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Abstract

We report on the coefficient of restitution of bubble collision on a free surface in the presence

of surfactants. In pure fluids, the collision process is well described by a competition between

thin film drainage and interfacial tension. When surfactants are introduced in the pure water,

they generate Marangoni stresses on both the bubble interface and free surface, which provides

an additional mechanism affecting the collision process. We investigate this mechanism for the

bubble collision process in surfactant solutions through a combination of experimental and numer-

ical approaches, with results showing a reduced rebound velocity during the collision process in

surfactant solutions compared with that in the pure water. Furthermore, by varying both bubble

size and surfactant concentration, our experiments show that bubbles experience elastic, partially

inelastic and perfectly inelastic collisions. We identify the Langmuir number, the ratio between ab-

sorption and desorption rates, as the fundamental parameter that quantifies the Marangoni effect

on the collision process. The effect of Marangoni stress on the bubble’s coefficient of restitution

is non-monotonic, where the coefficient of restitution first decreases with Langmuir number, and

then increases.
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I. INTRODUCTION

Surfactants are known to effectively reduce the rate at which bubbles rise in pure fluids

[1, 2]. The first physical explanation of this phenomenon is given by Frumkin & Levich

[3]. For a translating bubble, surfactants on the bubble interface are adsorbed from the

bulk solution, generating Marangoni stresses that reduce interfacial mobility and increase

the drag acting on the rising bubble. To date, several papers have discussed the effect of

surfactants on bubble’s drag coefficient [4, 5], its lift force under shear flow [6], and its steady-

state velocity [1, 7]. For a bubble rising rectilinearly in a surfactant solution, the reduced

steady-state velocity can be simulated using a stagnant cap model, which assumes a no-slip

velocity within the cap region and zero shear condition at the remaining portion of the bubble

interface [1]. Cuenot et al. [4] solved the full Navier-Stokes equations coupled with the bulk

and interfacial surfactant concentration equations. Their numerical study confirmed the

validity of the stagnant-cap model, and furthermore, they studied the transient evolution of

the flow over a spherical bubble in surfactant solutions.

Large bubbles [8] and multiple bubble interactions [2] have been observed in practical

systems, where the effects of non-spherical shape and dynamic interfacial interactions need

to be considered. For an isolated large air bubble (diameter larger than 2 mm) in quiescent

water, surfactants changed its path instability [8]. Recent numerical simulations [9–11] have

revealed the significance of surfactant affecting the transient behavior of a non-spherical

bubble. In a bubbly flow, surfactants could change the flow structure through altering

bubble-bubble interactions and inhibiting the coalescence of small bubbles [2].

Studies on interactions between air bubbles and free surface are important for both envi-

ronmental and industrial applications. The interactions may lead to the coalescence of gas

bubbles in mass transfer equipments such as bubble columns, decreasing overall interfacial

area [12]. Despite decades of research studying the collision process in pure liquids [13–17],

the relevant bubble dynamics in surfactant solutions are poorly understood. In this work, we

conduct experimental studies, aided by the numerical simulations, to examine the effect of

surfactant on rising bubbles colliding on a free surface. Section 2 describes the experimental

setup. We report the mathematical models and numerical implementations for multiphase

flows in surfactant solutions in section 3. In section 4, we first compare the bubble dynamics

in both pure water and surfactant solutions. Subsequently, we examine the effect of surfac-
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tants on both the drag acting on the rising bubbles and their collision processes. Finally,

we conclude with our findings of this study in section 5.

II. EXPERIMENTAL SECTION

The experimental setup is shown in Figure 1(a). Air bubbles were generated by either

a borosilicate glass capillary or a stainless steel needle that was installed at the center of

the 3D-printed base and was connected with a precision syringe pump (PHD Ultra) from

Harvard Apparatus. Generated bubble radii ranged from 0.44 mm to 0.84 mm. The test

container (size: 1 in × 1 in × 4 in) was made of borosilicate glass. Before conducting each

experiment, we eliminated container’s contaminations using ultrasonic bath with ultra-pure

water. The ultra-pure water was supplied by purification system (Barnstead MicroPure

UF/UV, Thermo Scientific). Its electric resistivity was 18.2 MΩ · cm (18.18 MΩ · cm for

ultra-pure water [18]). The conductivity and total organic carbon in the water were 0.055

µS · cm−1 and 5 p.p.b., respectively. We chose 1-pentanol as our surfactant model due to

its well-known kinematics of dynamic adsorption [19, 20]. The concentration of 1-pentanol

solution ranged from 0 to 200 mM (0 % to 8 % of critical micellar concentration (CMC)).

The surface tension value between air and 1-pentanol solution was measured using a pen-

dant droplet tensiometer (Ramé-Hart 500), and was found in good agreement with the

Szyszkowski equation [21] (see the Appendix). A CMOS camera (Phantom Miro M340,

Vision Research) mounted on a micro-stage recorded images at 1600 ∼ 3000 frames/s. The

images were pre-processed by taking the inverse intensity, and a subsequent local minimum

background subtraction to eliminate background noise. The bubble center was determined

by calculating the geometric center of the generated binary image with a pre-selected in-

tensity threshold. The instantaneous bubble velocity was obtained by taking the central

difference of the bubble’s vertical position with respect to time. The temporal evolution of

the translational velocity of a 0.66 mm bubble in both pure water (black solid triangles) and

5 mM 1-pentanol solution (red solid circles) is shown in Figure 2(a). We should note that

there is a period during which the bubble collides on and is in contact with the free surface,

and position and centroid measurements contain large error. Consequently, measurement

uncertainties for bubble centroid are large. Therefore, we exclude all experimental data for

this period in Figure 2.
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FIG. 1. (Color online)(a) The schematic diagram of the experimental setup. (b) A direct compar-

ison of a raw image of an ascending bubble (R = 0.66 mm) using experiments and 3D numerical

simulation in pure water. The vectors in 3D numerical simulation indicate flow velocity.

III. MATHEMATICAL MODEL AND NUMERICAL IMPLEMENTATION

A. Mathematical model

In this section, we describe the mathematical model for both rising motion of gas bubbles

and their collisions on a free surface. Both gas and liquid phases are homogenous fluids

(see Figure 1(b)). The equations of motion for viscous, incompressible fluids in the entire

computational domain are

∇ · u = 0, (1)

ρ
Du

Dt
= −∇p+ µ∇2u + ρg + f , (2)

where t is time, u is the flow velocity, p is the hydrodynamic pressure, g is the gravitational

acceleration, µ is the dynamic viscosity of the fluid, and ρ is the fluid density. D(·)/Dt is

the material derivative. Since fluid properties remain constant within each phase, Dρ
Dt

= 0

and Dµ
Dt

= 0. The density ρ and viscosity µ can be written as ρ = ρi + φ(ρo − ρi) and

µ = µi+φ(µo−µi), where subscripts i and o refer to gas phase and liquid phase, respectively;
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the indicator function φ separates two phases with φ = 1 for the bulk liquid and φ = 0 for

the gas phase. The surface tension force f in the momentum equation, Eq. (2), acts on the

interfaces (free surface and bubble interface),

f = 2

∫
A

σκnδ (x− xf ) dA, (3)

where σ is the surface tension coefficient; dA is the surface differential element; κ is the

mean curvature of the interface; n is the unit vector normal to the interface. The interface

can be described by a collection of distributed points xf . Three dimensional delta function

δ is used to calculate interfacial force, which is only nonzero on the interface.

Surfactants are soluble, and mass transfer occurs between the bulk fluid and the interface.

We write the convection-diffusion equations for both bulk concentration C and interfacial

concentration Γ, respectively,

∂C

∂t
+∇ · (uC) = ∇ · (Dc∇C) + Ṡc, (4)

∂Γ

∂t
+∇s · (ΓUs) = Ds∇2

sΓ + ṠΓ, (5)

where Us is the tangential velocity on the interface; the surfactant is impermeable to gas

phase, therefore Dc = Doφ; Do is the molecular diffusion coefficient of surfactant in the

bulk liquid; ∇s = ∇ − n (n · ∇) is the surface gradient defined at the interface; Ds is the

interfacial diffusion coefficient of the surfactant. The dynamic adsorption of surfactant on

the interface is given by

ṠΓ = kaCs (1− Γ/Γ∞)− kdΓ, (6)

and this source term is related to the bulk concentration via the following relationship

ṠΓ = −Dc

(
n · ∇C|C=Cs

)
, (7)

where ka and kd are the adsorption and desorption rate constants, respectively; Cs is the

surfactant bulk concentration evaluated adjacent to the interface; Γ∞ is the maximum inter-

facial surfactant concentration. The value of surface tension coefficient is directly affected by

the interfacial surfactant concentration Γ, and it is written as σ/σ0 = 1 + β ln (1− Γ/Γ∞),

where β = RTΓ∞/σ0 characterizes the sensitivity of surface tension σ to interfacial surfac-

tant concentration Γ, R is the ideal gas constant and σ0 is the surface tension of a clean

interface at room temperature T . For our experiments, the room temperature is kept at
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21◦C, and σ0 is about 72.2 mN/m which is consistent with previous literature [19, 20].

Therefore, for 1-pentanol solution, β = 0.20. The time scale [8] for achieving the equi-

librium interfacial surfactant concentration can be estimated as τe ∼ (kaC∞/Γ∞ + kd)
−1,

where C∞ is the initial surfactant bulk concentration. Therefore, surfactant solution with a

high bulk concentration quickly reaches equilibrium. For 1-pentanol solution, Γ∞, ka, and

kd are invariant under different bulk concentrations [19, 20]: Γ∞ = 5.90× 10−10 mol · cm−2,

ka = 3.00× 10−3 cm · s−1, and kd = 1.10× 102 s−1. For a 0.66 mm radius bubble in 1 mM

1-pentanol solution, the dimensionless distance xe/R for reaching the equilibrium state can

be estimated as xe/R ∼ ρgRτe/(9µ) = 6.25. In both experiments and numerical simulations,

domain sizes are large enough so that the interfacial surfactant concentration reaches the

equilibrium state, and the bubble reaches steady-state velocity Ut before colliding on the

free surface. Parameters corresponding to 5 mM 1-pentanol solution are listed in table I.

TABLE I. Parameters for 5 mM 1-pentanol solution

Temperature (Celsius) 2.1× 101

Surface tension of pure water (dyne/cm) 7.2× 101

Surface tension of 5 mM 1-pentanol (dyne/cm) 6.8× 101

Maximum interfacial surfactant concentration Γ∞ (mol/cm2) 5.9× 10−10

Adsorption kinematic coefficient ka (cm/s) 3.0× 10−3

Desorption kinematic coefficient kd (s−1) 1.1× 102

Bubble size R (mm) 6.6× 10−1

The list of dimensionless parameters is summarized in table II. The characteristic velocity

of bubble U = ρgR2/9µ is used to evaluate dimensionless parameters. Note that there is no

fitting parameter in the numerical simulations.

B. Numerical implementation

A front-tracking/finite-volume method [22, 23] is applied to solve Eqs. (2) and (4) on

fixed uniform cartesian staggered grids. The time discretization is obtained using the first-

order Euler method. Diffusion terms in Eqs. (2) and (4) are solved using central-difference

schemes. In Eqs. (2) and (4), the convection terms are solved using QUICK (quadratic
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TABLE II. Dimensionless parameters for 5 mM 1-pentanol solution

Reynolds number, ReU = 2ρUR/µ 6.3× 102

Capillary number, CaU = µU/σ 6.6× 10−3

Bulk Péclet number, Pe = 2UR/Dc 6.3× 101

Interfacial Péclet number, PeS = 2UR/DS 6.3× 101

Density ratio, ρi/ρo 8.2× 102

Viscosity ratio, µi/µo 5.5× 102

Adsorption kinematics, k = kaC∞/kdΓ∞ 2.3× 10−1

Biot number, Bi = 2kdR/U 3.1× 10−1

Damkohler number, Da = Γ∞/DC∞ 8.9× 10−4

Elasticity number, βS = RTΓ∞/σ 2.0× 10−1

upstream interpolation for convective kinetics) [24] and upwind fifth order WENO-Z scheme

[25], respectively. The projection method is utilized to enforce the continuity condition in

Eq. (1), and resultant Poisson equation for the pressure is solved using the Hypre library

[26]. Both bubble interface and free surface are represented by unstructured Lagrangian

triangular grids. Eq. (5), which governs the evolution of interfacial surfactant concentration,

is solved on these Lagrangian grids. On each triangular element ∆e, Eq. (5) is written in

an integral form,
d

dt

∫
∆e

ΓdA = Ds

∫
∆e

∇2
sΓdA+

∫
∆e

ṠΓdA. (8)

The term on the left hand side of Eq. (8) is solved using a first order explicit Euler method;

the surface Laplacian term in Eq. (8) is solved in an identical way used for the calculation

of curvature κ in Eq. (2). More details on the numerical implementation can be found in

references [11, 22, 23].

In the simulation, a spherical bubble of radius R is initially placed at the center of

x− y plane and rises from location zo, which is 2R away from the bottom. The size of the

computational domain is 9R × 9R × 36R in x, y, and z directions, respectively. The free

surface is located 3R away from the top of the computational domain. Flow field u, pressure

p, and surfactant bulk concentration C satisfy the periodic condition at side boundaries of

the rectangular computational domain while both top and bottom boundaries satisfy no-slip

wall boundary conditions.
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IV. RESULTS AND DISCUSSION

A. Collision process in pure water and 1-pentanol solution

In Figure 2, experimental observations indicate that the presence of surfactant signifi-

cantly modifies the collision process compared with pure water (also see Movie 1 [27]). Here

we focus on the first collision of a 0.66 mm bubble with the free surface. In order to charac-

terize the collision process, three distinct time instants are identified in Figure 2(b). T1, T2,

and T3, respectively, correspond to the instants when the free surface starts affecting the

bubble velocity (U |T=T1 = 0.95 Ut), when the bubble velocity becomes zero after colliding

on the free surface, and when the bubble reaches a maximum velocity after reversing its

direction of the motion. Therefore, the pre-collision stage is defined as the period of time

from T1 to T2, and post-collision stage is from T2 to T3.
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FIG. 2. (Color online)(a) Bubble’s vertical velocity during the collision process for 0 mM and

5 mM 1-pentanol solutions obtained using (E) experimental, (N) numerical, and (T) theoretical

studies. (b) In the pure water, the temporal evolution of bubble’s deformation χ and dimen-

sionless surface change S∗ are recorded through numerical simulations and experiments. Error

bars indicate the uncertainty of experimental measurements (see the Appendix). Bubble’s size

is R = (6Vb/π)1/3 /2 = 0.66 mm, where Vb is the bubble volume. In the theoretical model, the

collision process is modeled as an under-damped mass spring system (see the Appendix).

A comparison of total energy transfer during the collision between pure water and sur-

factant solution can facilitate the interpretation of the collision dynamics. We compare the

total energy transfer of the collision process. The instantaneous total energy consists of
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surface energy due to the deformation of the bubble, surface energy due to the deformation

of the free surface, and kinetic energy associated to the translation of the bubble. At time

T1, the normalized total energy E∗T1 is written as

E∗T1 =
∆E|T=T1

Er
=

(
Ek
Er

+ S∗b + S∗p

)∣∣∣∣
T=T1

, (9)

where ∆E = E−Er, E is the total energy of the bubble and free surface, Er = 4πσR2 is the

energy of a spherical bubble with the equivalent radius R at rest [13], Ek = CM(χ)ρVbU2/2

is the kinetic energy associated with the bubble motion, χ is the deformation of the bubble,

and CM is the added mass coefficient by assuming the bubble’s shape as an oblate spheroid

[28, 29],

CM =
(χ2 − 1)

1/2 − cos−1 χ−1

cos−1 χ−1 − (χ2 − 1)1/2 χ−2
. (10)

Changes in the surface area of the bubble interface and the free surface in dimensionless form

are represented as S∗b = ∆Sb/ (4πR2) and S∗p = ∆Sp/ (4πR2), respectively. Even though the

surface tension values for pure water and surfactant solution are comparable (72.2 dyne/cm

and 67.9 dyne/cm measured at T = 21◦C, respectively), the estimated energy E∗T1 for water

is about 7.45 times larger than that in the 5 mM 1-pentanol solution. This is due to the

large bubble velocity in pure water (Re = 2ρUtR/µ = 438) compared with that in 5 mM

1-pentanol solution (Re = 195), shown in Figure 2(a). At time T2, E∗T2 =
(
S∗b + S∗p

)∣∣
T=T2

.

During the pre-collision stage, the bubble kinetic energy is transfered to the surface energy of

both bubble interface and free surface. The computation of E∗T2/E
∗
T1 is only available using

the numerical simulations, and we find this ratio to be 88.7% for pure water and 74.4% for 5

mM 1-pentanol solution. The second phase of collision process corresponds to post-collision

stage. From Figure 2, at time T3, the total surface change
(
S∗b + S∗p

)
is close to zero, and

kinetic energy associated to the bubble motion reaches its maximum.

During the entire bubble collision process, the total energy loss can be quantified by

the coefficient of restitution, ε = −UT3/UT1. There is no energy loss when ε = 1. In the

pure water experiment, the coefficient of restitution is 0.73. The large value of coefficient of

restitution (ε ≥ 0.7) indicates an elastic collision. However, in 5 mM 1-pentanol solution,

we find this coefficient to be 0.32, and the bubble eventually detaches from the free surface.

This reduced coefficient of restitution indicates a significant energy loss during the collision

process, leading to a surfactant-induced partially inelastic collision.
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FIG. 3. (Color online) Colormaps show computational results for (a) interfacial surfactant concen-

tration on the free surface, (b) velocity magnitude of the flow, and interfacial surfactant concen-

tration on the bubble interface in 5 mM 1-pentanol solution, and (c) velocity magnitude of the

pure water at time T1, T2, and T3. Contours of vorticity magnitude |Ω| in (b) and (c) are shown

at 0.05 : 0.05 : 1.0. At time T3, the location of the stagnation points in both pure water and

surfactant solution are visualized in insets. The bubble radius in both pure water and surfactant

solution is 0.66 mm. The flow velocity in (b) and (c) is normalized by the bubble velocity in the

Stoke flow, Ue = ρgR2/(9µ). The flow vorticity in (b) and (c) is normalized by Ωe = Ue/R.

The reduced rebound velocity in the surfactant solution can be explained by exploring the

flow structure around a bubble in both pure water and 5 mM 1-pentanol solution during

the collision process (see Movie 2 [27]). At time T1, a thin wake structure is formed in

pure water due to the slip condition at the bubble interface (Figure 3(c)). However, the
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bubble’s wake in 5 mM 1-pentanol solution (Figure 3(b)) is distinct from that of a clean

bubble. By visualizing the interfacial surfactant concentrations Γ on the bubble interface

(see Figure 3(b) at T1), we observe that surfactant molecules migrate toward the rear side

of the bubble, where Γ reaches its maximum. At the rear of the bubble, the local gradient

of the interfacial tension leads to the Marangoni stress, immobilizing the bubble interface.

Consequently, a distinct wake structure is formed in surfactant solution compared to that

in the pure water. At time T2 when the bubble comes in contact with the free surface,

both bubble and free surface show significant deformations in the pure water (see Figure

3(c)), where the morphology of free surface is represented by solid black lines. However, the

deformations of both bubble and free surface are small in the presence of surfactant. At time

T2, surfactants on the bubble interface (Figure 3(b)) start migrating away from the rear of

the bubble, indicating a change of the direction of the interfacial convection on the bubble

interface. In the meantime, surfactants on the free surface (Figure 3(a)) migrate away from

the contact region. At time T3, the locations of the stagnation points (|u| = 0 in the

wake region) for pure water and surfactant solution are different. In the surfactant solution,

the stagnation point is at the bubble interface, and the bubble has a small coefficient of

restitution. However, the stagnation point is further away from the bubble interface for the

pure water, and the bubble exhibits large coefficient of restitution.

The small coefficient of restitution in surfactant solution can be explained by the gener-

ation of the vorticity (Ω = ∇× u) during the collision process. In the surfactant solution,

the vorticity is generated at the free surface before the bubble approaches the free sur-

face (see Figure 3(b)). As the bubble rises towards the free surface, the associated fluid

flow creates non-uniform spatial distribution of interfacial surfactant concentration along

the free surface. The non-uniform distribution of surfactant molecules creates Marangoni

stresses leading to the generation of additional vorticity near the free surface (Figure 3(b)),

which is absent in the pure water (Figure 3(c)). The vortical structure near the free sur-

face persists during the entire collision process (see Figure 3). Following the work of Stone

[30], who expressed the viscous energy dissipation rate in terms of vorticity field, we have

2
πRe

∫
V
φdV = 2

πRe

∫
V

Ω2dV + 4
πRe

∫
S
κU2

s dS, where φ is the viscous energy dissipation rate; V

and S represent the fluid domain and bubble surface, respectively. Therefore, the occurrence

of additional vorticity near the free surface in the surfactant solution enhances the viscous

dissipation rate and leads to a reduced coefficient of restitution.
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FIG. 4. (Color online) The evolution of (a) viscous dissipation rate and (b) kinetic energy are

recorded during the collision process in both 0 mM and 5 mM 1-pentanol solutions, corresponding

to subscripts H and S, respectively. Solid circle, triangle, and square symbols indicate times T1,

T2, and T3, respectively.

Here, we quantify the temporal evolution of viscous dissipation rate (φ =
∫

2µE : EdV )

and kinetic energy (KE =
∫

1
2
ρu2dV ) from our computational results, where E is the

strain rate tensor. In Figure 4(a), the normalized viscous dissipation rate is defined as

φ∗ = φ/φT1
H , where φT1

H is the viscous dissipation rate in pure water at time T1. The

viscous dissipation rate in pure water decreases in the beginning of collision process. On the

other hand, the viscous dissipation rate in the surfactant solution increases. Although the

bubble’s velocity decreases in the presence of surfactant, the additional vortical structure

induced by the Marangoni stress at the free surface (see Figure 3(b)) enhances the overall

viscous dissipation rate. The kinetic energy in the entire domain is shown in Figure 4(b),

where KE∗ = KE/KET1
H is the normalized kinetic energy. The kinetic energy in pure

water increases after collision, which is associated with the bubble’s bouncing motion. On

the other hand, the kinetic energy in the surfactant solution monotonically decreases during

the collision process. To sum up, the enhanced viscous dissipation rate during the collision

process in the surfactant solution compared to that in pure water leads to reduction of the

coefficient of restitution.
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B. Effect of surfactant concentration

Depending on surfactant concentration, bubble’s collisions exhibit elastic, partially in-

elastic, and perfectly elastic behaviors. We first categorize the collision process using a

phase diagram. Next, we examine the effect of surfactant concentration on the drag acting

on the bubble and the coefficient of restitution. In addition, the dynamics of the collision

process in surfactant solution is compared with rigid particles colliding on a rigid wall.

In the pure water, the bubble’s collision behavior on a free surface is dominated by the

viscous drainage process [14–17], and our results follow εH = exp(−17
√
Ca/St) (see the

Appendix), where Ca = Utµ/σ and St = 2ρCMRUt/(9µ) [29]. The Capillary number Ca

represents the ratio of the viscous force to the surface tension, and Stokes number St char-

acterizes the relative effect of inertial force associated with the bubble’s added mass to the

viscous drag. For surfactant solutions, both mean interfacial surfactant concentration and

surface tension solely depend on Langmuir number La at the equilibrium state. Langmuir

number, La = kaC∞
kdΓ∞

, is defined as the ratio between the surfactant adsorption and desorp-

tion rates happening on the gas-liquid interfaces. For a given β, Γo/Γ∞ = 1/(1 +La−1) and

σ/σ0 = 1 − β ln(1 + La). Therefore, large La results in a high interfacial surfactant con-

centration, reducing the surface tension force and modifying the Marangoni stress. In this

work, we use La to characterize the extent of Marangoni stress. In Figure 5(b), we quantify

the coefficient of restitution in terms of La and Ca/St, where La and Ca/St characterize

the extent of Marangoni stress and viscous drainage, respectively. When there are strong

Marangoni and viscous effects (La > 0.5 and Ca/St > 2× 10−4), bubbles remain attached

to the free surface, exhibiting perfectly inelastic collisions. The collisions are elastic when

La ∼ 0 and Ca/St < 1× 10−4.

The drag acting on the bubble prior to the collision is influenced by surfactant concentra-

tion. The drag coefficient is defined as CD = 2F/ (ρU2
t πR

2), where F is the drag acting on

the bubble. The modified drag due to surfactants can be written as CD/CD,H , where CD,H

is the drag acting on a bubble in pure liquids, CD,H = 48 (G(χ)/Re)
(
1 +H(χ)/Re1/2

)
and

coefficients G and H are given in the article by Moore [31]. Surfactants enhance the drag

compared to pure water (CD/CD,H − 1 > 0, and see Figure 5(a)). The extent of drag en-

hancement depends on the value of La: CD/CD,H increases at low La and decreases at large

La. At small La, the enhanced drag is scaled as CD/CD,H − 1 ∝ La2, which is consistent
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with the theory in Stokes regime [32]. At large La (1 < La < 10), we find it to scale as

CD/CD,H − 1 ∝ La−0.37, and similar trend has been found in the numerical study of Wang

et al. [5] at zero Reynolds number .

A normalized coefficient of restitution can be defined as ε/εH to eliminate the contribution

from the viscous drainage. From Figure 5(a), surfactants reduce the coefficient of restitution

(ε/εH < 1). The effect of surfactant on ε/εH is non-monotonic (Figure 5(a)), and its

maximum reduction occurs at La ∼ 1. In the limit of small La, ε/εH ∼ exp(−5La); at large

La, ε/εH increases with La as ε/εH ∝ La0.2.

For both bubble’s drag and its coefficient of restitution, the maximum effect of surfactact

happens when La ∼ O(1), which can be explained by the following scaling analysis. The

magnitude of Marangoni stress is estimated as |∇σ| [5]. During the equilibrium state, ṠΓ = 0

in Eq. (6), and we get

∇σ =
σ0β

Γ/Γ∞ − 1

La

(1 + La · C/C∞)2
∇
(
C

C∞

)
. (11)

From Eqs. (5) and (7), a balance between the convection and mass source terms provides

that |∇C| ∼ ΓoUt

DCR
, where Γo = La

1+La
Γ∞. The Marangoni stress normalized by the viscous

stress is estimated as |∇Sσ|/(µUt/a) ∼ σ0βka
DCµkd

· La
(1+La)2

. Therefore, the scaling analysis

suggests that surfactants have a larger contribution to the collision process compared to the

viscous drainage when La = 1.

In Figure 5(c), our experimental data is compared against previously reported experi-

mental data in the pure liquids [14–16] as well as the limit of solid particles colliding on

a rigid wall [33, 34]. At large Stokes number (St ∼ O(100)) where there is a low surfac-

tant concentration (Low La, see Figure 5(d)), the bubble’s collision behavior is close to the

clean one. This clean limit can be characterized by ε = exp(−1.8St−1/2) [29]. However,

the coefficient of restitution deviates from this clean limit as St decreases. When St < 10,

surfactant immobilizes both the bubble interface and free surface, and our data resembles a

rigid particle colliding onto a rigid wall; this behavior can be well predicted by the elasto-

hydrodynamics theory [34]. The collision behavior between these two limits is governed by

the Marangoni stresses, and the Langmuir number can be used to describe the coefficient of

restitution.

Finally, we quantify the temporal evolution of viscous dissipation rate in the entire com-

putational domain for different concentrations of 1-pentanol solution from our numerical
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FIG. 5. (Color online)(a) Normalized coefficient of restitution and drag coefficient are plotted as a

function of La number. (b) The phase diagram depicts bubble behavior ranging from elastic (E) to

inelastic (Partial-IE) to perfectly inelastic (Perfect-IE) collision, shown in terms of La and Ca/St.

(c) The coefficient of restitution is plotted as a function of St number. (d) The effect of surfactant

concentration (La) on the bubble’s St number.

results (see Figure 6(a)). The ratio of viscous dissipation rate between time T3 and T1 as

a function of Langmuir number in Figure 6(b) follows a similar trend as the coefficient of

restitution.

V. CONCLUSION

Collisions between bubbles and a free surface are frequently observed in aquatic environ-

ments, and surfactants effectively modify relevant dynamics compared with that in the pure

water. In this study, we examine the Marangoni effect in the context of a dynamic interfacial

problem through both experiments and numerical simulations. In surfactant solutions, we
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find that the Marangoni stress induces additional vorticity near the free surface, causing

extra dissipation and consequently reducing the rebound velocity. The Marangoni effect,

characterized by Langmuir number, enhances the bubble’s drag and reduces the coefficient

of restitution. Their dependence on the surfactant concentration is non-monotonic. The

maximum enhancement of the drag and reduction of the coefficient of restitution occur at

La ∼ O(1).
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FIG. 6. (Color online)(a) The evolution of viscous dissipation rate is recorded during the collision

process for different concentrations of 1-pentanol solutions, where solid circle, triangle, and square

symbols indicate times T1, T2, and T3, respectively. (b) The ratio of viscous dissipation rate

between time T3 and T1, and coefficient of restitution are plotted as a function of La number. For

both (a) and (b), bubble radius is R = 0.66 mm.
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Appendix A: Surface tension measurements for 1-pentanol solution

Surface tension for aqueous solution of 1-pentanol at 21◦C is measured as a function of

concentration. Figure 7 compares our measured data to the empirical relationship provided

in the literature [21]. This empirical relationship is described by the Szyszkowski equation,

σ = σ0 −
RT

ω
ln(1 + kC), (A1)
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where ω = 1.48× 105 m2/mol and k = 66 dm3/mol [21].
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FIG. 7. Measured surface tensions for 1-pentanol solution (black solid circles); solid line is

Szyszkowski equation [21].

Appendix B: Uncertainty quantification for experiments

There are two major uncertainty sources in the experimental post-processing procedure.

They are the uncertainties of the calibration process, and the variation in the pre-selected

threshold for bubble image binarization. After calculating each uncertainty, the total uncer-

tainty is synthesized by the Taylor series approximation of the elemental uncertainties. The

uncertainty of the calibration process is straightforward, and here, we report the methodol-

ogy for uncertainty due to pre-selected threshold.

The variation of the threshold during image binarization affects the detected bubble

profile and shape, which leads to uncertainty in the estimation of bubble’s center, radius,

deformation, surface area, volume, and other derived quantities. This uncertainty is quan-

tified by examining the r.m.s. of the reported parameters by continuously changing the

threshold values.

Appendix C: Under-damped mass spring system

The dynamics of bubble’s collision process are modeled as an under-damped mass spring

system (see Figure 8(a))

m
d2η

dt
+ Cµ,C

dη

dt
+ Cση = 0, (C1)
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where m = 4
3
πR3ρCM is the added mass of the bubble, Cµ,C characterizes the drag during

the collision process in a surfactant solution, and Cσ = K1K2/(K1+K2) = k1k2σ/(k1+k2) =

K σ. Rewriting Eq. (C1) gives

d2η

dt
+ 2ξ(St, Ca, La)ω

dη

dt
+ ω2η = 0, (C2)

where ξ = Cµ,C/(2mω) is the damping ratio, and ω =
√

K σ/m is the natural frequency.

A reduced bouncing velocity occurs due to the viscous drag (low St) and Marangoni stress

(large La). During the collision process, the normalized bubble velocity is expressed as

U/Ut = η̇(t)/Ut = e−ξωt cos
(
ωt
√

1− ξ2
)
. (C3)

In our experiments, the coefficient of restitution and natural frequency are calculated as

ε = −UT3/UT1 = e−ξπ/
√

1−ξ2 and ωo = π (1− ξ2)
−1/2

/ (T3− T1), respectively.

In a pure fluid, Cµ,C = Cµ = aµR [29], where a is a constant. Therefore, the damping

ratio can be written as ξ = a√
24πK

√
Ca
St

. Since Ca
St
∼ O(10−4), ε ∼ e−M

√
Ca
St in the case

of ξ � 1, where M is a fitting parameter. By combining data from our experiments and

literature [14–16], we find that M = 17 provides the best fit (see Figure 8(b)).
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FIG. 8. (Color online) (a)Mass-spring-damper model: two springs are connected in series; the

dashpot and springs are connected in parallel. K1 and K2 are the spring stiffness of free surface

and bubble, respectively; natural length l1 corresponds to an undeformed free surface while l2

incorporates the initial deformation of the rising bubble; m is the added mass of the bubble; ξ is

the damping ratio, which incorporates the contribution to the drag from both the viscous force

and Marangoni stress. (b) The derived relationship between coefficient of restitution ε and Ca/St

is provided based on data from our experiments and literature.
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