present hypersonic case, the optimum initial profile extends into the shock layer, indicating

a significant wall-normal velocity perturbation at locations approaching the bow shock. Such

perturbations are unlikely to represent roughness-induced transition.

Optimal growth computations are also performed using an alternate objective function

that maximizes the mean energy gain over the integration domain. The latter selection of

objective function yields larger energy amplification and the resulting optimal initial dis-

turbance profiles move closer to the wall, denoting perturbations that may be more easily

realizable via surface roughness. Although the maximum energy gain is obtained for short

optimization intervals with initial locations near the stagnation point, the streamwise veloc-

ity shear of the basic flow profiles is very small in the vicinity of the stagnation point, and

consequently, the optimal perturbations excited near this location do not lead to downstream

perturbations with the highest kinetic energy.

The transient growth disturbances are purely stationary and their growth cannot amount
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to laminar-turbulent transition. The growth of transient growth streaks can lead to the onset

of non-stationary streak instabilities that typically amplify rather rapidly and induce tran-

sition shortly after their onset. The growth of streak instabilities is intimately connected

with the amplitude of transient growth streaks. Because the streak instabilities are mostly

driven by streamwise velocity shear [50–52], a greater content of kinetic energy within a

specified total energy is likely to enhance the growth of those instabilities, and therefore,

potentially lead to an earlier onset of bypass transition. For this reason, transient growth

analysis was performed with the mean kinetic energy gain as the objective function. The

results show that the maximum kinetic energy gain is obtained for an initial location ap-

proximately coincident with the maximum-wall-shear position, which for the present case is

located approximately 3◦ downstream of the sonic point at θMe=1 = 41.1◦. By assuming that

the initial perturbation velocity induced by the roughness is proportional to the roughness

height and that the ratio of basic state densities near the boundary layer edge and rough-

ness height, respectively, is proportional to the wall-cooling factor, a transfer function from

roughness height to disturbance amplitude is defined and has a maximum at θ = 39.2◦. A

larger transient growth disturbance amplitude is directly linked to a greater destabilization

of the secondary instabilities and subsequent breakdown. This maximum corresponds to the

location where a minimum roughness height would be required to produce a certain distur-

bance amplitude. This position is compared with roughness-induced transition correlations

[35, 36, 44] and the agreement is satisfactory. Furthermore, Kaattari [49] measured the

transition location for minimum mass injection at θ ≈ 45◦, which is in good agreement with

the predicted location of peak boundary layer perturbation, considering that the length of

the optimization interval is approximately 5◦.

The implications of these findings for the transition correlation derived by Reshotko and

Tumin [36] are not obvious; however, it will be worthwhile to investigate those in future work

by using the present theoretical formulation to examine the dependence of transient growth

on wall temperature, freestream Mach number, and geometry radius, and then attempting

to derive a revised transition criterion based on the stronger foundation of nonparallel spatial

transient growth.

The optimal energy gains and corresponding initial profiles vary with the choice of energy

norm, and also of the objective function. We show herein that in certain important prob-

lems as the blunt-body paradox, the potential utility of the optimal growth theory could
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be improved by making judicious selections of energy norm and objective functions. The

resulting predictions provide a possible explanation for the experimental observation that

roughness induced transition over blunt bodies occurs near or somewhat upstream of the

sonic point.

We note that the generation (i.e., receptivity) of the streak disturbances has not been

addressed in this paper. As previously mentioned, disturbance profiles resulting from real-

istic external disturbances result in suboptimal transient growth. The present results based

on optimal initial disturbances may therefore be viewed as providing an upper bound on

nonmodal energy amplification due to spanwise periodic disturbances.

The results show a maximum logarithmic amplification ratio based on kinetic energy norm

of NK = 2.24, which corresponds to an amplitude growth of A/A0 =
√
K/K0 ≈ 10. Paredes

et al. [52] show that the present boundary layer perturbed by finite-amplitude optimal per-

turbations becomes unstable for streak amplitudes Asu > 0.16. Therefore, the needed initial

amplitudes of optimal perturbations for secondary instability would be A0 > 0.01. Taking

into account that perturbations induced by distributed roughness are suboptimal [40], a

realistic perturbation would need even larger initial amplitudes. Consequently, nonlinear

effects are expected to be important and, therefore, the study of suboptimal nonlinear per-

turbations that are more readily realizable via distributed roughness would be very helpful.

We hope that the present set of results would spur analyses of this type and also provide

useful guidance for defining the relevant roughness configurations.
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