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As in electrochemical cyclic voltammetry, time-periodic reverse voltage bias across a bipolar membrane is
shown to exhibit hysteresis due to transient effects. This is due to the incomplete depletion of mobile ions,
at the junction between the membranes, within two adjoining polarized layers; the layer thickness depends
on the applied voltage and the surface charge densities. Experiments show that the hysteresis consists of
an Ohmic linear rise in the total current with respect to the voltage, followed by a decay of the current.
A limiting current is established for a long period when all the mobile ions are depleted from the polarized
layer. If the resulting high field within the two polarized layers is sufficiently large, water dissociation occurs
to produce proton and hydroxyl travelling wave fronts which contribute to another large jump in the current.
We use numerical simulation and asymptotic analysis to interpret the experimental results and to estimate
the amplitude of the transient hysteresis and the water-dissociation current.

I. INTRODUCTION

Bipolar membranes formed by joining a cation and an-
ion exchange membrane to form a p-n junction are im-
portant for many industrial applications. For example, if
reverse bias is applied across the bipolar membrane such
that the mobile ions are depleted at the junction, the field
at the junction can exceed 10 million volts per cm such
that water can be dissociated. The resulting proton and
hydroxyl ions are then separated by the reverse bias into
different membranes such that acidic and basic solutions
are generated at the external boundaries of the bipolar
membrane. If this can be achieved in a microfluidic chip,
it would allow on-chip pH control for microreactors1 or
molecular separation2, as demonstrated recently3.

In this paper, we investigate a peculiar phenomenon
first uncovered in a microfluidic bipolar membrane cured
by photopolymerization4. When the reverse bias across
the bipolar membrane is varied cyclically in time, a
curious I-V hysteresis develops as in electrode cyclic
voltammetry4. The amplitude of this hysteresis is scan
rate dependent and disappears for very low scan rates.
If the period is sufficiently long, a large current spike
occurs due to water dissociation, quite analogous to the
electron-transfer reaction spikes in cyclic voltammetry.
Classical semiconductor theories for p-n junctions and
Donnan theories for bipolar membranes are equilibrium
theories that cannot describe such transient hysteresis5,6.
For example, it is known that mobile ions within two thin
boundary layers at the junction are depleted at equilib-
rium, thus producing two membrane regions with oppo-
site net charge. It is known that these polarized layers
are small, on the order of the Debye length, but are sur-
face charge density and bias voltage dependent. It is
also known that, since most of the voltage drop occurs
within these two thin polarized layers, where the mem-

brane conductivity vanishes, the field across these two
polarized layers can exceed the threshold 10 million V
per cm necessary to dissociate water due to the second
Wien effect7. We extend such classical equilibrium theo-
ries here to study the transient hysteretic response under
cyclic or other reverse bias forcing.

Simons suggested a catalytic mechanism for water
splitting8–11, where water loses a proton to the amino
surface group of an anion exchange membrane but the
proton is soon released from the functional group, re-
sulting in a net generation of both mobile hydroxyl
and proton ions. Zabolotski et al.12 have recently ob-
served that phosphoric acid group cation exchange mem-
branes also intensely split water. If the catalytic step is
fast, our kinetic model is still valid and one can simply
change the activation energy of the field-dependent Ar-
rhenius rate expression for the forward reaction to include
this catalytic effect of surface protonation/deprotonation
step, as was done in an earlier report5. Our model
can hence also capture catalyzed water-splitting mech-
anisms in terms of bulk conversion rate, although we
are not able to discern the various catalytic mecha-
nisms that have been proposed. However, since differ-
ent mechanisms are sensitive to different bivalent cation
and amino acid concentrations9, a more detailed version
of our model which include other reactants (including
the surface groups) and a more complete reaction net-
work will likely be able to discriminate against the dif-
ferent mechanisms. In this article, however, we report a
model that can capture the effective water splitting reac-
tion, the resulting pH front propagation phenomena and
their “coarse” cyclic voltammetry signatures due to over-
all pH generation without the finer features unique to the
specific catalytic mechanism. We quantitatively charac-
terize several regimes in the hysteresis and relate them
to diffusive depletion dynamics and pH travelling shocks
by analyzing the appropriate volume averaged Poisson
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FIG. 1. Diagram of a bipolar membrane composed of a nega-
tively charged membrane (denoted 1) and a positively charged
membrane (denoted 2) joined at x̂ = 0 to form a p-n junc-

tion. Two electrolytes, Ĉ
(±)
a and Ĉ

(±)
b , fill the pore space and

a time-dependent electric field, Ê(t̂), is applied normal to the
junction.

and Nernst-Planck equations, which are time-dependent
(and therefore non-equilibrium) extensions of the classi-
cal Donnan theory.

The plan of the article is as follows: we begin by for-
mulating the problem in section II, identifying key non-
dimensional groups and reducing the model to a form
that encapsulates the essential physics in section IIB.
Section III gives an extensive experimental study of the
hysteresis phenomenon and follows that with a numeri-
cal study of the model identified earlier. Finally asymp-
totic techniques extract further details with concluding
remarks providing closure in section IV.

II. GOVERNING EQUATIONS

We consider the setup shown in FIG. 1, where two
ion exchange membranes of length L and depth H are
joined at a junction located at x̂ = 0 and have charges
Σ1 (x̂ < 0) and Σ2 (x̂ > 0). Generally the bipolar mem-
branes are held in an electrolyte bath3 with a salt species

Ĉ
(+)
b , Ĉ

(−)
b and water of concentration Ĉa that is assumed

to be constant. The salt is added to the system to main-
tain electro-neutrality so that the ion charges balance
the membrane surface charges at equilibrium. To this
system an electric field, Ê is applied across the bipolar
membrane causing the water to dissociate into cationic

and ionic species Ĉ
(+)
a , Ĉ

(−)
a . It is also common to as-

sume that the electric field is irrotational, which permits

its expression in terms of a voltage potential, φ̂, through

the relationship Ê = −∇φ̂. Since the electric field is
a maximum at the p-n junction, most of the dissociated

water ions are produced in a thin region that is on the
order of the Debye length. In this thin layer ions are
forced out by ion migration, forming an ion depletion re-
gion. A mathematical model describing the system will
include the transport of ions with a water dissociation
reaction, which is coupled to an equation for the charge
dependent voltage potential, and the flow of bulk fluid
due to stresses in the system.
The flow of bulk fluid is governed by Darcy’s law with

conservation of mass13

∇P̂ = − µ

Π
û+ ρ̂eÊ, (1)

∇ · û = 0, (2)

where, here, û is the filtration rate, P̂ is the pressure,
µ is the viscosity, Π is the permeability and ρ̂e is the
volumetric charge density defined as

ρ̂e = F
(

Ĉ(+)
a − Ĉ(−)

a + Ĉ
(+)
b − Ĉ

(−)
b

)

. (3)

Here F = NAe is the Faraday constant, e is the charge
on an electron, and NA is Avagadro’s number. The
term, ρ̂eÊ, on the right hand side of (1) is a Maxwell
pressure that allows for fluid motion by the presence of
charged species in an electric field. The ionic concentra-
tions evolve according to the Nernst-Planck equations14

n
∂Ĉ

(±)
a

∂t̂
+ û · ∇Ĉ(±)

a =

ω(±)
a kBT∇ ·

(

± e

kBT
Ĉ(±)

a ∇φ̂+∇Ĉ(±)
a

)

+
(

mf Ĉa −mrĈ
(+)
a Ĉ(−)

a

)

, (4)

n
∂Ĉ

(±)
b

∂t̂
+ û · ∇Ĉ(±)

b =

ω
(+)
b kBT∇ ·

(

± e

kBT
Ĉ

(±)
b ∇φ̂+∇Ĉ(±)

b

)

(5)

where n, kB, T and ω
(±)
a,b are the porosity, Boltzmann’s

constant, absolute temperature, and mobility of the
species, respectively. Equations (4) and (5) represent
four equations with the superscripts (±) representing the
cations and anions respectively. In these equations the
first term on the right hand side represent ion trans-
port by ion migration and molecular diffusion. The last
term on the right-hand-side of (4) is the reaction rate
that arises from a kinetic model of the dissociation and
association of the ions, with rates mf ,mr, respectively.
mf is a function of the potential from the Wien effect7

: mf = ka(1 + ǫr(e/kBT )|φ̂x|) (where |φ̂x| is the abso-
lute value), with constants ka and ǫr. Here ǫre/kBT is
the dissociation rate constant in units of meters per Volt.
In this expression εr is a modified water dissociation rate
constant obtained from7 but should not be confused with
the notation in their paper.
The voltage potential is governed by the Poisson equa-

tion

ε0ε∇2φ̂ = −ρ̂e − F (Σ1H(−x̂) + Σ2H(x̂)) , (6)
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where ε0 is the permittivity of free space, ε is the relative
permittivity, H(x̂) is a Heaviside step function and we
include surface charges in the volume averaged equation
to obtain an effective homogeneous equation15,16.
The usual no flux and no-penetration conditions ap-

ply at the walls of the membrane: φ̂ẑ(±H, x̂, t̂)=0,

Ĉ
(±)
a,bẑ(±H, x̂, t̂) = 0 and û(±H, x̂, t̂) = 0, where ẑ

subscripts denote partial derivatives with respect to
ẑ. At the ends of the domain we fix the potential,

φ̂(ẑ,±L, t̂) = ±β(t̂)L (where β is a given function of
time), and the horizontal concentration gradients to be

zero, Ĉ
(±)
a,bx̂(ẑ,±L, t̂) = 0. The latter condition is ap-

propriate if the reservoir joining the boundaries has a
uniform concentration or the channel is very long with
ion migration dominating molecular diffusion, as consid-
ered here. Initially, the concentration of the products is
set to the equilibrium value in the absence of an electric

field Ĉ
(±)
a (ẑ, x̂, 0) = Ceq =

√

mf Ĉa/mr obtained from

equation (4) and the salt concentration is set to achieve
electroneutrality:

Ĉ
(+)
b =

(

|Σ1|+ Ĉ
(−)
b (−L)

)

H(−x̂) + C
(+)
b (L)H(x̂), (7)

Ĉ
(−)
b = Ĉ

(−)
b (−L)H(−x̂) +

(

|Σ2|+ Ĉ
(+)
b (L)

)

H(x̂). (8)

The condition on the salt is equivalent to the Donnan
equilibrium relationships. In our case we are investi-
gating large membrane charges relative to the bathing

electrolyte so the initial conditions reduce to Ĉ
(−)
b =

|Σ2|H(x̂) and Ĉ
(+)
b = |Σ1|H(−x̂).

A. Non-dimensionalization

To make sense of the equations, and extract the essen-
tial physics, we now non-dimensionalize with the aim of
arriving at a simplified set of equations. We scale x̂ on the
half-length of the domain L, ẑ on the depth H , the po-

tential φ̂ on the maximum potential φc = max(β)L, time
on the diffusive scale nL2/kBTω

+
b , the concentrations on

the membrane charge |Σ1|, the horizontal filtration rate û
on Π|Σ1|kBTF/µeL, the pressure P on |Σ1|kBTF/e and
the vertical filtration rate ŵ on (H/L)Π|Σ1|kBTF/µeL.
From here we define variables with hats as dimensional
and variables without hats as dimensionless. For
Darcy’s law and continuity the equations are:

∂P

∂x
= −u− ψρe

∂φ

∂x
(9)

∂P

∂z
= −H

2

L2
w − ψρe

∂φ

∂z
(10)

∂u

∂x
+
∂w

∂z
= 0 (11)

where the dimensionless group ψ = φce/kBT , represents
the strength of the electric field. The ion transport equa-

tions are:

∂C
(±)
a

∂t
+ Pe

(

u
∂C

(±)
a

∂x
+ w

∂C
(±)
a

∂z

)

= α(±)
a

∂

∂x

(

±ψC(±)
a

∂φ

∂x
+
∂C

(±)
a

∂x

)

+ α(±)
a

L2

H2

∂

∂z

(

±ψC(±)
a

∂φ

∂z
+
∂C

(±)
a

∂z

)

+DaR,(12)

for the dissociated water ions and

∂C
(±)
b

∂t
+ Pe

(

u
∂C

(±)
b

∂x
+ w

∂C
(±)
b

∂z

)

= α
(±)
b

∂

∂x

(

±ψC(±)
b

∂φ

∂x
+
∂C

(±)
b

∂x

)

+ α
(±)
b

L2

H2

∂

∂z

(

±ψC(±)
b

∂φ

∂z
+
∂C

(±)
b

∂z

)

, (13)

for the salt, where the dimensionless groups appearing
above are the mobility ratios, Peclet number and Damk-
holer number:

αa,b =
ω
(±)
a,b

ω
(+)
b

, P e =
ΠF |Σ1|
µ e ω

(+)
b

, Da =
LkaCaǫr

kBTω
(+)
b |Σ1|

.(14)

Here the Peclet and Damkholer numbers represent a ratio
of convection to diffusion of ions and water dissociation
rate to ion diffusion respectively. Also the mobility ra-
tios, relating the mobility of cations to anions, is a small
parameter. The reaction rate is expressed as

R =
(

ψ|φx|+ ǭ−1
r − ǭ−1

r m̄−1C(+)
a C(−)

a

)

(15)

where the Arrhenius dependence of the water-splitting
reaction, possibly with Simons’ catalytic step5, has been
linearized by assuming weak activation. The constants
are defined as m̄ = kaĈa/(|Σ1|2mr) and ǭr = ǫr/L.
The second Wien effect is represented by the term ψ|φx|
and the other terms represent the equilibrium reaction.
For large Da and small ψ the concentrations are at the

equilibrium values C
(±)
a =

√
m̄. The potential is deter-

mined from the Poisson-Boltzmann equations, Eq. (6),
expressed as

∂2φ

∂x2
+
L2

H2

∂2φ

∂z2
= −χ2ρe − χ2Σ̄, (16)

ρe =
(

C(+)
a − C(−)

a + C
(+)
b − C

(−)
b

)

, (17)

with the dimensionless groups:

Σ̄i =
Σi

|Σ1|
, χ2 = ψ−1FL

2|Σ1|e
εε0kBT

, (18)
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for the charge ratio, with Σ̄ = −H(−x) + Σ̄2H(x), and
inverse Debye length respectively. The dimensionless in-
verse Debye length, χ, represents the ratio of the ion
depletion width at the junction to the channel length.
The dimensionless boundary conditions are:

φz(±H,x, t) = 0, C
(±)
a,bz(±H,x, t) = 0, u(±H,x, t) = 0 at

the upper and lower walls and φ(z,±L, t) = ±β̄ (where

β̄ = βL/φc.), C
(±)
a,bx(z,±L, t) = 0 at the ends. Initially,

C
(±)
a =

√
m̄, C

(−)
b = |Σ̄2|H(x) and C

(+)
b = H(−x).

B. One-dimensional model

The next stage in the reduction is to assume that the
membrane is long and thin so that a small parameter ǫ
is introduced: ǫ = H/L ≪ 1. This assumption is valid
in many cases, including the experiments presented in
this paper. We re-write the potential by introducing a
perturbation potential φ′ such that φ = φ′ + β̄(t)x. At

leading order Pz = 0, φ′z = 0, C
(±)
iz = 0 and u = u(x, t).

Therefore we expand as φ′ = φ′0(x, t) + ǫ2φ′1(z, x, t),

C
(±)
iz = C

(±)
i0z (x, t) + ǫ2C

(±)
i1z (z, x, t) and integrate the

equations across the channel to obtain depth-averaged
equations:

∂P

∂x
= −u− ψρe

∂φ

∂x
(19)

∂2φ′

∂x2
= −χ2

(

C(+)
a − C(−)

a + C
(+)
b − C

(−)
b + Σ̄

)

,(20)

for Darcy’s law and the Poisson-Boltzmann equation re-
spectively. For the dissociated water ions the equation
reduces to

∂C
(±)
a

∂t
+ Pe

∂C
(±)
a

∂x
u =

α(±)
a

∂

∂x

(

±ψC(±)
a

(

∂φ′

∂x
+ β̄(t)

)

+
∂Ca

∂x

(±)
)

+DaR, (21)

and for the salt to

∂C
(±)
b

∂t
+ Pe

∂C
(±)
b

∂x
u =

α
(±)
b

∂

∂x

(

±ψC(±)
b

(

∂φ′

∂x
+ β̄(t)

)

+
∂Cb

∂x

(±)
)

, (22)

where the subscripts have been dropped. Further, we
eliminate the convective term for Pe ≪ 1 or by forc-
ing ∂P/∂x = −ψρe∂φ/∂x, so that we can ignore hydro-
dynamic effects as done by many authors3,17. Ignoring
hydrodynamic effects is also consistent with our previ-
ous assumption of a constant water concentration so that
junction drying is not a problem. The boundary condi-
tion on the perturbed potential is now is φ′(z,±L, t) = 0
and the others are the same as before.

In addition we define ion fluxes as follows: J
(+)
a /α

(+)
a =

ψC
(+)
a (β̄+φ′x)+C

(+)
ax and J

(−)
a /α

(−)
a = −ψC(−)

a (β̄+φ′x)+

C
(−)
ax and from these expressions the dimensionless cur-

rent is I = −(J
(+)
a −J (−)

a +J
(+)
b −J (−)

b ) with the negative
sign added because of the way we define the fluxes. The
current will be useful in section III, where comparisons
are made between the experimental and numerical re-
sults.

III. RESULTS

Given the one-dimensional model we are now in a po-
sition to generate simulations of hysteresis and compare
qualitatively with experiments.
We solve equations (20)–(22) numerically using the

boundary and initial conditions with variations in the
parameters χ, ψ, β̄, Da, m̄, ǭr and Σ̄2. Given the rich
parameter space it is worth noting specifically what they
each represent: χ2 is the inverse Debye length, ψ is the
strength of the electric field, β̄ is a scaled electric field,
Da is the Damkholer number relating reaction rate to
species diffusion, m̄ is related to the equilibrium concen-
tration without an electric field, ǭr is the strength of the
Wien effect and Σ̄2 is the membrane charge of region 2
(x ≥ 0) relative to region 1.
In the simulations we use estimates of the size of the

dimensionless groups using data from the literature7:
ǫr = 1.38 × 10−8m at room temperature, mr = 1.5 ×
1014cm3mol−1s−1 and ka = 2 × 10−5s−1. In addition,

we take kBT/e = 25mV and kBTω
(+)
a ∼ 1 × 10−9m2/s.

Assuming experimental conditions with |Σ1| ∼ 1 − 2 ×
103molm−3, φc ∼ 1−100V and L ∼ 1×10−4−1×10−3m
we get the following estimates for the dimensionless
groups concerning the reaction: Da ≪ 1, m̄ ≪ 1 and
ψ ≫ 1. Also, in our experiments the salt mobilities
are approximately the same and small compared to the

hydrogen ions so we can define: α
(+)
b = α

(−)
b = 1 and

α
(+)
a ≫ 1.
A useful estimate for the performance of the system is

the thermodynamic yield, which allows us to explicitly
estimate how much we have shifted the yield/conversion
beyond the thermodynamic limit. The thermodynamic
yield is defined as the product concentration, using the
rates at the external field before depletion, that is at ther-
modynamic equilibrium with the initial reactant concen-
tration. This is defined as

C(+)
a ∼

√

m̄+ m̄ǭrψ|β| (23)

and the non-equilibrium concentration of hydrogen ions,

C
(+)
a , relative to the thermodynamic yield is just

1/
√

m̄+ m̄ǭrψ|β|. Since we are removing products, we
expect the bipolar membrane to do better than the ther-
modynamic yield at the enhanced field. From the con-
centration the current, with no salt ions and membrane

charges, is Itherm = ψβ̄(α
(+)
a + α

(−)
a )

√

m̄+ m̄ǭrψ|β|.
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FIG. 2. (a) Measured I-V hysteresis of a bipolar membrane under various voltage sweep rates. Linear voltage sweeps were
applied back and forth between 0 and -2.5V. The inset shows a bipolar membrane device fabricated by photo-polymerization
in a microfluidic channel. Positive and negative symbols indicate the fixed charges in pDADMAC and pAMPS membranes,
respectively. The scale bar is 300 µm. (b) Time evolution of current at different voltage sweep rates. The dashed lines indicate
the times the voltage scan reverses for different scan rates. The inset shows the detail within 45 sec. (c) For large periods, a
large increase in the negative current is observed, where the numbers 1, 2 and 3 represent the hysterisis, saturation and water
splitting regimes respectively (image reproduced from4).

A. Hysteresis

Before embarking upon numerical simulations, we first
report a more extensive experimental study of the hys-
teresis phenomenon observed in3,4,18 with piece-wise lin-
ear voltage scans. This is done by applying a ramp func-
tion in time as follows: β̄ = (2 t/tp) (0 ≤ t ≤ tp/2),
β̄ = 1− (t− tp/2)/(tp− tp/2) (tp/2 ≤ t ≤ tp), where tp is
the scanning rate. Below we present some experimental
results and numerical solutions.

1. Experiments

Here we show the pronounced hysteresis effect that is
observed in the I-V characteristics of a polymeric bipo-
lar membrane. Manufactred by photo-polymerization
of a negatively charged poly(2-acrylamido-2-methyl-
1-propanesulfonic acid) (pAMPS) layer as a cation
exchange membrane on the right side and a posi-
tively charged poly(diallyldimethyl-ammonium chloride)
(pDADMAC) layer as an anion exchange membrane on
the left side, bridging two microfluidic channels, the bipo-
lar membrane containing 2M fixed charge concentration
was precisely defined to be 500 µm long in each side by
photolithography in a 20 µm-thick microfluidic channel:
The materials and fabrication procedures were detailed
in4. The I-V characteristics were measured by an HP
4140 pA meter / DC voltage source through a pair of Pt
electrodes.
The bipolar membrane exhibits unique hysteresis fea-

tures under reverse bias at which the cathode is con-
nected to the cationic side. Fig. 2(a) shows the cyclic
I-V curves measured in a 10 mM KCl solution with three

different voltage sweep rates, 0.02, 0.1 and 0.4 V/s. The
voltage sweeps linearly back and forth between 0 and -
2.5V. It has been reported in our previous work4 that
the hysteresis loop results from the transient response of
the ion depletion at the membrane junction. As shown
in Fig. 2(a), when the voltage is swept from zero to
negative values, the current intensity increases linearly
in the beginning, then drops precipitously after a turn-
ing point and finally reaches a saturation level. With
a reverse voltage sweep from negative to zero, the cur-
rent decreases monotonically at a low conductance. To
further understand the transient response of the bipolar
membrane, here we investigate the effect of the voltage
scan rate on the hysteresis phenomenon. It can be found
that with a higher voltage sweep rate the device has its
turning point at greater current intensity and reaches
saturation at a larger voltage, yielding a broader hys-
teresis loop. The time evolution of current in Fig 2 also
shows that the high voltage scan rate brings the system
far away from equilibrium, resulting in large maximum
current (the peaks) and saturation current, i.e., the cur-
rent level around the region indicated by the dashed line
where the voltage scan starts reversing, as shown Fig.
2(b). Based on the trend observed in the experiment,
the hysteresis loop is expected to disappear when the
device is measured under an infinitely slow sweep rate
in which the system remains in quasistatic equilibrium
throughout the measurement.

For larger reverse biases, shown in Fig. 2 (c), the sys-
tem is in a water splitting regime with the production of
protons and hydroxide ions creating an elevated ion cur-
rent. The size of the current in this regime is a function
of the water dissociation rate and exhibits an increase
when the voltage bias ramps up and a decrease when
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the dissociation rate is alleviated by a voltage scan from
negative to zero.

2. Numerical solution

We now proceed to simulate the hysteresis numeri-
cally. The current against potential and concentrations
are plotted in Fig. 3-5 for different scanning rates, tp, cor-
responding to one cycle, and different Damkohler num-
bers Da. For the early stages, the evolution of the curve
is due primarily to the salt ions since the concentration
of ions from water dissociation are negligible. As the
potential is swept from zero to negative values, the cur-
rent amplitude increases linearly in the negative direction
since the electric field is due to just β̄. When the po-
tential is sufficiently large an electroneutral region forms
around the junction, causing the electric field to increase
and the current to decrease. As the potential continues
to be swept towards negative unity the width of the elec-
troneutral region surrounding the junction continues to

grow and the concentration of C
(±)
a increases. At this

point water dissociation becomes faster and the mem-
brane is in the water splitting regime.
When β̄ = 1, the potential is swept back towards zero

and a hysteresis curve develops that increases in size as
the period decreases. At this point the salt has been
swept away from the measuring point so the current is
due to only the dissociated water ions. As the poten-
tial decreases from negative to zero the ion migration
strength decreases and the electroneutral region thins.
We get hysteresis curves regardless of water dissoci-

ation, as shown in Fig. 3(b). The effect of water dis-
sociation is to increase the current for large potentials.
In these numerical solutions the limiting current, defined
as the current without water dissociation and infinitely
long scans, is zero because the co-ion concentration at
the boundaries is taken to be small. The signature of
the Wien effect is illustrated more clearly by setting
ψ|φx| = 0 in equation (15), as shown in Fig. 4. For
Da ≪ 1 the current-voltage curve, without the Wien ef-
fect, collapses onto the Da = 0 case with the Wien effect
turned on. In the absence of the Wien effect, Fig. 4, it is
only for extremely large values of the Damkohler number,
Da, that the current shows a noticeable increase at high
voltage. Clearly the Wien effect dominates the current-
voltage characteristic in the water splitting region but
not in the beginning stages for small φ.

3. Minimum current

From both the experiments and numerical solutions,
we find that the amplitude of the hysteresis can be char-
acterized by a minimum in the current, seen in Figs. 2
and 3, at low voltage when the mobile ion depletion is
incomplete and the field at the junction is not sufficiently
high to dissociate water. The minimum current occurs

at a time when the ion depletion region first forms, caus-
ing the electric field far from the junction φ′x ∼ O( ¯β(t)).
At early times we can make the following approximation,
φ′x/

¯β(t) ≪ 1 and expand about this small value. Since
this point on the curve is not in the water splitting regime
(the electric field at the junction is small) we can ignore
the water and investigate the model associated with the
ion transport of salt species. In addition, the current can
be approximated as I = −ψβ̄(t)(φ′x/β̄(t) + 1), since dif-
fusion is small far from the junction. The travelling wave
speed of the salt ions is then time-dependent and equal

to ṡ
(±)
b = I. Considering only the left membrane, we can

ignore the negative ions and solve the following equation

∂2φ′

∂x2
= −χ2

(

C
(+)
b − 1

)

, (24)

∂C
(+)
b

∂t
=

∂

∂x

(

ψβ̄(t)C
(+)
b (O(δ) + 1) +

∂Cb

∂x

(+)
)

(25)

with φ′(0, t) = 0 since the membrane charges have the
same magnitude and δ is a small parameter. From here
on we only look at the solution for negative potentials
(in this case β̄ = 2t/tp) since concentration of salt ions
at the junction makes a solution more difficult to obtain
in closed form.
Assuming that diffusion of ions is small (true pro-

vided ψ ≫ 1), the solution is C
(+)
b = H(−ξ) with

the characteristic coordinate ξ = x + ψ
∫ t

0 β̄dt. Inte-
grating Poisson’s equation (24) twice the potential is
φ′/χ2 = ξ2H(ξ)/2 − (1 + x)(ψ

∫

β̄dt)2/2. The current
at small voltage is then to leading order

I = −ψ
(

β̄ − χ2ψ2

2

(
∫

β̄dt

)2
)

. (26)

We hence see that the low-voltage current first decays
linearly with respect to voltage in an Ohmic manner,
followed by a rise from a minimum for a linear voltage
scan. Other ramping voltage functions would produce a
different rise in the I-V curve.
For the linear ramp at small voltage of β̄ = 2t/tp,where

tp is the final time, the minimum current can be esti-
mated by setting dI/dt = 0 to yield,

Imin = −ψ
(

(

8

χ2ψ2

)1/3

− 1

2
χ2ψ2

(

1

χ2ψ2

)4/3
)

t−2/3
p .

(27)
A plot comparing the asymptotic solution to the nu-

merical one is shown in Fig. 5 along with the ion concen-
trations at different points along the hysteresis curve. In
panel (a), the current initially follows the curve I ∼ −ψβ̄,
but as the ion free region at the junction opens up φ′x
becomes significantly large to decrease the magnitude of
the current. Our asymptotic solution is able to capture
the approximate point where the current turns around
by solving for the potential with the salt being flushed
out of the junction. The asymptotic solution does a good
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FIG. 3. Top panels: current against potential, φ, and ion flux against time for different values of Da. Also, the measuring
point is at x = −0.35 and the arrows indicate the direction of time. Lower panels: concentrations at the minimum current
φ = −0.034 (dashed line), −0.2 (dotted line and voltage ramping up), −1 (dash-dot line) and −0.2 (solid line and voltage
ramping down) and the species flux as a function of time. The applied electric field, β̄, varies by a ramp function given as

here β̄ = (2 t/tp) (0 ≤ t ≤ tp/2), β̄ = 1 − (t − tp/2)/(tp − tp/2) (tp/2 ≤ t ≤ tp). Here α
(+)
a = 3, α

(−)
a = 2, m̄ = 1 × 10−6,

Da = 1× 10−2 (upper right and lower panels only), tp = 0.01, ǫ = 1× 10−2, χ = 5, Σ̄2 = 1 and ψ = 5× 103.

job in approximating the trend for Imin as a function of
tp (the inverse of the rate of voltage change), showing the

slope of t
−2/3
p .

In the limit tp ≫ 1 andDa≪ 1, the system approaches
the equilibrium limiting current. Here an ion-free region
will form near the junction and from the initial condi-
tions positive salt ions will be exclusively on the left and
negative salt ions on the right membrane. This config-
uration yields a current of I = 0, as found in3 for the
initial conditions studied here.

B. Weak Water Dissociation Current

The reaction current spike at large bias voltage, as seen
in the experimental data and numerical solutions of Figs.

2– 5, correspond to incremental currents due to water
dissociation. We estimate this reaction current spike here
for weak reactions. The solution will apply for long scans
so that the system is quasi-steady and we can take β̄ to be
a constant. Here the governing equations can be broken
up into inner and outer solutions for large χ. Further,
from the expected parameter values the reaction is small
relative to ion transport and we can seek an asymptotic
solution for δ = Da ≪ 1. We will also require m̄ ≪ 1
separately so that the equilibrium concentration is small.

1. Inner region

For large χ we can define an ’inner’ region, where the
reaction is the strongest, that is of the order χ−1. We ar-
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α
(+)
a = 3, α

(−)
a = 2, m̄ = 1× 10−6, Da = 1× 10−2, ǫ = 1× 10−2 and Σ̄2 = 1.

gue, using insight from the numerics, that the salt, C
(±)
b ,

has been swept away from this region and that to lead-
ing order the positive ions are on the left and negative
ions on the right membrane. Here we rescale as x = η/χ,
and ignore time for large χ. The steady equations for the
inner region are:

∂2φ′

∂η2
= −

(

C(+)
a − C(−)

a +Σ
)

, (28)

for the potential and

α(+)
a

∂

∂η

(

ψC(+)
a

(

χ
∂φ′

∂η
+ β̄(0)

)

+ χ
∂Ca

∂η

(+)
)

= −δR,

(29)

α(−)
a

∂

∂η

(

−ψC(−)
a

(

χ
∂φ′

∂η
+ β̄(0)

)

+ χ
∂Ca

∂η

(−)
)

= −δR,

(30)
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for the ions created from water dissociation. Here R is
the reaction defined as

R =
1

χ

(

1

ǭr
+ ψ|φ′ηχ+ β̄| − C

(+)
a C

(−)
a

ǭrm̄

)

. (31)

Since the inner region is at quasi-steady-state, the follow-
ing boundary conditions for the concentration are appro-

priate: C
(+)
a (−∞) = 1, C

(−)
a (−∞) = 0, C

(+)
a (∞) = 0,

C
(−)
a (∞) = Σ2, which comes from the equilibrium result

ρe = −Σ̄ and φ′ηη = 0 far from the junction.
Expressing equations (29) and (30) in terms of ion

fluxes and integrating from a to b yields the following:

[J (+)
a ]|ba = [J (−)

a ]|ba = −2δ

∫ b

a

Rdη, (32)

Also, by subtracting equations (29) and (30) we find that
the current, I, is constant.
For δ ≪ 1 we expand the above equations in powers

of δ; φ′ = φ′0 + δφ′1+... and similarly for the other vari-
ables. To leading order the reaction is negligible and the
flux of ions is constant in space, which is only possible if

J
(−)
a0 = J

(+)
a0 = 0. This implies that an equilibrium has

been established with an ion free region near the junc-
tion and electro neutrality in the rest of the membrane.

Integrating equations (29) and (30) with the boundary
conditions at the ends of the domain, the concentration
has a Boltzmann distribution. Inserting this solution into
the equation for the potential, and converting back to x
and φ;

C
(+)
a0 = exp

(

−ψ(φ0 + β̄)
)

, (33)

C
(−)
a0 = Σ̄2 exp

(

ψ(φ0 − β̄)
)

, (34)

φ0xx = −χ2
(

C
(+)
a0 − C

(−)
a0 + Σ̄(x)

)

, (35)

We can simplify equation (35) by separating the left
and right membranes and matching the solutions at the
junction with the conditions: φ0(0

−) = φ0(0
+) = φj and

φ0x(0
−) = φ0x(0

+). Considering the region −1 ≤ x ≤ 0
first, (35) is integrable19,20 and we can reduce the order
by multiplying both sides by dφ/dx and integrating to
get

dφ

dx
=
√

2χ2ψ−1
(

(β̄ + φ)ψ − 1 + exp
(

−ψ(φ+ β̄)
))1/2

(36)
In deriving this equation the constant of integration was
determined using the boundary condition φ0(−1) = −β̄.
Evaluating this equation at x = 0, the magnitude of the

electric field is dφ/dx =
√

2χ2(β̄ + φj). Integrating this
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χ = 5, m̄ = 1× 10−6, β̄ = 1 and Σ̄2 = 1.

equation again

x =
1

√

2χ2ψ−1

∫ φ

0

dy
(

(β̄ + y)ψ − 1 + exp
(

−ψ(y + β̄)
))1/2

(37)
For large ψ the exponential is small in the ion free region
and we can approximate the integral near x = 0 as

φ = −β̄ +

(

(β̄ + φj)
1/2 +

√

χ2

2
x

)2

(38)

which is valid from x = 0 to x ≈ λL, the thickness of the
ion free region. Similarly, in the region 0 ≤ x ≤ λR the
potential is

φ = β̄ −
(

(β̄ − φj)
1/2 −

√

χ2Σ̄2

2
x

)2

. (39)

From the jump condition for the electric field at the inter-
face the potential at the junction is φj = β(Σ̄2 − 1)/(1+
Σ̄2).
Applying equations (38) and (39) at λL and λR respec-

tively, the thickness of the polarized layers as a function
of applied voltage and surface charge density in dimen-
sionless form is

λL =
2

χ

√

β̄
Σ̄2

1 + Σ̄2
, λR =

2

χ

√

β̄
Σ̄−1

2

1 + Σ̄2
, (40)

λ = λL + λR =
2

χ

√

β̄
1 + Σ̄2

Σ̄2
. (41)

This estimate of the thickness of the polarized region
without mobile ions is consistent with classical bipolar
membrane or p-n junction theories5,6.

Representative solutions are displayed in Fig. 6, show-

ing the potential φ, concentration C
(±)
a and the asymp-

totic result for two different values of the inverse Debye
length, χ. For δ ≪ 1 the ion concentration given by (33)
and (34) and the potential, given by (38), show excellent
agreement with the numerical solution.
Here the gradient of the potential peaks at the junc-

tion and decays to zero outside the ion free region of size
λ. Since we have chosen parameter values such that reac-
tion is small relative to ion migration, this ion free region
survives indefinitely. The width of this region is shown
to decrease as χ increases as found from the analytical
result. Further from the ion free region a travelling wave
propagates outwards with positive ions moving to the left
(negative membrane charge) and negative ions moving
to the right (positive membrane charge). The concen-

tration of species C
(±)
a upstream of the front is equal to

the membrane charge and the salt concentration ahead
of the front is also equal to the membrane charge.
At the next order, the leading order potential is used

to determine the ion flux as

J
(+)
a1 =

∫ λR

λL

(

1

ǭr
− C

(+)
a0 C

(−)
a0

ǭrm̄

)

dx+ ψ

∫ λR

λL

|φ0x|dx.

(42)

Since ψ ≫ 1, the first term on the right hand side is rel-
atively small. The above integral can then be evaluated
by noting that φ(λL) = −β̄, φ(λR) = β̄ and dφ/dx is
always positive to get

−Iasym = J (+)
a ≈ 2δψβ̄. (43)

This result shows that, at weak reaction, the I-V spike
due to water dissociation is Ohmic with a linear I-V
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curve. This is verified in Fig. 7, which shows the nu-
merically determined current relative to the asymptotic
value of equation (43) for β̄ ramping up. In the figure
the curves indicate that the asymptotic solution is ap-
proached for long scans such that system is in a quasi-
steady state and for sufficiently small values of δ , indi-
cating a slow reaction relative to ion migration. The wa-
ter dissociation current for a p-n junction relative to the
thermodynamic value (23) without charged membranes
fully captures the effect of ramping and bipolar mem-
brane field enhancement on the yield, Iasym/Itherm =

2δ/(α
(+)
a + α

(−)
a )

√

m̄+ m̄ǭrψ|β|.

2. Outer region: Travelling wave solution

The reaction current is controlled by the inner re-
gion, where the dissociation reaction occurs, also controls
the propagation speeds of the proton and hydroxyle ion
fronts observed in Figs 6. From the numerical solution
the wave speed looks roughly constant, but more so for
the negative ion since the diffusivity is smaller. In the
outer region far from the junction the ionic charge is in
equilibrium with the membrane so that ρe ≈ −Σ̄ but
positive ions are only present in the left membrane, that
is negatively charged and the opposite on the right mem-
brane. Considering only the region (−∞, 0), we seek a
constant wave speed solution by shifting as x→ x− ṡ(+)t
to move our reference frame with the travelling wave.
Combining the ion equations we have the following con-
dition on the current:

∂ρe

∂t
= ṡ(+) ∂ρ

e

∂x
− ∂I

∂x
(44)

For δ ≪ 1, we can ignore the time derivative and inte-
grate over the left membrane to obtain the speed as

ṡ(+) =
I

ρe
≈ −J (+)

a ∼ −2δψβ̄, (45)

since I = −J (+)
a in the left membrane. Similarly in the

other membrane the front speed of the negative ion is

ṡ(−) = J
(−)
a /Σ̄2.

In Fig. 8 we have plotted the concentration C
(+)
a on

the left had side and in the shifted domain. For small
Da (and thus small δ) the wave speed is roughly con-
stant and the traveling wave like solution is appropriate.
However for large δ the current decreases in time as the
front moves across the membrane and a constant wave
speed solution does not exist. In panel (c) the front speed
found numerically is plotted against the asymptotic re-
sult, showing good agreement in the limit of small δ.

IV. CONCLUSION

We have quantified the non-equilibrium I-V hystere-
sis of ion currents through the bipolar membrane, when

forced by cyclic reverse voltage bias, due to incomplete
ion depletion in the polarized layers of thickness λ at the
junction. The hysteresis consists of a linear I-V drop fol-
lowed by a rise from the minimum current. The water
dissociation current of I = −2δψβ̄ is approached for long
scans and small reaction relative to ion migration. For
even longer scans or large biases, a reaction current spike
with linear Ohmic I-V dependence is found that signifies
the onset of water dissociation. Insomuch as reaction in
the polarized region of a bipolar membrane is quite anal-
ogous to electron-transfer reactions at the Stern layer of
an electrode—the electrode is electron-selective and the
electrolyte ion-selective, we believe the same theory we
have advanced here can also be used to analyze cyclic
voltammetry of electron-transfer reactions at electrodes.
Several interesting features are already apparent from

the current analysis. The decay at the minimum cur-
rent in cyclic voltammetry is traditionally described as
a diffusive process with an inverse square root time
dependence21. Our equation (26) shows that its scaling
with respect to time is governed by the particular forcing
function. The water-dissociation signature of (43), how-
ever, is approximately a shifted Ohmic line with an acti-
vation voltage, as is consistent with the measurements in
Fig. 2 c4, where regime (3) is likely the shifted Ohmic
line from regime (1).
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