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In this paper we focus on diversity-induced resonance, which was recently found in bistable, excitable and
other physical systems. We study the appearance of this phenomenon in a purely economic model of cooperating
and defecting agents. Agent’s contribution to a public goodis seen as a social norm. So defecting agents
face a social pressure, which decreases if free-riding becomes widespread. In this model, diversity among
agents naturally appears because of the different sensitivity towards the social norm. We study the evolution
of cooperation as a response to the social norm (i) for the replicator dynamics, and (ii) for the logit dynamics
by means of numerical simulations. Diversity-induced resonance is observed as a maximum in the response of
agents to changes in the social norm as a function of the degree of heterogeneity in the population. We provide an
analytical, mean-field approach for the logit dynamics and find very good agreement with the simulations. From
a socio-economic perspective, our results show that, counter-intuitively, diversity in the individual sensitivity to
social norms may result in a society that better follows suchnorms as a whole, even if part of the population is
less prone to follow them.

PACS numbers: 89.65.Gh, 05.45.Xt, 02.50.-r

I. INTRODUCTION

The ever-increasing interest by physicists to contribute to
understanding collective phenomena in social systems [1] has
mostly concentrated around highly stylized models, often di-
rectly borrowed from physics, using vague plausibility argu-
ments to justify their social context [2]. In this paper, we fol-
low a less common route, namely to work with a model which
is established in, and directly taken from, the social sciences.
It studies the effect of social norms on the emergence of coop-
eration. We study its dynamics from the physical perspective
of diversity-induced resonance, to shed new light on sustain-
able cooperation in a society where some fractions do not ad-
here to support it.

In a system consisting of distinct and non-identical ele-
ments, diversity-induced resonance can be defined as the ap-
pearance of a maximum response to an external signal, de-
pendent on the degree of diversity. This phenomenon was
first reported in Ref. [3], in the context of coupled bistable
or excitable systems that are subject to a sub-threshold signal.
It was shown that there is an optimum level of the diversity
(quenched noise) of the coupled units that maximizes the re-
sponse to the signal. Subsequent works [4–13] showed that
similar behavior can be observed in other physical systems,
thus reinforcing the notion that this type of resonance can be
a quite general phenomenon. In fact, diversity-induced reso-
nance was also shown to appear in models related to socio-
physics: It was found in discrete models of opinion formation
[14] –such as the Galam model [15] (related to the random-
field Ising model at zero temperature [16]– and in continuous
ones [17], of which the Deffuant model [18] is a paradigmatic
example. In all cases, the average opinion synchronizes to
external signals or influences when the diversity in the pre-
ferred opinions attains an optimum value. In a broader con-
text, diversity-induced resonance can be generalized to other
sources ofdisorder in the internal dynamics of the system

constituents. Interestingly, even repulsive and evolvingpat-
terns of interactions can trigger a common collective behavior,
be it synchronization [19, 20], an amplification of an external
signal [17, 21] or a nonlinear increase in the volatility of the
global dynamics [22]. In a social context, these repulsive in-
teractions would represent contrarians, i.e. individualsthat
oppose any type of consensus [23, 24] or that intend to desta-
bilize the system itself, such as the joker-like players studied
in the context of social dilemmas [25].

The research reported here generalizes diversity-induced
resonance by demonstrating its appearance in a purely eco-
nomic model of social norms and their effect on cooperation
[26]. Instead of relying on a model rooted in physics, we
study an established model from the economics literature in
which diversity and external driving are introduced based on
economic considerations. In this model, diversity appearsnat-
urally as an idiosyncratic propensity to follow a social norm.
We demonstrate for this model that there is an optimal range
of diversity, which leads the society to follow such norms as
a whole. Different from the setup of diversity-induced reso-
nance models usually studied in the physics literature, in this
case diversity appears in a multiplicative manner and its dy-
namics are given by approaches typical of evolutionary game
theory.

The paper is organized as follows: Section II presents our
model and its economic context. Section III summarizes our
simulation results, obtained for two different types of evolu-
tionary dynamics, to demonstrate the robustness of the ob-
servations. To better understand the origin of the collective
dynamics, we present our findings for three levels of increas-
ing modeling complexity, without and with diversity, and with
external forcing. Subsequently, Sec. IV improves our under-
standing by means of an analytical approach for the stationary
level of cooperation, whereas Sec. IV B investigates the re-
sponse to the external signal. Finally, Section V summarizes
our conclusions and discusses the implications of this work.
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II. MODEL

A. Economic context

In this paper, we modelconditional cooperation, a phe-
nomenon observed in many human interactions. This term
was introduced by Keser and van Winden [27] and Fis-
chbacheret al. [28] to refer to the fact that people often con-
dition their cooperation on the cooperativeness of others or on
their beliefs about others’ behavior. In the specific context of
Prisoner’s Dilemma [29, 30] or Public Goods games [31], this
means that people are ready to contribute more to the common
welfare if others contribute as well. Furthermore, this willing-
ness increases with the number of contributors in the game.
There is a large body of experimental evidence supporting the
existence of this type of behavior [32], even in structured pop-
ulations [33–35]. It is only consistent to ask (i) for a deeper
theoretical understanding of these observations and (ii) their
consequences for economic reasoning. The first question is
partly answered by the theory of social preferences [36], that
posits that non-monetary contributions to the utility function
arise from social considerations, such as, e.g., inequity aver-
sion or reciprocity. It has been argued that social preferences
arise through social norms, i.e., rules of conduct that are en-
forced by internal or external sanctions [37]. Explanations for
the emergence and robustness of such norms in evolutionary
terms have been advanced [26, 38, 39], thus closing the ra-
tionale to explain conditional cooperation in terms of social
preferences.

In this paper, we focus on the issue of norms and on the
consequences of having a diverse population of conditional
cooperators interacting in a Public Goods setup. Thus, we in-
vestigate how diversity influences the response to exogenous
efforts to promote cooperation through social norms. Fol-
lowing Spichtig and Traxler [26], we consider that a norm
against free-riding is enforced (internally or externally). This
is achieved by adding a contribution to the utility function
such that free-riding (i.e., not contributing to the publicgood
while benefiting from it) is heavily punished when rare, but
the punishment weakens as free-riding becomes more abun-
dant in the population. This norm leads to conditional cooper-
ation because of more willingness to cooperate when the pop-
ulation is mostly cooperative, and the propensity to cooperate
decreases if less participants cooperate.

In the above context, we address the following question:
How does the behavior of the population change if the social
norm responsible for establishing a conditionally cooperative
strategy varies in time? This question is important for two
reasons. First, social norms are known to change in time,
endogenously or exogenously, in periodic or random man-
ners [40, 41]. Therefore, it is most important to understand
how those changes affect the observed behavior in order to
assess the stability of cooperative environments. Second,un-
derstanding the response of the population to changes in the
current social norm can help policy makers to design incen-
tives or new norms that lead to more cooperative outcomes.
However, it should also be realized that the effort of steering
the norms towards a preferred direction is costly and, at some

point, the benefit of improving the behavior of the popula-
tions may be lower than that of continuing changing the norm.
Therefore, assessing the optimum amount of effort investedin
modifying a given norm is a very relevant issue. Finally, we
will come to the issue of diversity-induced resonance by con-
sidering that the sensitivity to the social norm depends on the
individual through a specific coefficient to be introduced in
the utility function. In the following, we will show that these
issues can be addressed, and are related to, the phenomenon
of diversity induced resonance in this system.

B. Model definition

Let us now implement the ideas above in a well-defined
model built on the original proposal by Spichtig and Traxler
[26]. We consider a population ofN agents which can take
one of two possible (opposite) actionsσi ∈ {0, 1}, for i =
1 · · ·N . We assume that “cooperative” agents take actionσ =
1, this way contributing to a public good, while “free riders”
take actionσ = 0 and do not contribute to the public good.
Defining the density of cooperators asnc ≡ Nc/N , and the
density of free-riders asnf ≡ 1 − nc = Nf/N respectively,
the utility (or payoff) function per agent is defined as

ui(σi, θi;nc) ≡ − c σi +
r

N

N
∑

j=1

σj

+ (σi − 1) θis(nc) (1)

The first term in Eq. (1) represents the costc per agent for
providing the public good, which applies only if agenti is
cooperative,σi = 1. The second term represents the bene-
fit r/N per agent resulting from the public good. It applies
regardless of the agent’s actionσi. Both terms describe the
utility function of a classical public good game. The third
term, new to the model, describes an additional effect result-
ing from the existence of a social norm, or social pressure, to
cooperate. Free-riders withσi = 0 face an (internal or exter-
nal) sanction [37], which does not apply for cooperators with
σi = 1. We assume that the strength of the social pressure
s(nc) depends on the density of cooperators. Ifnc is small,
i.e. if free-riding is widespread, then agents deviating from
cooperation may face weaker sanctions. Hence,s(nc) is as-
sumed to increase monotonously withnc, with s(1) > 0 and
limnc→0 s(nc) = 0. In the following, we simply choose a
linear functions(nc) = αnc, with α > 0.

Eventually, we consider that not all agents may be prone to
social pressure in the same manner. To cope with this individ-
ual sensitivity to the social norm, we introduce a new variable
θ with realizationsθi drawn from a probability distribution
functiong(θ) with meanΘ and standard deviation∆θ. Note
that negative values ofθi imply a positive contribution to the
perceivedagent’s utility by violating the social norm. This re-
flects the presence of contrarians/jokers [25] in the population
that are willing to go against the system in order to benefit.
Such agents would more likely not contribute to the public
good in presence of social pressure but, as we will see below,
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their presence turns out not to be an obstacle for the general
population to conform to the social norm.

With this utility function, the (bounded) rational choice of
an agent on what action to take depends on the density of co-
operators,nc and on her individual sensitivity,θi. Introducing
c̃ ≡ c−r/N , it is easy to see that agents’ decisions can be clas-
sified in three types: (i) agents will always cooperate,σi = 1,
if θi > c̃/s(N−1), (ii) agents will always free-ride,σi = 0,
if θi < c̃/s(1), and (iii) agents are conditional cooperators
dependent on the density of free-riders in the population, i.e.
they cooperate if̃c/s(N−1) > θi > c̃/s(1). Note that be-
cause oflimnc→0 s(nc) = 0, the criterion for the existence of
cooperators is quite tight and often they will be absent from
the population. Hence, the diversity in the individual sensitiv-
ity θ, precisely the standard deviation∆θ, will play an impor-
tant role in deciding about the size of the three groups defined
above. The final level of cooperation (as well as the influence
of the social norm) will to a large extent be governed by the
conditional cooperators.

Finally, we will consider that the cooperation-fostering
norm changes in time, which is modeled by assuming a time
dependence ofα → α(t). This corresponds to a change of the
slope of the social pressure function, representing periods in
history where free-riding is less tolerated than in others,but
it is always tolerated if widespread. If we further assume that
agents can change their action depending on their expected
utility, i.e. the density of cooperatorsnc has a dynamics de-
fined like in the following section, the third term in Eq. (1)
representing the social pressure becomes(σi−1)θiα(t)nc(t).
Hence, we have a signalα(t) that changes over time be-
cause of external influences. In the present paper, for the sake
of simplicity, and without altering the main results [22], we
will consider a periodic change in the amplitude of the so-
cial norms. In absence of cooperators, the effect of this signal
vanishes as well. The diversity in responding to the signal is
given by the individual variables(σi − 1)θi, i.e. only free-
riders will face the social pressure, but they are prone to itin
a heterogeneous manner.

Studying the model in the setting of diversity-induced reso-
nance allows us to use standard techniques for quantifying the
response of the population to (for example) a change in the so-
cial pressure induced by a policy change. If the period of the
signalα(t) is long enough, the results of a periodic forcing
become equivalent to a one-time modification. Moreover, in
contrast with previous studies of this phenomenon, the signal
enters multiplicatively on the heterogeneous term.

C. Evolutionary dynamics

As mentioned above, we implement a dynamics that al-
low agents to change their actions dependent on the utility
expected. For this dynamics, we use a standard evolution-
ary game-theoretical setup with one-shot games, i.e. agents
have no memory about their previous action. We consider a
well-mixed population, i.e. all agents interact together.This
is dynamically equivalent to considering a mean-field version
of the public goods game, already reflected in the sum term

in Eq. (1). After each round of the game, agents collect their
payoff and subsequently update their strategies accordingto
two different dynamical rules, which we explain in detail be-
low. From the various propositions for update rules in the
literature [42, 43], we have chosen (i) the replicator dynamics
[44, 45], which is widely used and has a well defined limit for
N → ∞, namely the celebrated replicator equation [46, 47];
and (ii) the logit dynamics [48], which allows for the possibil-
ity of errors or mistakes in choosing actions, and whose de-
terministic limit coincides with the best-response rule, widely
used in economics [49].

From a socio-economic context, both dynamic rules have
a different interpretation. On the one hand, the replicatordy-
namics involves some degree of social interaction (the process
is driven by imitation of successful strategies). On the other
hand, the logit dynamics is simply based on strategic behav-
ior. By choosing these quite different kinds of dynamics, we
demonstrate the generality and the robustness of the results
presented in this paper.

Regarding the formal description, it is important to notice
that the diversity forθ introduced in our model no longer al-
lows us to write down the macroscopic dynamics in terms of
a single master equation. Instead, the system dynamics has to
be split into the dynamics of groups of agents with the same
value ofθ. Letn(θ, σ)δθ be the number of agents with an indi-
vidual sensitivity in the interval[θ− δθ/2, θ+ δθ/2] choosing
actionσ at time t (for simplicity, we also say agents are in
stateσ at timet, i.e. “state” refers to “action”). Then, the rate
equation for the density of cooperators with a sensitivityθ is
given by

ṅ(θ, 1) = n(θ, 0)ω+(θ) − n(θ, 1)ω−(θ) (2)

The transition ratesω+(θ) (ω−(θ)) specify the overall tran-
sition into the stateσ = 1 (respectively,σ = 0) for the two
subpopulations with a given sensitivityθ, but different states.
These transition rates depend on the dynamic rules chosen and
are specified in the following.

1. Replicator dynamics

With this update rule, after every time step all agents revise
their action simultaneously by selecting one neighbor at ran-
dom, e.g. agentj, and comparing their own payoffui with
their neighbor’s payoff,uj . If ui > uj agenti keeps her ac-
tion, whereas in the opposite case it adopts the action of the
more successfull agentj with a probability proportional to
(uj − ui). Replicator dynamics is purely imitative, meaning
that actions not present currently in the system can not appear
spontaneously. This in turn implies that states in whichall
agents defect orall contribute are absorbing states. In order
to let the system leave those absorbing states, we have intro-
duced noise to the dynamics: with a small probabilityǫ an
agent can switch her action spontaneously at every time step.
Subsequently, all payoffs are reset to zero and a new round of
the game proceeds.

For agents with an individual sensitivityθ, the overall tran-
sition rate towards the opposite state depends on the possible
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pairings with agents in the opposite state and equipped with
individual sensitivityθ′. This yields

ω−(θ) = ǫ+

∫

ω−(θ|θ′)n(θ′, 0) g(θ′) dθ′, (3)

ω+(θ) = ǫ+

∫

ω+(θ|θ′)n(θ′,+1) g(θ′) dθ′, (4)

whereg(θ) is the distribution function ofθ. The conditional
transition ratesω+(θ|θ′), ω−(θ|θ′) are equal to the differences
in payoff, if the payoff of the agent withθ′ is larger, i.e.

ω−(θ|θ′) =
{

u(θ′, 0)− u(θ,+1), if u(θ′, 0) > u(θ,+1);
0, otherwise,

and

ω+(θ|θ′) =
{

u(θ′,+1)− u(θ, 0), if u(θ′,+1) > u(θ, 0);

0, otherwise.

In these expressions we usde, without loss of generality, a di-
mensionality constant of one to match the transition rates with
the payoff functions. Using the utility function of our model,
Eq. (1), these expressions become

ω−(θ|θ′) =
{

−θ′ s(nc) + c̃, if θ′ < c/s(nc);

0, otherwise,
(5)

and

ω+(θ|θ′) =
{

−c̃+ θ s(nc), if θ > c/s(nc);

0, otherwise.
(6)

Now, inserting Eqs. (5) and (6) into Eqs. (3) and (4) choosing
g(θ) to be a uniform distribution, we get

ω−(θ) = ǫ

+

∫ c̃/s(nc)

θ−∆θ

(−θ′ s(nc) + c̃)
n(θ′, 0)

2∆θ
dθ′ (7)

ω+(θ) = ǫ

+

{

(−c̃+ θ s(nc))
nc

2∆θ if θ > c̃/s(nc)

0, otherwise
(8)

We emphasize that, in the presence of other distributions for
the idyosincratic term, the transition rates become more so-
phisticated and closed form equations can not be written in
general.

2. Logit dynamics

When considering bounded rational agents, economics lit-
erature often assumes that they do not imitate their neighbors,
but follow a strategy or action that would yield the best pay-
off for them. In line with this assumption, one possible rule
would be to change the action into cooperative (ω+) or defec-
tive (ω−) state with a transition rate

ω±(θ) =
1

1 + exp [∓β (u(θ, 1)− u(θ, 0))]
. (9)

It is important to note that in this case the agent does not com-
pare her payoff with that of another agent, but with the payoff
she would obtain by using the opposite action. As there is no
other agent involved, there is also no interaction term in the
above equation, which makes the transition rates much sim-
pler than in the previous case. This will be advantageous for
an analytical approach as we will see below.

The parameterβ in Eq. (9) quantifies the randomness in the
process: Whenβ is small, the agent is more likely to select
another action at random, even if that action is not more suc-
cessful. On the other hand, whenβ → ∞, the rule becomes
deterministic, and the action that yields the maximum payoff
is always chosen, as posited by Ellison [49] when introducing
his (myopic) best response rule.

III. RESULTS

A. Setup for computer simulations

In order to present our results in a clear manner, we will
deal first with the original model as introduced in [26], with-
out considering diversity nor external forcing. This will be
the baseline scenario against which we will subsequently il-
lustrate the effects of diversity to proceed to our main result,
namely the influence of an external driver and the concomitant
appearance of diversity-induced resonance.

As described in the preceding Section, the model has sev-
eral parameters to specify. We start by measuring utilitiesas
a function of the cost of contributing to the public good, i.e.,
by takingc = 1. For the multiplication factor we fixedr = 5
which, in a population of many agents, is too small to induce
agents to contribute to the public good. Therefore, without
the third term in Eq. (1) referring to the social norm, the only
evolutionarily stable strategy is defection. For the population
size, we have chosenN = 103 agents (some runs were re-
peated withN = 104 for the sake of comparison, yielding the
same results).

Subsequently, we have chosen the following parameter val-
ues related to the social norm. The strength of the norm is
given by the slopeα which, in the absense of an external in-
fluence, is set as a constantα = 1, albeit changes of this pa-
rameter do not qualitatively modify our conclusions. Finally,
for the sensitivity to the norm, we need to specify the parame-
ters of the distributiong(θ). In the following, we consider two
cases: (a) There is a sensitivity to the social norm equal forall
agents, which is given by the mean valueΘ of the distribu-
tion (homogeneous model). We will choose different values
of Θ. (b) The sensitivity to the social norm is different for
all agents and randomly chosen from a uniform distribution
in [Θ −

√
3∆θ,Θ +

√
3∆θ], where∆θ is the standard devi-

ation (heterogeneous model). Note that our choice allows for
negative sensitivities with effects as described in Sect. II.

To monitor the evolution of the system, we have
mesured the time-dependent density of cooperatorsnc(t) =
(1/N)

∑

i σi(t). To determine the stationary level of cooper-
ation, we compute the time-average number of cooperation,
nc = 〈nc(t)〉t. Subsequently, we also compute the second
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FIG. 1. (upper row) Asymptotic fraction of cooperatorsnc depen-
dent on the sensitivity to the social norm,θ ≡ Θ, which is equal
for all agents in the model without diversity. (lower row) Fluctu-
ationsξ around the expected action, which is free-riding (σ = 0)
for Θ < 2 and cooperation forΘ > 2. (left column) Replicator
dynamics. Different curves correspond to different valuesof ǫ: cir-
cles (0.01), squares (0.02), diamonds (0.05), triangles (0.10). (right
column) Logit dynamics. Different curves correspond to different
values ofβ: circles (0.1), squares (1.0), diamonds (2.5), triangles
(10). The other parameters are described in the main text. Inthe
upper right panel, the lines correspond to the analytical treatment,
developed in section IV.

moment ofnc(t), i.e. ξ2 = 〈(nc(t)− nc)
2〉t, which is the

susceptibility of the system.

B. Dynamics in the unforced model

1. Model without diversity

In the homogeneous model, the sensitivity to the social
norm is equal for all agents,θ ≡ Θ. Starting from an ini-
tial condition where half of the population acts as coopera-
tors, and half as free-riders, Figure 1 shows the asymptotic
results of computer simulations for the two update dynamics
introduced in Sect. II C. As it can be clearly seen in the upper
panels, an increase in the parameterΘ –that controls the influ-
ence of the social norm– results in an increase in the densityof
cooperators. For the replicator dynamics, and for large values
of randomnessǫ, this effect becomes less visible as the width
of the transition increases. The results for the logit dynamics
point in the same direction, withβ−1 being the parameter that
controls the randomness or the frequency of mistakes. Note
that Fig. 1 is obtained for equal initial densities of contribu-
tors and free riders, but extensive simulations show that the
value ofΘ at which the transition occurs does not depend on
the initial condition.

It is interesting to note the peak of the susceptibility (lower
panels) close to the transition towards cooperation, both for
replicator and logit dynamics. This is reminicent of bistable
systems which change their stability at the transition. It is the
archetypal situation where diversity-induced resonance has al-
ready been demonstrated and, as we will see below, it will
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n
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Logit
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∆θ

0

0.1
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FIG. 2. (upper row) Asymptotic fraction of cooperatorsnc and
(lower row) Susceptibilityξ2 dependent on the sensitivity to the so-
cial norm,θ, different for all agents in the model with diversity.∆θ

is the variance of the distributiong(θ) with mean valueΘ = 2. (left
column) Replicator dynamics. Different curves correspondto dif-
ferent values ofǫ: circles (0.02), squares (0.05), diamonds (0.07),
triangles (0.10) (right column) Logit dynamics. Differentcurves cor-
respond to different values ofβ: circles (2.0), squares (2.25), dia-
monds (2.50), triangles (2.75). In the upper panels, we haveselected
two different initial conditions (nc(0) = 0.1 and0.9) for both kinds
of dynamics. The other parameters are described in the main text. In
the upper right panel, the lines correspond to the analytical treatment,
developed in section IV.

give rise to the same behavior in this socio-economic context.
It is worth noting that the results for the susceptibility become
very similiar for both dynamics only when the noise intensity
is very small.

2. Model with diversity

Using the results from the model without diversity as a
reference case, we now focus on the role of diversity in the
sensitivity to the social norm. That means that instead of a
fixed valueθ we consider an individual value for each agent
which is drawn from the uniform distributiong(θ) specified
in Sect. III A. The standard deviation∆θ varies the degree of
diversity. The results of computer simulations are shown in
Figure 2. From the previous discussion (cf. Fig. 1) we know
that, for the chosen set of parameters, the transition from free
riding to cooperation occurs at a valueΘ = 2. Therefore,
in all the curves of Figure 2, we have fixed the average sen-
sitivity to this value, in order to investigate the role of diver-
sity. When plotting the stationary number of cooperators, the
two curves for the same parameter set correspond to different
initial conditions with a majority of cooperators or defectors.
From the simulation results, we can clearly conclude that di-
versity alone does not favor the transition towards coopera-
tion. Also, increasing noise does not enhance this situation.
From Fig. 2 we see that, for the replicator dynamics, the lower
the noise the lower the cooperation in the asymptotic state,
reaching the random level ofnc = 0.5 for very high values
(agents make mistakes every other time step on average). For
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FIG. 3. Response of the system in presence of a periodic square-wave forcing with logit dynamics. In all the plots,β = 2.5. Left column,
first row: spectral amplification factorR, Eq. (11). Left column, middle row, maximum and minimum levels of cooperation attained during
the evolution ofnc for the system. Left column, lowermost row, the susceptibility. Each symbol corresponds to a different signal amplitude:
∆α = 0.05, 0.1, 0.2, 0.5 (circle, square, diamond and triangle symbols respectively). Analytical results (see main text) are represented with
solid lines. In the right column, we depict the time dependency of the macroscopic statenc (solid, black lines), for three different values of
the parameter∆θ. The values are∆θ = 0.7, 1.2, 1.7 in the upper, middle and lower plot, respectively. The dotted line represents the social
pressure (∆α = 0.1), while the thin line (green on-line, only in the middle plot) shows the signal applied (not in the same scale, for clarity).
Other parameters are:T = 103, N = 104, r = 5, Θ = 2, α = 1.

logit dynamics the results are similar, but for low noise we ob-
serve an asymmetric bifurcation in which the stationary state
of low cooperation merges onto thenc = 0.5 state only for
very large values of the diversity; higher noise values change
the bifurcation toward a more symmetric form.

C. Dynamics under driving

So far we have only discussed the role of the idyosincratic
sensitivityθ to the social norm and found that it does not in-
duce a transition to cooperation. Now, as an important new in-
gredient, we consider that the influence of the norm changes in
time, expressed by the time-dependent parameterα(t). Basi-
cally, any time dependence can be considered. For simplicity
we have chosen a periodic function in the form of a square
wave defined as

α(t) =

{

α+∆α, if 2nT < t < (2n+ 1)T ;

α−∆α, if (2n+ 1)T < t < 2(n+ 1)T ,
(10)

with n = 0, 1, 2, . . . . In an adiabatic limit, where the periodT
is large such that the system reaches the stationary equilibrium
in a period, this situation is equivalent to the applicationof a
single change in the social pressure as perceived by agents
(by external means, like a change of policy, for example). We
have verified that using a sinusoidal function basically leads to
the same results, qualitatively, than those shown in this Paper.
So, we will focus on the expression given in Eq. (10).

We already defined the global density of cooperatorsnc(t)
to be used as the order parameter. In particular, in the fol-

lowing, we will instead plot both the minimum and maximum
values reached by the density of cooperators over time. To
further quantify the collective response of the system to the
externally changing influence of the social norm, we intro-
duce the Spectral Amplification Factor (SAF),R, defined as
[50]

R = 4
|〈nc(t)e

i2πt/T 〉t|2
∆α2

. (11)

Now, in addition to the variance∆θ of the sensitivity to the
social norm, which describes anindividual feature, we further
have the change∆α in the social pressure caused byexternal
influences.

A summary of our numerical results is presented in Fig.
3. The left column shows the spectral amplification factorR,
the maximum and minimum values of cooperationnc andξ
as a function of the standard deviation of the diversity,∆θ,
for different values of the amplitude of the external driving,
∆α. These results correspond solely to the logit dynamics; the
results for the replicator dynamics are qualitatively similar to
those presented in the plot and not shown. We further noticed
that, for all choices of parameters, the results are independent
of the initial conditions. As it can be seen from the plots,
for low ∆θ, the responseR is largely independent of∆θ. In
this limit, it is possible to see the existence of super-threshold
signal intensities∆α, which are those values exhibiting large
oscillations in the limit∆θ → 0. For the parameters in the
plot, this corresponds to∆α ≥ 0.2. On the other hand, for
smaller values of signal amplitude, we find that (in the limit
of small heterogeneity) the system responds simply linearly to
changes in the social norm. From a dynamical point of view,
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FIG. 4. Response of the system in presence of a periodic forcing
with logit dynamics. In all the plots,∆α = 0.05. First row, spectral
amplification factorR, Eq. (11). Middle row, maximum and min-
imum levels of cooperation attained during the evolution ofnc for
the system. Lowermost row, the system susceptibility. Eachsym-
bol (color) corresponds to a different value of the inverse random-
ness:β = 2, 2.32, 2.5, 2.75 (circles, squares, diamonds and trian-
gles respectively). With symbols we represent the results obtained by
means of computer simulations, while the analytical results are pre-
sented with solid lines. Other parameters are:T = 103, N = 104,
r = 5, Θ = 2, α = 1.

responses of the system to the external influence for low∆θ
are depicted in the right column, upper panel.

However, intermediate values of∆θ do provide evidence
for resonant behavior if the driving intensity is small:R shows
a peak for values of∆θ ≃ 1, which becomes more notica-
ble for smaller signals. The oscillations ofnc(t) are centered
around1/2, a value much larger than the one obtained for
lower values of diversity. Moreover, the application of a one-
time raising in the strength of the external signal may yield
a non-linear response in terms of the growth of cooperating
agents. From a policy making point of view, this translates in
low incentive costs being able to enforce the cooperative state
throughout the population. When the driving amplitude∆α is
much larger, the system may be able to follow the signal sim-
ply because the signal is super-threshold, and the same thing
happens even in absence of diversity. Therefore, there is a true
resonance phenomenon, which can be observed for low exter-
nal signals, that elicits a strong response. In the middle panel
of the right column, we show the dynamic response for a small
applied signal, showing the large excursions in the number of

10
0

10
1

10
2

R

0

1

n
c

0 0.5 1 1.5 2
 ∆θ

0

0.2

0.4

ξ

FIG. 5. Effect of a periodic signal applied to the social normas a
function of the population diversity∆θ for the replicator dynam-
ics. In all the plots,∆α = 0.05. First row, spectral amplification
factorR, Eq. (11). Middle row, maximum and minimum levels of
cooperation attained during the evolution ofnc for the system. Low-
ermost row, the system’s susceptibility. Each curve corresponds to
a different value randomness:ǫ = 0.04, 0.045, 0.05, 0.055 (circles,
squares, diamonds and triangles respectively). Other parameters are:
T = 103, N = 104, r = 5, θ = 2, α = 1.

cooperators when succesively activating and de-activating the
external signal.

Finally, for very large values of diversity, no response to
the external influence is observed. The amount of agents with
very heterogeneous responses to the external signal does not
allow a significant portion of the population to react to the ex-
ternal signal, and the system’s response becomes linear again.
The latter result can be observed in a vanishing responseR,
small oscillation amplitudes innc (the latter, in the lower
panel of the right column of plots). In all the previous analy-
ses, it is worth noticing that a peak in the susceptibility signals
also the diversity-induced resonance in this system.

Analyzing the role of noise for a fixed driving strength∆α,
we observe another interesting feature of the dynamics under
driving. Figs. 4 and 5 show for both the replicator and the logit
dynamics the appearance of stochastic resonance [50]. That
means, for an intermediate noise intensity (temperature or
randomness, in the proposed dynamics) the diversity-induced
resonance peak is more clearly observed, whereas smaller or
larger values of the randomness mostly suppress it. As with
most stochastic phenomena, the resonant behavior is clearly
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marked also in the fluctuations of the system. The observa-
tion of stochastic resonance is remarkable because it shows
up not in a physical, but in a socio-economic context. It indi-
cates that some level of imperfections in the adoption of the
better performing strategies may lead to larger responses to
external stimuli.

It is also worth mentioning that the presence of contrari-
ans, i.e. of agents which defect even in presence of social
pressure, can be beneficial for finding the diversity-induced
resonance phenomenon. In some exterme cases, as shown in
Fig. 4, the resonance peak may appear only in the presence
of contrarians forβ = 2.75 [51]. This finding is against our
intuition that contrarians would hamper the adoption of a co-
operative state in the system. It reminds on the positive in-
fluence of destructive agents on the emergence of cooperation
in social dilemma situations as discussed in [25], where this
phenomenon was termed ‘the joker effect’. Turning to repli-
cator dynamics, further increasing the noise intensity would
lead to a (small) maximum of response. This corrresponds
to values of diversity where contrarians are pervasive inside
the population. However, in such a situation agents’ actions
are very often randomly taken. Therefore, in this regime it
is of little importance whether they behave as contrarians or
not. We want to emphasize that there is another side to het-
erogeneity: for large values of∆Θ, some agents become very
sensitive to the social normα(t). Thus, even if the signal is
small, these agents start to cooperate, this way increasingthe
effective value of the social norm. This in turn feeds back by
recruiting larger portions of agents for cooperation.

IV. ANALYTICAL APPROACH

A. Dynamics without driving

To further understand the phenomenon of diversity-induced
resonance in our model, we now develop an analytical ap-
proach that should be compared to the numerical simulations
presented in the previous section. While the transition rates
for the replicator dynamics, Eqs. (7) and (8), are too compli-
cated for a tractable analytical approach, the situation isdiffer-
ent for the logit dynamics. In this case, the density of agents
with a given sensitivityθ depends only on the total number
of cooperators in the population, which is a macroscopic vari-
able. Consequently, with the transition rates of Eq. (9) andthe
equilibrium condition for the payoff function, Eq. (1), we find
for the transition rate towards the cooperative (and defective)
states the following expression:

ω±(θ) =
1

1 + exp {∓β [c̃− θ s(nc)]}
. (12)

From the above equation, we can trivially compute the density
of cooperators by integrating over the complete populationof
agents,

nc =

∫

dθ′ g(θ′)
1

1 + exp {∓β [c̃− θ′ s(nc)]}
, (13)

which, by using the uniform distribution of the sensitivityθ,
reduces to

nc =
1

2∆θ

∫ Θ+∆θ

Θ−∆θ

dθ′
1

1 + exp {∓β [c̃− θ s(nc)]}
. (14)

Expanding this equation, one readily obtains for the density
of cooperators

nc = s(nc) +
ln [1 + exp {−β[c̃− s(nc)(θ −∆θ)]}]

2s(nc)β∆θ

− ln [1 + exp {−β[c̃+ s(nc)(θ −∆θ)]}]
2s(nc)β∆θ

. (15)

This equation can be solved self-consistently to obtain thesta-
tionary value ofnc. The corresponding results are shown as
solid lines in Figs. 1 and 2, right columns. We find a very
good agreement between the numerical simulations and the
prediction of our analytical approach, thus further supporting
the validity of our results.

In agreement with our discussion in Sect. III B, the system
exhibits a pitchfork bifurcation. When increasing the control
parameter∆θ, the solutionnc = 1/2 changes its stability
from unstable to stable, when the two branches (one with a
majority of cooperators, the other with a majority of free-
riders) collapse in the center point. As observed in the sim-
ulations –and now confirmed by the analytical treatment–, the
solutions are asymmetrical with respect to the stable point,
with the lowest branch being less dependent on the value of
the control parameter.

This is key to understand the mechanism behind the
diversity-induced resonance phenomenon in this socio-
economic system: For intermediate values of the diversity∆θ,
small perturbations are sufficient to overcome the separatrix,
i.e. the unstable solutionnc = 1/2 that divides the attractor
basins of the two stable solutions. Thus, a signal which is usu-
ally too small to cause transitions between those states, can be
sufficient to trigger such a transition near the bifurcationpoint.
Farther from this critical point, a small signal only causeslin-
ear response of the system, around a stable fixed point. This
fully confirms the discussion of the numerical results for the
system with driving in the previous section.

B. Relaxational dynamics with driving

After considering the dynamics without driving in the pre-
vious section, we now turn to the dynamics with driving to
better understand the response of the system to the external
change of the norm. We note that the change in the density
of cooperators after one state has been selected for update,is
given by

nc(t+ δt) = nc(t) +
1

N
〈σi(t+ δt)− σi(t)| {σ(t)}〉 . (16)

where〈·〉 represents the ensemble average, which is condi-
tional on {σ(t)}, i.e. all those states that did not change.
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Going over to smallδt ≡ 1/N , we arrive at the continuous
dynamics:

dnc(t)

dt
∼= 〈σi(t+ δt)| {σ(t)}〉 − nc(t).

The expected value for the selected stateσi after update can
be expressed as

〈σi(t+ δt)| {σ(t)}〉 = Prob[σi(t+ δt) = 1]. (17)

Without loss of generality, the probability thatσi(t + δt) is
+1, is given by(1 − Prob[+1 → 0]) + Prob[0 → +1], which
for this system is given by

〈σi(t+ δt)| {σ(t)}〉 =
∫

dθ′ g(θ′) (1− ω−(θ) + ω+(θ)) .

(18)
Restricting ourselves again to the particular case of the uni-
form distribution forθ and logit dynamics, we have

dnc(t)

dt
= f(nc) =

1

2
− nc(t) (19)

− ln [cosh (βc̃+ βs(nc)(∆θ − θ))]

4β s(nc)∆θ

+
ln [cosh (βc̃− βs(nc)(∆θ + θ))]

4β s(nc)∆θ
.

If the external signal given byα(t) is slow enough, we
can determineR by assuming thatnc(t) reaches its stationary
state fast compared to changes inα. Then,nc(t) = n∗

c(α(t)).
For a squared signal, the spectral amplification factor is sim-
ply given by

R(n∗

c) =
π (n∗

c(α+∆α)− n∗
c(α−∆α))

2

∆α2
. (20)

For this forcing, the average number of cooperators reducesto
n∗
c = [n∗

c(α+∆α)+n∗
c(α−∆α)]/2. Then, the susceptibility

can be computed as

ξ2 =

∫ T/2

0

dt (n∗

c(α+∆α)− nc)
2
+

∫ T

T/2

dt (n∗

c(α−∆α)− nc)
2

from which we get for the susceptibility

ξ2 = (n∗

c(α+∆α)− n∗

c(α−∆α))
2
. (21)

Figures 3 and 4 present a comparison between the analytical
and numerical results. As with the previous comparisons, the
match is very satisfactory. While our socio-economic model
is quite different from a physics model, the dynamic observa-
tions have similar underlying mechanisms as known in phys-
ical systems with diversity-induced resonance, which makes
it possible to apply a standard analytical approach. For the
replicator dynamics, we cannot apply the same techniques to
calculate the observables. But the fact that we find in the sim-
ulations similarities between the logit dynamics, for which we
have analytical confirmation, and the replicator dynamics,al-
lows us to conjecture similarities in the underlying mecha-
nisms.

V. DISCUSSION AND CONCLUSION

In this Paper, we have studied a socio-economic model of
cooperation, to understand the effect of social pressure onthe
contribution to a public good [26]. We tried to point out analo-
gies with the phenomenon of diversity-induced resonance in
bistable physical systems reported in Ref. [3]. This was to
show that methodological input from Physics can be benefi-
cial for social sciences, in particular with respect to the vast
knowledge about complex nonlinear dynamical systems. By
adopting an already existing model, we avoided to impose a
physics inspired toy model that may not have fitted the mod-
eling paradigms of social sciences.

Our analytical and numerical results demonstrate that our
approach has been largely successful. Indeed, we found
strong evidence of diversity-induced resonance, i.e., of the
fact that the response of the system to a weak external sig-
nal is stronger in a certain range of the parameters governing
the disorder in the system. Importantly, such strong signals
are sub-critical, meaning that these alone would not be able
to drive a homogeneous system, whereas diversity on its own
would lead to an undesired behavior (in our case, to a decrease
in cooperation). Furthermore, we have pursued another anal-
ogy to a physical phenomenon, namely stochastic resonance
[50]. We found evidence that there is an optimal range of
noise or randomness to obtain the response of the system to
the external signal.

It is most interesting to interpret the above results in terms
of the original socio-economic model. In that context, diver-
sity means different sensitivity to the influence of the social
pressure towards behaving in a cooperative manner. If an ex-
ternal signal is emitted (e.g., changing laws or incentivesby
the government) that leads to changes of the social pressure,
the population will follow these directions only if its corre-
sponding sensitivity to such pressure is diverse, but not too lit-
tle or too much. Homogeneous populations will simply ignore
the new norms whereas very heterogeneous populations will
end up behaving in some kind of “average” manner that does
not follow the change. This is in agreement with the fact that
strongly homogeneous groups, like gangs or sects can be con-
sidered to be, are very insensitive to external influences trying
to bring them to contribute to the general welfare (although
the fact that such groups may have low global sensitivity to
the norm is also an issue). In an optimally diverse population,
on the contrary, we would see that the most sensitive people
would abide by the social pressure and start contributing to
the common good, thus leading to an increment of the social
pressure that pushes other agents, and so forth. This results
are in line with the seminal work on the threshold model by
Granovetter [52], where agents only act in a certain way if
the proportion of the population behaving this way exceed a
given threshold. Granovetter’s model shows that heterogene-
ity at the population level is a possible mechanism to extenda
given behavior across the population.

In this context, it is important to stress that the phenomenon
is robust against the kind of dynamics considered for the tran-
sition towards cooperation. This is particularly meaningful as
the two cases studied in our paper, i.e. replicator and logitdy-
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namics, correspond to two completely different approachesto
decision making from the agent’s viewpoint. While the for-
mer is based on a social, imitative, component, the second
describes a purely strategic behavior, even a myopic one. Fi-
nally, we have observed that in some cases the required degree
of heterogeneity for the appearance of the resonance leads
to the existence of contrarian individuals in the population,
which would benefit from going against the norm. This re-
sembles the case of diversity-induced resonance arising from
repulsive interactions and related results in social dilemmas,
as mentioned in Sect. II.

It is also worth noticing that the phenomenon of diversity-
induced resonance only uses a weak signal to obtain the de-
sired results. Strong signals would drive the population irre-
spective of its degree of diversity, but the external effortof
the “driver” has to be much larger. This may be important for
policy-making decisions where costly interventions in theso-
ciety are not desirable because their benefit may in the end be
smaller than the incurred cost. Of course, the requirement of
diversity implies that these easily implemented policies may
not be possible for all groups or societies, which in itself is
another hint to policy makers about the need to estimate costs
prior to specific interventions. It goes without saying thatap-
plications of these ideas in real life may need more complete
models. For instance, one could think of endogenously gen-

erated norm changes, involving a feedback between actions
and utility functions, or including the affective dimension of
agents by considering their emotional response [53]. On the
other hand, applying these ideas to organizations may require
a careful consideration of hierarchical effects [54]. Suchim-
proved models would lead to results that would be much more
amenable to comparison with actual social group dynamics
or even with specifically designed experiments, and thus con-
tribute to our knowledge of the mechanics of social improve-
ment. Work along these lines is in progress.
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tality enjoyed during the design of this work.

[1] C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys.,
81, 591 (2009).

[2] D. Stauffer, Computing in Science Engineering,5, 71 (2003).
[3] C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, Phys.

Rev. Lett.,97, 194101 (2006).
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