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Analytic Descriptions of Stochastic Bistable Systems under Force Ramp
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Solving the two-state master equation with time-dependent rates – the ubiquitous driven bistable
system – is a long-standing problem that does not permit a complete solution for all driving rates.
Here we show an accurate approximation to this problem by considering the system in the control
parameter regime. The results are immediately applicable to a diverse range of bistable systems
including single-molecule mechanics.

There are plenty of examples of physical systems which
appear to switch between two stable states when subject
to environmental or experimental forcing. These include
both macro-scale systems, such as ocean circulation [1]
and social behavior [2], as well as several micro-scale sys-
tems such as neuron firing [3], bond dissociation [4], and
biopolymer unfolding [5]. In reality, few precious ex-
amples exist which truly possess only two-states. But
when a system’s phase space can be reduced to two dis-
crete states, and transitions from one state to another
are memory-less, the process can be described by the
Master equation with instantaneous transition rates. It
should then be possible to predict the collective behav-
ior of normally complex systems from well-defined tran-
sition rates. However, the Master equation with time-
dependent rates, which is required for dynamic forces,
cannot be solved for most relevant statistical quantities.
Since the solution contains the important link between
equilibrium and non-equilibrium behavior, approxima-
tions within those limits have been carried out [4, 6–
9]. Here we derive a complete analytic approximation
which emerges only by considering the system within the
control-parameter domain.
We consider a bistable system which is embodied by

the two-state master equation,

dp1(t)

dt
= −k1(t)p1(t) + k2(t)p2(t), (1)

where ki(t) is the instantaneous transition rate out of
state i and pi(t) represents the probability of finding the
system in state i at time t. The transition rates are
assumed to follow an Arrhenius rate of escape,

ki(t) = k0i exp [−β(V (xt, t)− V (xi, t))] (2)

where V (x, t) is an external biasing potential and β−1 =
kBT is the inverse thermal energy. The positions xi and
xt represent the ith state minimum and transition state
respectively, and k0i is the rate of escape from state i in
the absence of an external potential. For the derivation
that follows we consider the process as a function of the
control parameter, here force, f = −∂V (x, t)/∂x, where
the rate of changing force ḟ(t) = df/dt is not necessarily
constant in time. When the force is held fixed for long
times, the left side of Eq. (1) vanishes and we have the
steady-state equilibrium probability,

peq1 (f) =
k2(f)

k1(f) + k2(f)
=

1

1 + exp
[

β(∆V (f)−∆µ)
]

(3)

where ∆µ = β−1ln
k0

2

k0

1

is the unperturbed free energy dif-

ference and ∆V (f) = V (x1, f)− V (x2, f) is the applied
bias between the two state minima. When the external
bias increases the function peq1 (f) decreases from one to
zero, passing through peq1 (f1/2) = 1/2, where f1/2 marks
the coexistence force at which the two rates are equal,

k1(f1/2) = k2(f1/2) (4)

It will prove useful to rewrite the master equation (Eq.
(1)) such that peq1 (f) is explicit. Using p1 + p2 = 1 and
Eq. (3) we express the differential system as the excess
probability Π(f) = p1(f)−peq1 (f) driven by the derivative
of the equilibrium probability,

dΠ(f)

df
+

kT (f)

ḟ
Π(f) = −dpeq1 (f)

df
(5)

where,

kT (f) = k1(f) + k2(f) (6)

is the total relaxation rate of the system. To remove
the effects of particular initial conditions we start the
process at infinite negative force, f0 → −∞, and with
p1(−∞) = peq1 (−∞) = 1 we have the probability of find-
ing the system in state 1 at time t,

p1(f) = peq1 (f)−
∫ f

−∞

dpeq1 (f ′′)

df ′′
exp

[

−
∫ f

f ′′

kT (f
′)

ḟ
df ′

]

df ′′

(7)
Equation (7) is convenient in that it decomposes the

distribution into a sum of two essential terms: the
quasi-static, adiabatic (equilibrium) limit of the process,
peq1 (f), and the non-equilibrium contribution. For finite
loading rates (ḟ > 0) the second, non-equilibrium term
in Eq. (7) enables state 1 to persist to higher forces –
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FIG. 1. The total distribution, p1(f), as expressed in Eq. (7)
is a sum of the equilibrium distribution peq

1
(f) and a non-

equilibrium process which lags behind the changing force in
proportion to the loading-rate (dashed line). The derivative
of the equilibrium distribution appearing in Eq. (7) acts as an
aperture, allowing a narrow band of forces around f1/2 to ini-
tialize the non-equilibrium term of the process (upper curve).
In the limit of very small width (FWHM∼ f1/2kBT/∆µ)
a single force is sifted out, effectively initializing the non-
equilibrium term at f1/2.

how high depends on the ratio kT (δf)δf/ḟ , where δf
is a characteristic force scale for the transition. When
the loading rate is significantly slower than the relax-
ation rate (ḟ ≪ kT (δf)δf) the exponent forces the sec-
ond term to zero, which physically means the system is
able to adapt to the relatively slowly changing force. At
faster loading rates the potential changes before the sys-
tem can relax, and thus the second term describes the lag
of the system’s relaxation behind the changing potential
landscape [10].

As graphically illustrated in figure 1, the equilibrated
distribution peq1 (f) is a sigmoid which transitions from
1 to 0 over a relatively narrow band of the control pa-
rameter, centered at f1/2. Assuming a sufficiently large
barrier (β∆µ ≫ 1), we can approximate the equilibrium
distribution as a step function at the expense of a coarser
resolution of p1(f) around f1/2,

peq1 (f) ≈ θ(f1/2 − f), θ(x) =

{

1, x > 0

0, x ≤ 0
(8)

Where θ(x) is the Heaviside step function. Inserting
Eq. (8) in (7), we see that the derivative dpeq1 (f)/df →
dθ(f1/2−f)/df functions to sift out the lower integration
limit within the exponent at f1/2 (see fig. 1),

p1(f) ≈ θ(f1/2 − f)+

∫ f

−∞

dθ(f ′′ − f1/2)

df ′′
df ′′

×exp

[

−
∫ f

f1/2

kT (f
′)

ḟ
df ′

]

(9)

Completing the integration we have,

p1(f) ≈ θ(f1/2 − f)+ θ(f − f1/2)exp

[

−
∫ f

f1/2

kT (f
′)

ḟ
df ′

]

(10)
Equation (10) is a key result of this article. It shows

that the two-state master equation (Eq. (1)) can be
approximated as a delayed first-order rate process,
with rate kT (f) = k1(f) + k2(f) provided that the
derivative of the equilibrium distribution is sharply
peaked relative to the forces explored in the system
(and more practically, narrow relative the experimental
force resolution). The delay is not in time, but force,
and is approximately equal to the coexistence force f1/2.
Thus the effect of both forward and reverse transitions
are to maintain the population of state 1 until f1/2
is overcome. The opposite step functions ensure this
by imposing p1(f < f1/2) = 1. In cases where k2(f)
decreases rapidly beyond f1/2, its contribution can
be regarded as negligible. This leads to a simpler
expression with kT (f) ≈ k1(f), and thus the effects of
k2(f) are entirely contained in f1/2. As an example,
we show in Figure 2 a plot of Eq. (10) using the
rates defined in Eqs. (11) below for a range of loading
rates extending from equilibrium to far from equilibrium.

FORCE RAMP INTERMOLECULAR BOND

RUPTURE

Here we will treat the case of intermolecular bond-
ing under force, where two interacting species are pulled
apart by a spring-like potential – the archetype of single-
molecule dynamic force spectroscopy (DFS). In this sce-
nario, state 1 designates the formed intermolecular bond,
while state 2 designates the unbonded case which is ener-
getically defined by the external pulling potential. There-
fore, k1(t) represents the rate of a particle escaping a po-
tential well under force, while k2(t) represents the rate of
the particle escaping the potential defined by the pulling
spring.
In a previous publication [11] we used heuristic argu-

ments to find an interpolation to the mean rupture force
of this two-state process. Here we will show that the
solution found in [11] is directly obtained from Eq. (10).
We apply an external potential given by V (xi, f) =

1
2k(xi − f/k), with transition state xt, state 1 placed
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FIG. 2. Exact and approximate solutions to the master equa-
tion using the transition rates in Eqs. (11). Solid curves are
numeric solutions to the differential equation (1). Circles are
equation (10). Hatched region denotes the area under the
quasistatic distribution, peq

1
(f). Parameters used are k0

1=1,
β∆µ = 15, βkx2

t/2 = 0.01. The coexistence force is thus
f1/2 ≈ 0.775 kBT/xt. The noted loading rates are normal-

ized according to R = ḟxt/kBTk0

1 .

at the origin x1 = 0, and x2 = f/k moves with the
applied potential minimum. Hence f is defined as the
force on state 1. The loading rate, ḟ is constant. Using
the prescription from the previous section we have the
quantities,

k1(f) = k01e
β(fxt−

1

2
kx2

t )

k2(f) = k02e
−β k

2
(f/k−xt)

2

(11)

f1/2 =
√

2k∆µ,

and the equilibrium distribution follows as,

peq1 (f) =
1

1 + exp
[

β
(

f2

2k −∆µ
)] . (12)

Figure 2 shows Eq. (12) and Eq. (10) plotted using Eqs.
(11). The derivative of this distribution, dpeq1 (f)/df ,
has a full-width at half-max (FWHM) of approximately
0.88f1/2kBT/∆µ. Therefore from the definition of f1/2
in this scenario, the requirement of Eq. (10) for a narrow
FWHM is satisfied with decreasing transducer stiffness
k, and increasing ∆µ/kBT .

In the quasi-static limit the mean force, 〈f〉eq =
∫

∞

0 peq1 (f)df , is not analytic. We can approximate the
integral by recognizing that the term f2/2k is the en-
ergy that the bound state is raised with force. Chang-
ing the variable of integration to dimensionless energy,
ǫ = βf2/2k,
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FIG. 3. a) The probability of state 1 vs normalized force, eval-

uated at the cross-over loading rate, ḟ×xt/kBTk1(f1/2) = 1,
for three values of the energy barrier ∆µ. Exact (thin lines)
and approximations (bold lines) are shown using Eq. (10)
with the rates defined in Eqs. (11). The area between the
curves equals the difference in mean force for that loading
rate. b) The error as a percent of the exact solution is
shown for three different free energy values. An exponen-
tial fit (dashed line) is shown as a guide. Parameters used are
k0

1=1 and βkx2

t/2 = 0.01.

〈f〉eq =

√

k

2β

∫

∞

0

ǫ−1/2dǫ

1 + exp [(ǫ− β∆µ)]
(13)

=

√

k

2β
F−1/2(β∆µ) (14)

where Fj(x) is the Fermi-Dirac integral of order j. As-
suming strong bonds (∆µ ≫ kBT ) we use the asymptotic
series expansion for the integral limx→∞ F−1/2(x) →
2
√
x [12],

〈f〉eq ∼=
√

2k∆µ = f1/2. (15)

We see that for β∆µ significantly larger than unity, the
mean force recovered under quasi-static pulling coincides
with the coexistence force which balances the populations
of the bound and unbound states. To evaluate the non-
equilibrium component to the mean we take k2(f) ≈ 0 for
f > f1/2. Therefore using kT (f) ≈ k1(f) in Eq. (10) the
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FIG. 4. Normalized mean force vs loading rate evaluated by
Eq. (10) compared against the exact numerical solution for
large and small free energy values. The error, (〈f〉model −
〈f〉exact)/〈f〉exact, is greatest at a normalized loading rate of

unity, ḟxt/k
0

1kBT ≈ 1, and diminishes with higher free energy
values. Parameters are the same as Figure 3.

mean rupture force
∫

∞

0 p1(f)df evaluates to our previous
result [11],

〈f〉 =
√

2k∆µ (16)

+
kBT

xt
exp

[

k1(f1/2)kBT

ḟxt

]

E1

[

k1(f1/2)kBT

ḟxt

]

,

where E1(z) =
∫

∞

z
e−s

s ds is the first-order exponential
integral (E1(z) ≈ e−zln(1 + e−γ/z), where γ =0.577... is
Euler’s constant).

FORCE RAMP INTRAMOLECULAR

TRANSITIONS

Transitions within the molecule under study – such
as configurational switching in protein folding and
RNA/DNA hairpins – have been extensively studied
thermodynamically and kinetically, and very often are
reducible to a two-state system [13].

In this case we again set x1 = 0, however unlike in-
termolecular bond rupture the second state is a fixed
distance away from the first, x2 = ∆x. As before, the
external potential is parabolic V (xi, t) = 1

2k(xi − vt)2,
and from Eqs. (2)-(4) we have,

k1(f) = k01e
β(fxt−

1

2
kx2

t )

k2(f) = k02e
−β(f(∆x−xt)−

1

2
k(∆x2

−x2

t)) (17)

f1/2 =
∆µ

∆x
+

1

2
k∆x

The equilibrium distribution follows as,

peq1 (f) =
1

1 + exp
[

β
(

f∆x− 1
2k∆x2 −∆µ

)] , (18)

The FWHM of the derivative, dpeq1 (f)/df , is approxi-
mately 1.76f1/2kBT/∆µ. Note f1/2 is defined imme-
diately above and differs from that of the intermolecu-
lar bond rupture case discussed in the previous section.
Here again the derivative of peq1 becomes narrower with
decreasing transducer stiffness k and increasing energy,
∆µ/kBT . The FWHM is not monotonic in ∆x. It de-
creases with increasing ∆x until a minimum is reached
at ∆x∗ =

√

2∆µ/k, then gradually increases.
Owing to the same form of k1(f) for both the in-

tramolecular and intermolecular cases, under the approx-
imation kT (f) ≈ k1(f) the mean rupture force for this in-
tramolecular switching example is identical to that found
in Eq. (16), with the exception of the definition of the
coexistence force,

〈f〉 =∆µ

∆x
+

1

2
k∆x (19)

+
kBT

xt
exp

[

k1(f1/2)kBT

ḟxt

]

E1

[

k1(f1/2)kBT

ḟxt

]

.

DISCUSSION

Realizing an approximation such as that of Eq. (10)
would not be possible in the time domain. This is
due to problems which arise near equilibrium, where a
quasistatically driven process requires infinite time to
complete, and hence critical parameters like coexistence,
t1/2 = f1/2/r, are undefined when r → 0. The same
quasistatic process in the control parameter domain is
well-defined at every relevant parameter value, irregard-
less of rate.
How reasonable are these assumptions for the single-

molecule examples treated here? Approximating peq1 (f)
as a step function, and its derivative as a delta function
brings negligible error if the experimental force resolution
is much greater than the spread around the transition,
typically defined as the FWHM of the derivative (see
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Fig. 1). The error is manifested as a small overestimate
of p1(f) around f1/2 due to a sharp, instead of gradual,
transition near f1/2. Figure 3 illustrates this error at

the most problematic loading rate – the loading rate ḟ×
which marks the cross-over from near-equilibrium to ki-
netic regimes. In the approximations of Eqs. (16) and
(19) this rate is essentially where the external energy ex-
erted on the system, ḟxt, matches the energy exchanged
between the system and the thermal bath, k1(f1/2)kBT
[14],

ḟ×xt = k1(f1/2)kBT (20)

Figure 4 shows the error with loading rate for large and
small values of the free energy. For loading rates less
than ḟ× the error is less than 4% even for the non-ideal
case of low free energy (β∆µ=5).
Using typical laboratory parameters for the inter-

molecular adhesion case of atomic force microscope
(AFM) cantilever stiffness k =0.1 N/m and ∆µ = 10
kBT , the FWHM equals 8 pN. For the intramolecular
switching case, we consider the unfolding of RNA [5] as
an example, with optical trap stiffness k = 0.01 pN/nm,
∆µ = 10 kBT , and ∆x = 20 nm we find a FWHM of
0.5 pN. Both of these widths are below the typical noise
floor of their respective experimental techniques.
It is also important to recognize that one cannot de-

rive a probability density function (PDF) for the above
processes from the approximation in Eq. (10). Away
from equilibrium the PDF is trivial since the probabil-
ity becomes a first-escape time distribution. In general,
however, the PDF of the total force expended to drive a
transition is not simply the negative derivative of p1(f)
as it is defined in the master equation (1). Such a rela-
tionship would require that p1(f) is a cumulative distri-
bution function (CDF) of the total exerted force – which
it is not. Instead, p1(f) is only the probability of finding
the system in state 1 at force f . As a result, the mean
force 〈f〉 found in (16) from integrating over p1(f) has an
important distinction. Since in principle the system may
transition any number of times between the two states
before finally resting in state 2, the transition force for

any individual realization of the process should be de-
fined as the sum of increasing force increments while in
state 1. This is the force analogue to the total sojourn
time of a two-state process. Therefore the mean tran-
sition force is the ensemble average of the sum of force
increments exerted on state 1 while the system resides in
state 1.
In summary, the two-state master equation with time-

dependent rates – the stochastic model often used in
describing driven bistable processes – has a simple ap-
proximation when considering the process in terms of
the control parameter. The process can be reduced to
a first-order rate process with a delay set by the coexis-
tence force. While the applied examples here deal with
single-molecule transitions (DFS), the approach can be
extended to other driven systems whose phase space can
be reduced to a two-state Markov process.
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