
This is the accepted manuscript made available via CHORUS. The article has been
published as:

How noise contributes to time-scale invariance of interval
timing

Sorinel A. Oprisan and Catalin V. Buhusi
Phys. Rev. E 87, 052717 — Published 29 May 2013

DOI: 10.1103/PhysRevE.87.052717

http://dx.doi.org/10.1103/PhysRevE.87.052717


EB11104

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

How noise contributes to time-scale invariance of interval timing?

Sorinel A. Oprisan∗

Department of Physics and Astronomy, College of Charleston,

66 George Street, Charleston, SC 29624, U.S.A

Catalin V. Buhusi

Department of Psychology, Utah State University, Logan, UT

Abstract

Time perception in the supra-second range is crucial for fundamental cognitive processes like

decision making, rate calculation, and planning. In the vast majority of species, behavioral and

neurophysiological manipulations, interval timing is scale invariant: the time-estimation errors are

proportional to the estimated duration. The origin and mechanisms of this fundamental property

are unknown. We discuss the computational properties of a circuit consisting of a large number of

(input) neural oscillators projecting on a small number of (output) coincidence detector neurons,

which allows time to be coded by the pattern of coincidental activation of its inputs. We showed

that time-scale invariance emerges from the neural noise, such as small fluctuations in the firing

patterns of its input neurons and in the errors with which information is encoded and retrieved by

its output neurons. In this architecture, time-scale invariance is resistant to manipulations as it

depends neither on the details of the input population, nor on the distribution probability of noise.
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I. INTRODUCTION

The perception and use of durations in the seconds-to-hours range (interval timing) is

essential for survival and adaptation, and is critical for fundamental cognitive processes

like decision making, rate calculation, and planning of action [1]. The fixed-interval (FI)

procedure is the classic interval timing experiment in which a subject’s behavior is reinforced

for the first response (e.g., lever press) made after a pre-programmed interval has elapsed

since the previous reinforcement. Although no external time cues is provided, the subjects

trained on a FI procedure typically pause after the delivery of reinforcement and start

responding after a fixed proportion of the interval has elapsed. A widely-used discrete-trial

variant of FI procedure is the peak-interval (PI) procedure [2, 3]. In a PI procedure, a

stimulus such as a tone or light is turned on to signal the beginning of the to-be-timed

interval and in a proportion of trials the subjects first response after the criterion time

is reinforced. In the remainder of the trials, known as probe trials, no reinforcement is

given and the stimulus remains on for about three-four times the criterion time. The mean

response rate over a very large number of trials has a Gaussian shape whose peak measures

the accuracy of criterion time estimation and the spread of the timing function measures

its precision. In the vast majority of species, protocols, and manipulations to date, interval

timing is both accurate and time-scale invariant, i.e., time-estimation errors increase linearly

with the estimated duration [4–7] (Fig. 1). Accurate and time-scale invariant interval timing

was observed in many species [1, 4] from invertebrates to fish, birds, and mammals, such as

rats [8] (Fig. 1A), mice [9] and humans [10] (Fig. 1B). Time-scale invariance is stable over

behavioral (Fig. 1B), lesion [11], pharmacological [12, 13] (Fig. 1C), and neurophysiological

manipulations [14] (Fig. 1D).

In 1963, Treisman introduced the elements of one of the most influential interval timing

paradigms - the pacemaker-accumulator clock (pacemaker-counter). According to Treisman

(1963), the interval timing mechanism that links internal clock to external behavior also

requires some kind of store of reference times and a comparison mechanism for time judge-

ment. Treisman’s pacemaker-counter mode was rediscovered two decades later and became

the Scalar Expectancy Theory (SET) [6, 15]. According to SET, the interval timing emerges

from the interaction of three abstract blocks: a clock, an accumulator (working or short-term

memory), and a comparator. The internal pacemaker generates pulses that accumulate in
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FIG. 1. (Color online) Accurate and time-scale invariant interval timing. (A) The response

rate of rats timing a 30s interval (left) or 90s interval (right) overlap (center) when normalized

by the maximum response rate (vertical axis), respectively, the criterion time (horizontal axis);

redrawn from [8]. (B) Time-scale invariance in human subjects for 8s and 21s criteria ; redrawn

from [10]. (C) Systemic cocaine (COC) administration speeds-up timing proportional (scalar) to

the original criteria 30s and 90s; redrawn from [8]. (D) The hemodynamic response associated with

a subject’s active time reproduction scales with the timed criterion, 11s v. 17s; redrawn from [14].

the working memory until the occurrence of an important event, such as reinforcement. At

the time of the reinforcement, the number of clock pulses accumulated is transferred from the

working (short-term) memory to the reference (or long-term) memory. A response (output)

is produced by computing the ratio between the value stored in the reference memory and

the current accumulator total. When the ratio falls below a threshold, responding begins.

One of the major shortcomings of SET is that it predicts greater relative accuracy at longer

time intervals: “If there is no error in the accumulator, or if the error is independent of ac-

cumulator value, and if there is pulse-by-pulse variability in the pacemaker rate, then by the

law of large numbers, relative error (standard deviation divided by mean, coefficient of vari-

ation) must be less at longer time intervals.” (see Staddon and Higa [16] for details). This
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theoretical prediction of SET contradicts the time-scale invariance observed in experiments.

Another influential interval timing paradigm is the Behavioral Timing (BeT) theory [17,

18]. BeT assumes a “clock” consisting of a fixed sequence of states with the transition

from one state to the next driven by a Poisson pacemaker. Each state is associated with

different classes of behavior, and, the theory claims, these behaviors serve as discriminative

stimuli that set the occasion for appropriate operant responses (although there is not a

1:1 correspondence between a state and a class of behavior). The added assumption that

pacemaker rate varies directly with reinforcement rate allows the model to handle some

experimental results not covered by SET, although it has failed some specific tests (see [16]

for a review).

A handful of neurobiologically-inspired models explain accurate timing and time-scale

invariance as a property of the information flow in the neural circuits [19, 20]. Shadlen was

the first to suggest that timing of sub-second intervals may be addressed at the level of single

neurons [21], though how such a mechanism accounts for timing of supra-second durations is

unclear. Killeen and Taylor [22] attempted solving this issue by explaining timing in terms

of information transfer between noisy counters, although the biological mechanisms were not

addressed. Meck and associates [4, 23] (Fig. 2A) proposed a different approach called the

Striatal Beat Frequency (SBF) model in which timing is coded by the coincidental activation

of neurons, which produces firing beats with periods spanning a much wider range of du-

rations than single neurons [24]. As Matell and Meck (2004) suggested, the interval timing

could be the product of multiple and complimentary mechanisms. They suggested that the

same neuroanatomical structure could use different mechanisms for interval timing. A pos-

sible common ground for all interval timing models could be the threshold accommodation

phenomenon that allows stimulus selectivity [25, 26] and promote coincidence detection [9].

Farries (2010) showed that dynamic threshold change in subthalamic nucleus that projects

to the output nuclei of the basal ganglia (BG) allows subthalamic nucleus (STn) to act

either as an integrator for rate code inputs or a coincidence detector [27] (see Fig. 2).

Here we showed analytically that in the context of the proposed SBF neural circuitry,

time-scale invariance emerges naturally from variability (noise) in models’ parameters. We

also showed that time-scale invariance is independent of both the type of the input neuron,

and the probability distribution or the sources of the noise.

This paper is organized as follows. The SBF model is described in Sec. II. A brief
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neurobiological justification is provided for each major functional block of the SBF model.

The analytical and numerical results are described in Sec. III. In the absence of noise,

the SBF network produces accurate interval timing but violates time-scale invariance. At

least one source of noise added to the SBF model produces both accurate and time-scale

invariant interval timing. We conclude in Sec. IV with a discussion of our results. Detailed

analytical derivations of time-scale invariance in the presence of noise are summarized in

the Appendices.

II. THE STRIATAL BEAT FREQUENCY MODEL

Our paradigm for interval timing is inspired by the SBF model [4, 23], which assumes

that durations are coded by the coincidental activation of a large number, N , of cortical

(input) neurons projecting onto No spiny (output) neurons in the striatum that selectively

respond to particular reinforced patterns [28–30] (Fig. 2A).

A. The cortical oscillators

Neurobiological justification. There is strong experimental evidence that oscillatory

activity is a hallmark of neuronal activity in various brain regions, including the olfactory

bulb [31–33], thalamus [34, 35], hippocampus [36, 37] and neocortex [38]. Cortical oscilla-

tors in the alpha band ([8, 13] Hz) were previously considered as pacemakers for temporal

accumulation [39], as they reset upon occurrence of the to-be-remembered stimuli [40].

Numerical implementation. Neurons that produce stable membrane potential oscil-

lations are mathematically described as limit cycle oscillators, i.e., they pose a closed and

stable phase space trajectory [41]. Since the oscillations repeat identically, it is often conve-

nient to map the high-dimensional space of periodic oscillators using a phase variable that

continuously covers the interval (0, 2π). Phase oscillator models have a series of advantages:

(1) provide analytical insights into the response of complex networks, (2) any neural oscilla-

tor can be reduced to a phase oscillator near a bifurcation point [42], and (3) allow numerical

checks in a reasonable time. All neurons operate near a bifurcation, i.e., a point past which

the neuron produces large membrane potential excursions - called action potentials [41].

In this SBF-sin implementation, the cortical neurons are represented by N (input) phase
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FIG. 2. (Color online) The neurobiological structures involved in interval timing and

the corresponding simplified SBF architecture. (A) Schematic representation of some neu-

robiological structures involved in interval timing. The color-coded connectivities among different

areas emphasize appropriate neuromodulatory pathways. The two main areas involved in interval

timing are frontal cortex (FC) and basal ganglia (BG). (B) In our implementation of the SBF

model, the states of the N cortical oscillators (input neurons) at reinforcement time T are stored

in the reference memory as a set of weights wi(T ). During test trials, the working memory stores

the current weights wi(t) and, together with the reference memory, projects its content onto spiny

(output) neurons of the BG. FC: frontal cortex; MC: motor cortex; BG: basal ganglia; TH: tha-

lamus. GPE: globus pallidus external; GPI: globus pallidus internal; STn: subthalamic nucleus;

SNc/r: substantia nigra pars compacta/reticulata; VTA: ventral tegmental area; Glu: glutamate;

DA: dopamine; GABA: gamma-aminobutyric acid; ACh: acetylcholine.

oscillators with intrinsic frequencies fi (i = 1, . . . , N) uniformly distributed over the interval

(fmin, fmax), projecting onto No (output) spiny neurons [23] (Fig. 2B). A sine wave is the

simplest possible phase oscillator that mimics periodic transitions between hyperpolarized

and depolarized states observed in single cell recordings. For analytical purposes, the mem-

brane potential of ith cortical neuron was approximated by a sine wave vi(t) = a cos(2πfit),

where a is the amplitude of oscillations. We also implemented an SBF-ML network in which

the input neurons are conductance-based Morris-Lecar (ML) model neuron with two state

variables: membrane potential and a slowly varying potassium conductance [43, 44] (see

Appendix C for detailed model equations).
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B. The memory of criterion time

Neurobiological justification. Among the potential areas involved in storing brain

states related to salient features of stimuli in interval timing trials are the hippocampus

(see [45] and references therein) and the striatum, which we mimic in our simplified neural

circuitry (see Fig. 2A).

Numerical implementation. The memory of the criterion time T is modeled by the

set of state parameters (or weights) wij that characterize the state of cortical oscillator i

during the FI trial j. In our implementation of the noiseless SBF-sin model, the weights

wij ∝ vi(Tj), where Tj is the stored value of the criterion time T in the FI trial j. The state of

PFC oscillators i at the reinforcement time Tj is the normalized average over all memorized

values Tj of the criterion time: wi(T ) =
1
S

Nm
∑

j=1
vi(Tj), where we used S = Max

(

Nm
∑

j=1
vi(Tj)

)

≤
Nm such that the normalized weight is bounded |wi(T )| ≤ 1 (see Fig. 2B). We found no

difference between the response of the SBF model with the above weights or the positively-

defined weight wi(T ) =
1
2 S

Nm
∑

j=1
(1 + vi(Tj)).

C. Coincidence detection with spiny neurons

Neurobiological justification. Support for the involvement of the striato-frontal

dopaminergic system in timing comes from imaging studies in humans [46–49], lesion studies

in humans and rodents [50, 51], and drug studies in rodents [52, 53] all pointing towards the

basal ganglia as having a central role in interval timing (see also [54] and references therein).

Striatal firing patterns are peak-shaped around a trained criterion time, a pattern consistent

with substantial striatal involvement in interval timing processes [55]. Lesions of striatum

result in deficiencies in both temporal-production and temporal-discrimination procedures

[56]. There are also neurophysiological evidences that striatum can engage reinforcement

learning to perform pattern comparisons (see [57]). Another reason we ascribed the coin-

cidence detection to medium spiny neurons is due to their bistable property that permits

selective filtering of incoming information [58, 59]. Each striatal spiny neuron integrates

a very large number of afferents (between 10,000 and 30,000) [28, 29, 59], of which a vast

majority (≈ 72%) are cortical [60, 61]. The comparison between a stored representation

of an event, e.g., the set of the states of cortical oscillators at the reinforcement (criterion)
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time wi(T ), and the current state of the same cortical oscillators during the ongoing test

trial wi(t) is believed to be distributed over many areas of the brain [62] (Fig. 2A).

Numerical implementation. Based on neurobiological data, in our implementation

of the striato-cortical interval timing network we have a ratio of 1000:1 between the input

(cortical) oscillators and output (spiny) neurons in the BG (Fig. 2B). The output neurons,

which mimic the spiny neurons in the BG, act as coincidence detectors: They fire when the

pattern of activity (or the state of cortical oscillators) wi(t) at the current time t matches

the memorized reference weights wi(T ). Numerically, the coincidence detection was modeled

using the product of the two sets of weights:

O(t) =
N
∑

i=1

wi(T )wi(t). (1)

The purpose of the coincidence detection given by Eq. (1) is to implement a rule that

produces a strong output when the two vectors wi(T ) and wi(t) coincide and a weaker

responses when they are dissimilar. Although there are many choices, such as sigmoidal

functions (which involve numerically expensive calculations due to exponential functions

involved), we opted for implementing the simplest possible rule that would fulfill the above

requirement, i.e., the dot product of the vectors wi(T ) and wi(t). Without reducing the

generality of our approach, and in agreement with experimental findings [61], for analytical

analyses we only considered one output neuron in Eq. (1).

D. Noise in the SBF model

Neurobiological justification. Variability in the SBF model could be ascribed to

channel gating fluctuations [63, 64], noisy synaptic transmission [65], and background net-

work activity [66–68]. Single-cell recordings support the hypothesis that irregular firing in

cortical interneurons is determined by the intrinsic stochastic properties (channel noise) of

individual neurons [69, 70]. At the same time, fluctuations in the presynaptic currents that

drive cortical spiking neurons have a significant contribution to the large variability of the

interspike intervals [71, 72]. For example, in spinal neurons, synaptic noise alone fully ac-

counts for output variability [71]. Additional variability affects either the storage (writing)

or retrieval (reading) of criterion time to or from the memory [73, 74]. Another source of

criterion time variability comes from considerations of how animals are trained [75, 76]. In
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this paper, we were not concerned with the biophysical mechanisms that generated irregular

firing of cortical oscillators nor we investigated how reading / writing errors of criterion time

happened. We rather investigated if the above assumed variabilities in the SBF model’s

parameters can produce accurate and time-scale invariant interval timing.

Numerical implementation. Two sources of variability (noise) were considered in this

SBF implementation: 1) Frequency variability, which was modeled by allowing the intrinsic

frequencies fi to fluctuate according to a specified probability density function pdff , e.g.,

Gaussian, Poisson, etc. Computationally, the noise in the firing frequency of the respective

neurons was introduced by varying either the frequency, fi (in the SBF-sin implementation),

or the bias current Ibias required to bring the ML neuron to the excitability threshold (in

the SBF-ML implementation). 2) Memory variability was modeled by allowing the criterion

time T to be randomly distributed according to a probability density function pdfT .

III. RESULTS

A. No time-scale invariance in a noiseless SBF model

In the absence of noise (variability) in the SBF-sin model, the output given by Eq. (1)

for one spiny (output) neuron (No = 1) becomes:

O(t)=
N
∑

i=1

wi(T )wi(t) =
N
∑

i=1

cos(2πfiT ) cos(2πfit) (2)

=
sin(Nπ(fmax − fmin)(t− T )) cos(Nπ(fmax + fmin)(t− T ))

2 sin(π(fmax − fmin)(t− T ))

+
sin(Nπ(fmax − fmin)(t+ T )) cos(Nπ(fmax + fmin)(t + T ))

2 sin(π(fmax − fmin)(t+ T ))
.

The first term determines a sharp output when the current time t approaches the crite-

rion time T and we dropped the second symmetrical term that peaks at t = −T . The

cos(Nπ(fmax + fmin)(t− T )) factor is a very fast oscillating function that fills out the enve-

lope of the output function, i.e., sin(Nπ(fmax−fmin)(t−T ))/(2 sin(π(fmax−fmin)(t−T ))).

Based on Eq. (2), we found that O(t = T ) = N and the width of the output function σo in

the absence of noise can be determined from O(T + σo/2) = O(t = T )/2, i.e.,

sin(Nπ(fmax − fmin)σo/2) cos(Nπ(fmax + fmin)σo/2)

(2 sin(π(fmax − fmin)σo/2))
=

N

2
. (3)
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FIG. 3. (Color online) A noise-free SBF model does not produce time-scale invariance.

(A) Analytically predicted (inset) and numerically generated output of a noise-free SBF-sin model

with N = 100 for T = 5s and T = 15s. (B) As predicted analytically (theoretical), the width the

output function of a noise free SBF-sin model is independent of the criterion time. (C) A noise-free

SBF-ML model does not produce time-scale invariance either. The width of the Gaussian envelopes

(dashed line for T = 5s and dashed-dotted line for t = 15s) remains constant.

The equation (3) that determines the width of the output function in the absence of noise

contains only the number of cortical oscillators N and the values of the frequency range

fmin and fmax, respectively. Therefore, σo is independent of the criterion time and violates

time-scale invariance.

To numerically verify the above predictions, the envelope of the output function of a

noise-free SBF-sin model (Fig. 3A) was fitted with a Gaussian whose mean and standard

deviations were contrasted against the theoretically-predicted values (Fig. 3B). Although

the standard deviations obtained from the fitting of the envelope (Fig. 3A) were not strictly

constant (Fig. 3B, filled rectangles), they were close to the theoretically predicted values

(Fig. 3B, filled circles) in the limit of fitting errors.

The above result regarding the emergence of time-scale property from noise in SBF-sin

model can extend to any type of input neuron. Indeed, according to Fourier’s theory, any

periodic train of action potentials can be decomposed into discrete sine-wave components. It

results that irrespective of the type of input neuron, a noise-free SBF model cannot produce

time-scale invariant outputs. We verified this prediction by replacing the sine-wave oscillator

inputs with biophysically-realistic noise-free ML neurons. Numerical simulations confirmed

that the envelope of the output function can be reasonably fitted by a Gaussian, but the

width of the Gaussian output does not increase with the timed interval (see Fig. 3C), thus

violating the time-scale invariance (scalar property).
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B. Time-scale invariance emerges from noise in the SBF model

Many sources of noise (variability) may affect the functioning of an interval timing net-

work, such as small fluctuations in the intrinsic frequencies of the inputs, and in the encoding

and retrieving the weights wi(T ) by the output neuron(s) [23, 24, 77, 78]. Here we showed

analytically that one noise source is sufficient to produce time-scale invariance [23]. Without

compromising generality, in the following we examined the role of the variability in encoding

and retrieval of the criterion time by the output neuron(s). The cumulative effect of all noise

sources (trial-to-trial variability, neuromodulatory inputs, etc.) on the memorized weights

wi(T ) was modeled by the stochastic variable Tj distributed around T according to a given

pdfT . For only one spiny (output) neuron (No = 1), the output function given by Eq. (1)

becomes:

O(t) =
N
∑

i=1

Trials
∑

j=1

(cos(2πfit) cos(2πfiTj))

=
1

2

N
∑

i=1

Trials
∑

j=1

(cos(2πfi(t− Tj)) + cos(2πfi(t+ Tj))) , (4)

which has the first term centered at t = +Tj and the second symmetrical at the unphysical

value of t = −Tj . Based on the central limit theorem, the output function given by Eq.

(4), which is a sum of a (very) large number Trials of stochastic variables Tj , is always a

Gaussian regardless the pdfT of the criterion time.

To examine time-scale invariance, we estimate again the relationship between the width

of the output function σo and the criterion time T . Briefly, using trigonometric identities

we rewrote the output function with respect to the stochastic displacement x of a particular

realization Tj with respect to T in terms of the new variable θ(x) = π(t − T − Tx)df (see

Appendix A). The function θ(x) is a phase difference between the current (running) time t

and the memorized criterion time Tj .

To investigate time-scale invariance of the results given in Eq. (4), the physically realiz-

able term centered around t = +Tj was transformed to:

z = O(x) =
sin(Nθ(x)) cos((2fmin/df +N)θ(x))

sin(θ(x))
, (5)

where θ(x) = π(t−T−Tx)df , and df = (fmax−fmin)/N . The pdfz of the new stochastic vari-

able z(x) is related to the pdfx of the criterion time pX(x) through pZ(z) = pX(h
−1(z))|dx/dz|

(see [79]). For a very large number of cortical (input) oscillators and irrespective of the noise
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distribution pdfT of the criterion time, the expected value of the output function given by

Eq. (5) becomes:

z =

xmax
∫

xmin

sin(Nθ(x)) cos((2fmin/df +N)θ(x))

sin(θ(x))
pX(x)dx, (6)

where the range (xmin, xmax) depends on the specific type of pdfX(x) considered. To esti-

mate the expression in Eq. (6), we used the mean value theorem for integrals which states

that there always exists a number xmin < γ < xmax such that the integral in Eq. (6) is

approximated by:

z =
sin(Nθ(γ)) cos((2fmin/df +N)θ(γ))

sin(θ(γ))
pX(γ). (7)

To find the width of the time-dependent expected value of the output function in Eq.

(7), we require that z(t = T + σo/2) = z(t = T )/2, i.e., the expected value at the time

t = T + σo/2 that corresponds to the half-width of the output function must be 1/2 of the

expected value at criterion time t = T . By solving Eq. (7) (see Appendix A), we found that

σo/(2Tγ) = const., i.e., σo ∝ T . Therefore, in the presence of at least one source of noise

(variability in the encoding / decoding of criterion time T ) the SBF-sin has: (1) a Gaussian

output function centers at T (accurate interval timing) that (2) obeys the scalar property.

1. Particular case: Time-scale invariance in the presence of Gaussian noise

Although we already showed that the output function for the SBF-sin model and arbitrary

pdfT for the criterion time noise is always Gaussian and produces accurate interval timing

that also obeys scalar property, it is illuminating to grasp the meaning of the theoretical

coefficients in our general result by investigating a biologically relevant particular case. If

the criterion time is affected by a Gaussian noise with zero mean and standard deviation

σT , one can show that, in the limit of a large pool of inputs, the standard deviation of the

output function becomes:

σo = TσT . (8)

Briefly (see Appendix B for details), in this particular case, the reference weights are

normalized sums of the stochastic variable y = cos(2πfiT (1 + G(0, σT ))) ∈ [−1, 1], where

G(0, σT ) is a Gaussian stochastic variable with zero mean and σT standard deviation. By
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replacing the stochastic vector of reference weights wi(T ) in Eq. (1) with its expected value

the output function is given by:

O(t) =
1

4TσT

√
2π



e
−

(t+T )2

2T2σ2
T + e

−
(t−T )2

2T2σ2
T



 , (9)

which has two Gaussian terms centered at t = ±T with a standard deviation given by Eq.

(8). The Eq. (9) shows that the SBF-sin model produces accurate interval timing with a

Gaussian shape that has a with given by the scaling Eq. (8), i.e., obeys time-scale invariance

property.

We used the SBF-sin implementation to numerically verify our prediction given by Eq.

(8) over multiple trials (runs) of this type of stochastic process and for different values of

T . The output functions (see continuous lines in Fig. 4A) for T = 30s and T = 90s are

reasonably fitted by Gaussian curves (see dashed lines in Fig. 4A) . Our numerical results

show a linear relationship between σo of the Gaussian fit of the output and T (Fig. 4B). We

found that the resultant slope of this linear relationship matched the theoretical prediction

given by Eq. (8): For example, for σT = 10% the average slope was 11.3% ± 4.5% with a

coefficient of determination of R2 = 0.93, p < 10−4.

We noticed that the SBF-ML neurons is less sensitive to the level of criterion time noise.

For example, a noise level of 0.1% that would lead to a linear dependence of standard de-

viation on criterion time in the case of the SBF-sin implementation, rendered no significant

change in standard deviation with the SBF-ML implementation (Fig. 4C). The scalar prop-

erty is indeed valid (Fig. 4C), but it emerges only at such levels of (memory) variance that

were not even accessible to SBF-sin implementation. The slope of the standard deviation was

insignificant 0.001±0.001 (R2 = 0.342) for %0.1 memory variance, 0.007±0.002(R2 = 0.789)

for %1 variance, respectively, 0.07 ± 0.01(R2 = 0.898) for 10% memory variance. The fact

that the slope of standard deviation versus criterion time increases ten times (from 0.007

to 0.07) while the memory variance increases ten times (from 1% to 10%) suggests that

σo ∝ σTT for SBF-ML as we predicted and already checked for the SBF-sin model.

We also checked numerically that time-scale invariance is preserved by adding other

sources of noise, e.g., small fluctuations in fi, beside the noise in encoding the criterion time

pdfT (Fig. 5A). Not only time-scale invariance was preserved, but the output function became

slightly skewed (longer tail), as often described in the literature (see Fig. 1), suggesting that

other properties of the output function may also derive from noise. These results further
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FIG. 4. (Color online) Time-scale invariance emerges from criterion time noise in the

SBF model. (A) Time-scale invariance emerges spontaneously in a nosy SBF-sin model; here

the two criteria are T = 30s and T = 90s. The output functions (continuous lines) were fitted

with Gaussian curves (dashed lines) in order to estimate the position of the peak and the width of

the output function. (B) In an SBF-sin model, the standard deviation increases linearly with the

criterion time in all four trials shown with different symbols. (C) In an SBF-ML implementation,

low levels of Gaussian noise (solid rectangles represent σT = .1% and circles σT = 1%) produce

an almost constant standard deviation of the output function similar to noise free case. At high

enough levels of noise (solid triangles represent σT = 10%), the SBF-ML model with criterion time

variance produces a standard deviation σo that increases linearly with the criterion time T , which

is the hallmark of time-scale invariance.

suggest that the more sources of noise are considered, the more stable the scalar property

is, thus explaining its ubiquity [1, 4, 12]. Only when all the noise sources are eliminated,

the output ceases to be time-scale invariant, as shown by Eq. (2).

IV. DISCUSSION

Computational models of interval timing vary largely with respect to the hypothesized

mechanisms and the assumptions by which temporal processing is explained, and by which

time-scale invariance, or drug effects are explained. The putative mechanisms of timing rely

on pacemaker/accumulator processes [6, 7, 80, 81], sequences of behaviors [18], pure sine

oscillators [8, 23, 82–84], memory traces [16, 85–89], or cell and network-level models [21,

90]. For example, both neurometric functions from single neurons and ensemble of neurons

successfully paralleled the psychometric functions for the to-be-timed intervals shorter than
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FIG. 5. (Color online) Time-scale invariance is robust to noise manipulation in the SBF

model. (A) In the presence of both criterion time and frequency variance, the SBF-ML produces

accurate and time-scale invariant output. At the same time, multiple sources of noise determine

a long tail in the output function, which is similar with experimental findings. (B) The scalar

property is also preserved regardless the type of criterion time variability (uniform noise - solid

triangles, Poisson noise - solid squares).

one second [21]. Reutimann et al. (2004) also considered interacting populations that are

subject to neuronal adaptation and synaptic plasticity based on the general principle of

firing rate modulation in single-cell. Balancing LTP and LTD mechanisms are thought to

modulate the firing rate of neural populations with the net effect that the adaptation leads

to a linear decay of the firing rate over time. Therefore, the linear relationship between time

and the number of clock ticks of the pacemaker-accumulator model in the SET of interval

timing [6] was translated into a linearly decaying firing rate model that maps time and

variable firing rate.

By and large, to address time-scale invariance current behavioral theories assume conve-

nient computations, rules, or coding schemes. Scalar timing is explained as either deriving

from computation of ratios of durations [6, 7, 91], adaptation of the speed at which per-

ceived time flows [18], or from processes and distributions that conveniently scale-up in time

[16, 82, 85, 87, 88]. Some neurobiological models share computational assumptions with

behavioral models and continue to address time-scale invariance by specific computations
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or embedded linear relationships [92]. Some assume that timing involves neural integrators

capable of linearly ramping up their firing rate in time [90], while others assume LTP/LTD

processes whose balance leads to a linear decay of the firing rate in time [93]. It is unclear

whether such models can account for time-scale invariance in a large range of behavioral or

neurophysiological manipulations.

Neurons are often viewed as communications channels which respond even to the pre-

cisely delivered stimuli sequence in a random manner consistent with Gaussian noise [94].

Biological noise was shown to play important functional roles, e.g., enhance signal detection

through stochastic resonance [95, 96] and stabilize synchrony [97, 98]. Firing rate variability

in neural oscillators also results from ongoing cortical activity (see [98, 99] and references

therein), which may appear noisy simply because it is not synchronized with obvious stimuli.

Our theoretical predictions based on an SBF model show that time-scale invariance emerges

as the property of a (very) large and noisy network. Furthermore, we showed that the

output function of an SBF mode always resembles the Gaussian shape found in behavioral

experiments regardless the type of noise affecting the timing network. Our results regarding

the effect of noise on interval timing support and extend the speculation [23] by which an

SBF model requires at least one source of variance (noise) to address time-scale invariance.

Rather than being a signature of higher-order cognitive processes or specific neural compu-

tations related to timing, time-scale invariance naturally emerges in a massively-connected

brain from the intrinsic noise of neurons and circuits [4, 21]. This provides the simplest ex-

planation for the ubiquity of scale invariance of interval timing in a large range of behavioral,

lesion, and pharmacological manipulations.

Appendix A: General case: Time-scale invariance from noise with arbitrary distri-

bution

To estimate the width of the output function using Eq. (7), we notice that at t = T the

function θ(γ) = −πTγdf which leads to:

¯O(t = T ) =
sin(NπTγdf) cos((2fmin/df +N)πTγdf)

sin(πTγdf)
pX(γ)

=
sin(a) cos(b)

sin(a/N)
pX(γ), (A1)
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where we used the notation a = πTγ(fmax − fmin), b = πTγ(fmax + fmin). Similarly, the

estimated value of the output function at t = T + σo/2, i.e., the half width of the output

function, is

¯O(t = T + σo/2) =
sin(a(1− x)) cos(b(1− x))

sin(a(1− x)/N)
pX(γ), (A2)

where x = σo/(2Tγ) is proportional to the coefficient of variation of the criterion time. By

solving ¯O(t = T + σo/2) = ¯O(t = T )/2, we find that:

sin(a) cos(b)

sin(a/N)
pX(γ) =

1

2

sin(a(1− x)) cos(b(1− x))

sin(a(1− x)/N)
pX(γ). (A3)

Using a Taylor series approximation for the right hand side of Eq. (A3), we obtain:

1

2

sin(a) cos(b)

sin(a/N)
= a1x+O(x2), (A4)

where the constant a1 = sin(a/N)(a cos(a) cos(b)−b sin(a) sin(b))−a/N sin(a) cos(b) cos(a/N)
sin2(a/N)

, and O(x2) in-

cludes second order terms and higher. From Eq. (A4), the first order approximation of the

expected width of the output function is:

x =
sin(a) cos(b)

2 sin(a/N)a1
= Const., (A5)

which proves that x = σo/(2Tγ) = Const., i.e., σo ∝ T . This proves that the scalar-time

property is fulfilled regardless the pdfT .

Appendix B: Particular case: Time-scale invariance from Gaussian noise

When the criterion time is affected by a Gaussian noise, the reference weights wi(T )

become:

wi(T ) =
No
∑

j=1

cos(2πfiTj)

S

=
No
∑

j=1

cos(2πfiT (1 +G(0, σT )j))

S
. (B1)

The stochastic variables y = cos(2πfiT (1 + G(0, σT ))) ∈ [−1, 1] under summation in Eq.

(B1) has the pdf [100]:

pY (y) =
1√

2π2πσTfiT
e

−

(

arccos(y)
2πfiT

−1

)2

2σ2
T .
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The mean of pdfy is µy =
1
∫

−1
ypY (y)dy, which rewrites as:

µy =
1√
2πσT

∞
∫

−∞

cos(2πfiT (1 + x))e
−

x2

2σ2
T dx

= e
−(2πfiTσT )2

2 cos(2πfiT ). (B2)

By replacing the stochastic vector of reference weights wi(T ) in Eq. (1) with the expected

value from Eq. (B2) one obtains:

O(t) =
N
∑

i=1

cos(2πfiT ) cos(2πfit)e
−(2πfiTσT )2

2 , (B3)

which, for a very broad spectrum of frequencies (theoretically 0 < f < ∞) and a very large

pool of neural oscillators (theoretically N → ∞), becomes:

O(t)N→∞ =

∞
∫

0

cos(2πfT ) cos(2πft)e
−(2πfTσT )2

2 df

=
1

4TσT

√
2π



e
−

(t+T )2

2T2σ2
T + e

−
(t−T )2

2T2σ2
T



 . (B4)

which is equivalent to Eq. (8).

Appendix C: Morris-Lecar model equations

We used a dimensionless Morris-Lecar model [43, 101] described by the following equations

x′

1 = f1(x1, x2) = −ICa − IK − IL + I0,

x′

2 = f2(x1, x2) = ξλ0(x1)(w∞(x1)− x2), (C1)

where x1 is the membrane potential, x2 is the slow potassium activation and all ionic currents

are described by Ix = gx(x1−Ex), where gx is the conductance of the voltage gated channel

x and Ex is the corresponding reversal potential. In particular, the calcium current is

ICa = gCam∞(x1)(x1 − ECa), the potassium current is IK = gKx2(x1 − EK), and the leak

current is IL = gL(x1−VL). The reversal potentials for calcium, potassium and leak currents

are ECa = 1.0, EK = −0.7, EL = −0.5, respectively. The steady state activation function

for calcium channels is m∞(x1) = 1 + tanh((x1 − V1)/V2))/2, where V1 = −0.01, V2 = 0.15,

the steady state activation function for potassium channels is w∞(x1) = (1 + tanh((x1 −
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V3)/V4])/2 where V3 = 0.1, V4 = 0.145, the inverse time constant of potassium channels is

λ0(x1) = cosh((x1−V3)/V4/2), the potassium and leak conductances are gK = 2.0, gL = 0.5,

respectively, and the ξ = 1.0/3.0.

The two control parameters that can switch the ML model from a Class I excitable cell

[102] to a Class II are the calcium conductance gCa and the bias current I0. For example, if

gCa = 1.0 and 0.083 < I0 < 0.242 the equations (C1) describe what was classified by A.L.

Hodgkin as Class I excitable cells. For example, if gCa = 0.5 and 0.303 < I0 < 0.138 the

equations (C1) describe what was classified by A.L. Hodgkin as Class II excitable cells. In

our simulations, we used a Class II ML model neuron that has a membrane potential shape

very close to a sine-wave.
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