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For heat conduction in 1D nonlinear Hamiltonian lattices, it has been known that the conserved
quantities play an important role in determining the actual heat conduction behavior. In closed or
microcanonical Hamiltonian systems, the total energy and stretch are always conserved. Depending
on the existence of external on-site potential, the total momentum can be conserved or not. All
the momentum conserving lattices have anomalous heat conduction except the 1D coupled rotator
lattice. It was recently claimed that “whenever stretch (momentum) is not conserved in a 1D model,
the momentum (stretch) and energy fields exhibit normal diffusion”. The stretch in coupled rotator
lattice was also argued to be nonconserved due to the requirement of finite partition function making
the coupled rotator lattice fulfilling this claim. In this work, we will systematically investigate the
stretch diffusion and heat conduction in terms of energy diffusion for typical 1D nonlinear lattices.
No clear connection between the conserved quantities and heat conduction can be established as
was claimed. The actual situation might be more complicated than what was proposed.

PACS numbers: 05.60.-k,44.10.+i,05.45.-a

I. INTRODUCTION

The anomalous heat conduction was first predicted for
the 1D Fermi-Pasta-Ulam β (FPU-β) nonlinear lattices
by Lepri et al in 1997 [1]. In this pioneering work, it was
found numerically that the thermal conductivity κ di-
verges with the system size N as κ ∝ Nα with 0 < α < 1
which breaks the Fourier’s heat conduction law [1]. Nu-
merical simulations also confirm this anomalous heat con-
duction in diatomic Toda lattice [2], carbon nanotubes
[3] and single polymer chains [4], to name a few. On
the other hand, the 1D nonlinear lattices with external
on-site potential such as Frenkel-Kontorova (FK) and φ4

lattices show normal heat conduction [5–7]. Much efforts
had been devoted to unraveling the physical mechanism
behind normal and anomalous heat conduction in low
dimensional systems [8–42]. The consensus reached in
this community is that the momentum conservation and
dimensionality play the important roles in determining
the actual heat conduction behavior [43–45]. The mode-
coupling theory [43] predicts that κ ∝ Nα, κ ∝ lnN and
κ ∝ const for 1D, 2D and 3D momentum conserved sys-
tems, respectively. The numerics in 2D and 3D lattice
systems were found to be consistent with these predic-
tions [46–51]. In particular, the prediction of length-
dependent anomalous heat conduction were also veri-
fied experimentally in 1D nanotubes [52] and molecular
chains [53] and 2D suspended graphene [54]. However,
there is one exception of 1D coupled rotator lattice which
displays normal heat conduction behavior despite its mo-
mentum conserving nature [55–58].

The traditional numerical methods used to investigate
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the heat conduction problem are Non-EquilibriumMolec-
ular Dynamics (NEMD) and equilibrium Green-Kubo
(GK) method [43, 44]. A novel diffusion method in ther-
mal equilibrium was proposed by Zhao [59] which opens
a new way to explore the heat transport problem in non-
linear systems [58, 60]. The mean square displacement
of energy diffusion generally follows a power-law time de-
pendence as

〈

∆x2(t)
〉

E
∝ tβ [59]. It has also been rig-

orously proven [61] that this energy diffusion method is
equivalent to the Green-Kubo method where the connec-
tion relation of α = β − 1 firstly proposed from particle
diffusion analysis [21] can be derived.

There are also continued theoretical efforts ranging
from early mode-coupling theory [8, 9, 26], renormaliza-
tion group analysis [20], hydrodynamical theory [29, 42],
self-consistent mode-coupling theory [30], to recent non-
linear fluctuating hydrodynamical theory [62–69]. Al-
though there is still debate about the actual classification
and divergent exponents of the universal classes, these
theoretical works have greatly improved our understand-
ing on the nature of the anomalous heat transport in low
dimensional systems definitely.

Most recently, it was claimed by Das and Dhar that
“whenever stretch (momentum) is not conserved in a one-
dimensional model, the momentum (stretch) and energy
fields exhibit normal diffusion” [72]. The 1D coupled ro-
tator lattice was taken as the example to support this
claim. However, after carefully studying some typical 1D
nonlinear lattices with normal heat conduction or energy
diffusion behaviors, we found that no obvious connec-
tion between the conservation of stretch or momentum
and the normal diffusion of energy and stretch can be es-
tablished. Our numerical results indicate that the actual
situation might be more complicated than what has been
claimed.

This paper will be organized as the following. In Sec-
tion II, we will present the detailed numerical results of
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FIG. 1: (color online). The φ4 lattice. (a) The excess en-
ergy distribution function ρE(i, t) and (c) stretch distribu-
tion function ρD(i, t). (b) The MSD

〈

∆x2(t)
〉

E
of energy

and (d)
〈

∆x2(t)
〉

D
of stretch. The excess energy distribution

function ρE(i, t) follows the Gaussian distribution when cor-
relation time t > 100 while the stretch distribution function
ρD(i, t) fails to follow the Gaussian distribution. As a result,
the MSD of energy depends on time linearly as

〈

∆x2(t)
〉

E
∝ t,

displaying the normal energy diffusion behavior. In contrast,
the MSD

〈

∆x2(t)
〉

D
of stretch saturates to a constant value

after a short time scale which is definitely not a normal dif-
fusion behavior. In panel (a), the ρE(i, t) is shifted upward
with a constant value of 1/(N − 1) to maintain the vanishing
tails [39]. The energy density is set as E = 0.4 and the corre-
sponding temperature is around T ≈ 0.44. The lattice size is
chosen as N = 801.

stretch and energy diffusion for typical 1D nonlinear lat-
tices such as φ4, coupled rotator, FK, combined (FK+φ4)
lattices. The conclusions will be summarized in Section
III.

II. STRETCH DIFFUSION IN TYPICAL 1D
NONLINEAR LATTICES

We consider the following Hamiltonian for general 1D
lattices

H =
∑

i

Hi =
∑

i

[

p2i
2

+ V (qi+1 − qi) + U(qi)

]

(1)

where qi and pi denote the displacement and momentum
for the i-th atom, respectively. The interaction potential
V (qi+1− qi) only depends on the displacement difference
of (qi+1 − qi). The term U(qi) represents the external
on-site potential which breaks the conservation of total
momentum. For simplicity, periodic boundary conditions
qi = qN+i are applied. The atom index i is assigned as
−(N − 1)/2, ...,−1, 0, 1, ..., (N− 1)/2 where an odd num-
ber of lattice sizes N is chosen without loss of generality.
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FIG. 2: (color online). The rescaled excess energy distribution

function t1/2ρE(i, t) as the function i/t1/2 for the φ4 lattice.
The data are taken from Fig. 1 (a). The dotted black ref-
erence line corresponds to the normal Gaussian distribution
with diffusion constant D = 8.0. It can be seen that when the
correlation time is longer than some intrinsic relaxation time,
the distribution of ρE(i, t) approaches to the normal Gaussian
distribution.

In the study of stretch diffusion and energy diffusion
behaviors, one need to define the corresponding correla-
tion functions [59, 61, 62]. For the energy diffusion, the
excess energy distribution function ρE(i, t) can be defined
as[59]

ρE(i, t) =
〈∆Hi(t)∆H0(0)〉
〈∆H0(0)∆H0(0)〉

(2)

where ∆Hi(t) = Hi(t) − 〈Hi〉 and 〈·〉 denotes the en-
semble average or time average equivalently for ergodic
systems. The stretch distribution function ρD(i, t) can
also be defined similarly as[62]

ρD(i, t) =
〈∆Di(t)∆D0(0)〉
〈∆D0(0)∆D0(0)〉

(3)

where the local stretch Di(t) ≡ qi+1(t) − qi(t) and
∆Di(t) = Di(t)− 〈Di〉.
For isolated or microcanonical systems with periodic

boundary conditions, both the total energy H =
∑

iHi

and the total stretch D =
∑

iDi =
∑

i(qi+1 − qi)
are conserved quantities. As a result, the excess en-
ergy distribution function ρE(i, t) and the stretch dis-
tribution function ρD(i, t) must satisfy the sum rules
as

∑

i ρE(i, t) =
∑

i ρD(i, t) = 0 in microcanonical sys-
tems [39] by noticing that

∑

i Ai(t) −
∑

i 〈Ai〉 = 0 with
Ai = Hi or Di.
The spatiotemporal distribution functions ρE/D(i, t)

can be viewed as the fingerprint for its energy or stretch
diffusion behaviors. The overall effect of diffusion can
also be described by the Mean Square Displacement
(MSD)

〈

∆x2(t)
〉

E/D
of energy or stretch defined as

〈

∆x2(t)
〉

E/D
=

∑

i

i2ρE/D(i, t) (4)

For example, if the distribution functions
ρE/D(i, t) follow the Gaussian distributions as
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FIG. 3: (color online). Temperature dependence of the MSD
of the stretch of

〈

∆x2(t)
〉

D
for the φ4 lattice. As the energy

density (temperature) decreases, the transient time becomes
longer before saturation which might be the result of longer
phonon relaxation times at lower temperatures. The satura-
tion value also increases as the temperature decreases. The
other parameters are the same as used in Fig. 1. For energy
density E = 0.2, the temperature is about T ≈ 0.22.

ρE/D(i, t) ∼ 1√
4πDE/Dt

e
− i2

4DE/Dt asymptotically,

the MSD
〈

∆x2(t)
〉

E/D
∼ 2DE/Dt depends linearly on

time indicating a normal diffusion behavior for energy
or stretch.
One can also define a momentum distribution function

ρP (i, t) accordingly [58, 59]. However, for lattices where
total momentum is not conserved, the sum of ρP (i, t) is
not time invariant as

∑

i ρP (i, t) 6= 0. In this situation, it
is meaningless to discuss the momentum diffusion since
the MSD

〈

∆x2(t)
〉

P
of momentum is not well defined.

In numerical simulations, the fourth order symplectic
algorithm [70, 71] will be used to integrate the equations
of motions for 1D lattices. The time steps of ∆t = 0.1
or 0.05 will be adopted. With this numerical setup, the
sum of energy distribution

∑

i ρE(i, t) and stretch distri-
bution

∑

i ρD(i, t) can be maintained within the range of
the order of 10−5 and 10−14, respectively. The energy
density E = H/N is the input parameter and the tem-
perature T ≡

〈

p2i
〉

is a derived quantity as for isolated
microcanonical systems.

A. φ4 lattice

We first consider the 1D φ4 lattice with the following
Hamiltonian

H =
∑

i

[

p2i
2

+
1

2
(qi+1 − qi) +

1

4
q4i

]

(5)

The 1D φ4 lattice is a typical nonlinear lattice with on-
site potential which shows normal heat conduction be-
havior [6, 7]. The total momentum is not conserved due
to the existence of external on-site potential. It has been
verified that the energy diffusion is normal as well[59].
This normal diffusion for energy can be seen from

Fig. 1 (a) and (b). The excess energy distribution func-
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FIG. 4: (color online). The 1D coupled rotator lattice of case
(i). (a) The excess energy distribution function ρE(i, t) and
(b) stretch distribution function ρD(i, t). The excess energy
distribution functions ρE(i, t) follow the Gaussian distribu-
tions at correlation times t = 100, 300 and 500, implying a
normal energy diffusion behavior. However, the stretch dis-
tribution functions ρD(i, t) at different correlation times all
collapse to the same pattern curve as that at t = 0. The
energy density is set as E = 0.5 and the corresponding tem-
perature is around T ≈ 0.54. The lattice size is chosen as
N = 601.

tions ρE(i, t) collapse to an almost Gaussian distribu-

tion ρE(i, t) ∼ 1√
4πDEt

e
− i2

4DEt at long enough correlation

times, see Fig. 2. As a result, the MSD
〈

∆x2(t)
〉

E
of

energy follows a linear time dependence as
〈

∆x2(t)
〉

E
∼

2DEt, asymptotically. Here DE denotes the diffusion
constant for energy.

However, the stretch distribution ρD(i, t) fails to fol-
low the Gaussian distribution, as can be seen in Fig. 1
(c). The two humps existing at correlation time t = 100
spreads rapidly over the lattice and disappears at larger
correlation times. In Fig. 1 (d), the MSD

〈

∆x2(t)
〉

D
of stretch is plotted as the function of correlation time
t. The

〈

∆x2(t)
〉

D
saturates to a constant value after a

short correlation time scale. It is definitely not the nor-
mal diffusion behavior which is predicted in Ref. [72].
The momentum is not conserved for 1D φ4 lattice, while
its stretch diffusion is not normal!

From numerical simulations, we found that the tran-
sient time for

〈

∆x2(t)
〉

D
is related to the phonon relax-

ation time. As temperature decreases, the phonon relax-
ation time increases giving rise to larger thermal conduc-
tivity [6, 7]. This transient time follows the same trend
as the phonon relaxation time as the function of temper-
ature. It is found that the constant value saturated by
〈

∆x2(t)
〉

D
also increases a little bit as the temperature

decreases.
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FIG. 5: (color online). The stretch distribution functions
ρD(i, t) for 1D coupled rotator lattice in case (ii) and (iii).
At correlation time t = 10, both ρD(i, t) show similar pattern
for case (ii) and (iii), except that the amplitude in case (iii)
is much larger than that in case (ii). At t = 30, ρD(i, t)
still maintains a clear pattern for case (iii) while the pattern
disappears for case (ii). The parameters are the same as that
used in Fig. 4.

B. Coupled rotator lattice

The 1D coupled rotator lattice has the following Hamil-
tonian

H =
∑

i

[

p2i
2

+ [1− cos (qi+1 − qi)]

]

(6)

Although it conserves the total momentum, it has normal
heat conduction behavior [55, 56] as well as normal en-
ergy diffusion behavior [58]. Furthermore, its momentum
diffusion is also normal which has never been expected
[58].
The stretch conservation is a tricky issue for coupled

rotator lattice due to the 2π degeneracy of qi. The dy-
namics of the system is invariant to the arbitrary shift of
multiple 2π for every qi as qi → qi+2nπ, where n can be
any integer number. Depending on how to limit the qi or
the local stretch Di, the total stretch of coupled rotator
lattice can be adjusted as a conserved quantity or not.
To illustrate this effect, we consider the following three
limitations for qi or Di:
(i) No limitations. Nothing is done to the values of

qi and Di. The variables qi can take whatever it takes
during the evolution of the system dynamics. In this
situation, the total stretch is a conserved quantity as
D =

∑

i Di = 0 where periodic boundary conditions
are applied. The local stretch Di = qi+1 − qi can take
value from negative infinity to positive infinity and the
partition function is not well defined [67, 72]. Although
this effect will cause problem in theoretical analysis, the
dynamics of the system will not be affected. The energy
diffusion is normal as can be seen from Fig. 4 (a). In this
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FIG. 6: (color online). The sum of ρD(i, t) for coupled rota-
tor lattice in case (iii). It can be seen that

∑

i ρD(i, t) decays
from a finite value to 0 very quickly, which is consistent with
the result in Ref. [72]. As a comparison, the sum

∑

i ρD(i, t)
for case (ii) can be maintained within the order of 10−14 in
the whole correlation time range studied. These results in-
dicate that the total stretch is conserved in case (ii) but not
conserved in case (iii). The parameters are the same as that
used in Fig. 4.

situation, the stretch correlation functions ρD(i, t) at dif-
ferent correlation times all collapse to the same pattern
as that at t = 0 as can be seen in Fig. 4 (b). This might
be due to the unbounded nature of the values of qi and
Di.

(ii) The qi is limited within −π < qi ≤ π. After each
time step in numerical simulations, the qi is forced to
reshifted into this region whenever it jumps out. As a
result, the local stretch Di lies within −2π < Di ≤ 2π.
In this case, the partition function can be well defined.
The total stretch is still a conserved quantity which can
be verified by that fact that the sum of

∑

i ρD(i, t) can
be maintained within the order of 10−14 for all times in
numerical simulations. In Fig. 5 (a), the ρD(i, t) in case
(ii) displays similar spatial pattern at short correlation
times as that in case (iii). The only difference is that
the amplitude is much smaller for case (ii). At larger
correlation times seen in Fig. 5 (b), the ρD(i, t) in case
(ii) quickly loses its spatial pattern in comparison to that
in case (iii). The MSD

〈

∆x2(t)
〉

D
of stretch in this case

saturates to a constant value after a short correlation
time (not shown here), similar to that of φ4 lattice in
Fig. 1 (d).

(iii) The local stretch Di is limited within −π < Di ≤
π. In this case, the qi is not affected during the dynam-
ical evolution. However, Di is adjusted appropriately at
every time step when it is recorded to generate the cor-
relation function of stretch. The partition function is
well defined. However in this special situation, the total
stretch is not a conserved quantity as can be seen from
Fig. 6 which is consistent with the result in Ref. [72].
As we have mentioned, it will be meaningless to discuss
the diffusion behavior if the sum of ρD(i, t) is not time
independent.

From the above results and discussions for three cases,
it can be found that the conservation of total stretch is
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FIG. 7: (color online). The 1D FK lattice. (a) The en-
ergy distribution function ρE(i, t) and (c) stretch distribu-
tion function ρD(i, t). (b) The MSD

〈

∆x2(t)
〉

E
of energy

and (d)
〈

∆x2(t)
〉

D
of stretch. Both the energy distribution

function ρE(i, t) and the stretch distribution function ρD(i, t)
follow the Gaussian distributions after long enough correla-
tion times. As a result, both the energy and stretch diffusions
are normal as

〈

∆x2(t)
〉

E/D
∝ t, asymptotically. These results

are consistent with the claim in Ref. [72]. In panel (a) and
(c), the ρE/D(i, t) are shifted upward with a constant value
of 1/(N − 1) to maintain vanishing tails. The parameter for
on-site coupling strength is set as V = 1. The energy density
is set as E = 1 and the corresponding temperature is around
T ≈ 0.86. The lattice size is chosen as N = 801.

a very tricky issue in coupled rotator lattice. Depending
on the limitation of qi or Di, the stretch can be adjusted
to be a conserved or nonconserved quantity. The stretch
conservation or diffusion in coupled rotator lattice need
to be further studied and remains to be an open issue.

C. FK lattice

We then consider another 1D nonlinear lattice with
on-site potential, the FK lattice with Hamiltonian as

H =
∑

i

[

p2i
2

+
1

2
(qi+1 − qi)

2 +
V

2π
(1− cos 2πqi)

]

(7)

The FK lattice also exhibits normal heat conduction [5]
as well as normal energy diffusion behaviors. In Fig.
7 (a) and (b), the excess energy distribution function
ρE(i, t) and the MSD

〈

∆x2(t)
〉

E
of energy are plotted.

The ρE(i, t) follows the Gaussian distribution functions
and the

〈

∆x2(t)
〉

E
is linearly proportional to the corre-

lation time as
〈

∆x2(t)
〉

E
∝ t, indicating obvious normal

diffusion behavior for energy.
In contrast to the φ4 lattice, the stretch distribution

function ρD(i, t) of FK lattice approaches the Gaussian

distributions as ρD(i, t) ∼ 1√
4πDDt

e
− i2

4DDt at long enough
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FIG. 8: (color online). The rescaled (a) excess energy distri-

bution functions t1/2ρE(i, t) and (b) stretch distribution func-

tions t1/2ρD(i, t) as the function of rescaled position i/t1/2

for the FK lattice. The black dotted lines correspond to the
normal Gaussian distributions with the diffusion constants
DE = 4.8 for energy and DD = 8.5 and stretch. The data are
taken from Fig. 7 (a) and (c).

correlation times, as can be seen in Fig. 7 (c). The MSD
〈

∆x2(t)
〉

D
of stretch do follow the linear time depen-

dence asymptotically as
〈

∆x2(t)
〉

D
∼ 2DDt in Fig. 7

(d). Although both φ4 and FK lattices have normal heat
conduction and energy diffusion behaviors, they exhibit
totally different stretch diffusion behavior. The stretch
diffusion is normal for FK lattice despite its stretch con-
servation nature! This effect is consistent with the pre-
diction by Das and Dhar in Ref. [72]. Unlike the previous
1D coupled rotator lattice, there is no ambiguous space
for the stretch conservation in FK lattice. The value of
qi or Di is not degenerated anymore due to the existence
of the interaction potential term in Eq. (7).

D. Combined (FK+φ4) lattice

In the end, we consider the combined (FK+φ4) lattice
with Hamiltonian

H =
∑

i

[

p2i
2

+
1

2
(qi+1 − qi)

2 +
V

2π
(1 − cos 2πqi) +

1

4
q4i

]

(8)
The combined FK+φ4 lattice should also have normal
heat conduction behavior due to the existence of on-site
potential. This can be verified by examining the energy
diffusion behavior in Fig. 9 (a) and (b). The ρE(i, t) fol-
lows the Gaussian distributions and the MSD of energy
depends linearly on time as

〈

∆x2(t)
〉

E
∼ 2DEt, asymp-

totically.

In Fig. 9 (c), the stretch distribution functions ρD(i, t)
are plotted for correlation times t = 100, 300 and 500. No
Gaussian like distribution is observed and the scenario is
similar to that of φ4 lattice as in Fig. 1 (c). Same as
φ4 lattice, the

〈

∆x2(t)
〉

D
saturates to a constant value

after a short time scale, as can be seen in Fig. 9 (d).
This is another counter example to the claim by Das and
Dhar since the momentum is not conserved here, while
the stretch diffusion is also not normal.
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FIG. 9: (color online). The 1D combined FK+φ4 lattice.
(a) The energy distribution function ρE(i, t) and (c) stretch
distribution function ρD(i, t). (b) The MSD

〈

∆x2(t)
〉

E
of en-

ergy and (d)
〈

∆x2(t)
〉

D
of stretch. The overall behavior is

similar to that of the φ4 lattice. The excess energy distribu-
tion function ρE(i, t) follows the Gaussian distribution while
the stretch distribution function ρD(i, t) does not. As a re-
sult, only the energy diffusion is normal as

〈

∆x2(t)
〉

E
∝ t,

asymptotically. In panel (a), the ρE(i, t) is shifted upward
with a constant value of 1/(N − 1) to maintain vanishing
tails. The parameter is set as V = 0.5. The energy density is
set as E = 0.5 and the corresponding temperature is around
T ≈ 0.47. The lattice size is chosen as N = 801.

Model
Conservation Normal Diffusion

Mom. Stretch Energy Mom. Stretch

φ4 No Yes Yes -
::

No

Rotator Yes
Yes (I) Yes Yes No

Yes (II) Yes Yes No

No (III) Yes Yes -

FK No Yes Yes - Yes

FK+φ4 No Yes Yes -
::

No

TABLE I: The relation between conservation quantities and
corresponding diffusion behaviors. The straight (waved) un-
derline represents that the numerical behavior is consistent
(inconsistent) with theoretical predictions in Ref. [72]. If mo-
mentum or stretch is not conserved, there is no corresponding
diffusion behavior for momentum or stretch, respectively.

III. CONCLUSIONS

In conclusion, we have systematically investigated the
stretch diffusion as well as the energy diffusion for a few
1D nonlinear lattices with normal heat conduction behav-
iors. For isolated systems with periodic boundary con-
ditions, both the total energy and total stretch are con-
served quantities. Depending on the existence of on-site
potential, the total momentum can be conserved or non-
conserved. For 1D φ4 and combined (FK+φ4) lattices,
the total momentum is not conserved while the stretch
diffusion is not normal, which are counter examples to the
claim in Ref. [72]. For 1D coupled rotator lattice with
normal momentum diffusion, the situation is tricky in the
sense that its stretch conservation depends on the choices
of limitation of qi orDi. Only for 1D FK lattice, the total
momentum is not conserved and the stretch and energy
diffusions are normal which is consistent with the claim.
The relation between conserved quantities and their cor-
responding diffusion behaviors is summarized in Table
I. In conclusion, our numerical results do not support
the definite claim that “whenever stretch (momentum) is
not conserved in a one-dimensional model, the momen-
tum (stretch) and energy fields exhibit normal diffusion”
proposed in Ref. [72]. However, there is something inter-
esting for the lattices with cosine or bounded potentials.
It is still an open issue and we hope more efforts will be
done in this direction in the near future.
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