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Experimental evidence shows that a variety of photosynthetic systems can preserve quantum
beats in the process of electronic energy transfer, even at room temperature. However, whether
this quantum coherence arises in vivo and whether it has any biological function have remained
unclear. Here we present a theoretical model that suggests that the creation and recreation of
coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate
a mechanism for a ratchet effect enabled by quantum coherence, in a design inspired by an energy
transfer pathway in the Fenna-Matthews-Olson complex of the green sulfur bacteria. This suggests
a possible biological role for coherent oscillations in spatially directing energy transfer. Our results
emphasize the importance of analyzing long-range energy transfer in terms of transfer between
inter-complex coupling (ICC) states rather than between site or exciton states.
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I. INTRODUCTION

Mounting experimental evidence for electronic quan-
tum coherence in photosynthetic energy transfer [1–5]
has spawned much debate about both the detailed na-
ture and the biological role of such quantum dynamical
features. Quantum coherence is usually encountered in
the first, light harvesting stage of photosynthesis. It in-
cludes two distinct but not mutually excludeusive phe-
nomena that can be differentiated by the choice of basis
used to describe the electronic excitations. In the site
basis, corresponding to the excitation of individual pig-
ment molecules, coherence emerges in molecular aggre-
gates even in thermal equilibrium, since eigenstates are
delocalized over multiple chromophores. Such coherence
between sites can enhance the rate of biological energy
transfer by up to an order of magnitude [6–9]. In con-
trast, it is coherence in the exciton basis, that is, super-
positions of the energy eigenstates, which drives quan-
tum beating via the Schrödinger equation. It is this type
of coherence on which we will focus here, and thus in
the remainder of this paper, the term ‘coherence’ refers
to coherence in the exciton basis. Photosynthetic sys-
tems at ambient temperatures have been shown to ex-
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hibit this kind of quantum beating when artificially ex-
cited [3, 4], but the significance of these discoveries re-
mains unclear. A broad deficiency is the lack of plausible
physical mechanisms for how this coherence could arise
in and influence biological energy transfer. For example,
the suggestion that transport in these systems features
speedups reminiscent of quantum search algorithms [2]
has been shown to be invalid [10, 11]. Experimental ob-
servations of long-lasting and delocalized quantum beats
alone are not sufficient to determine that they are bio-
logically relevant, since these features arise due to strong
inter-chromophoric couplings [12], which independently
yield fast transport rates under almost any theoretical
model, even those which entirely neglect quantum coher-
ence.

In this work we address the question of what physical
mechanisms lie behind the origin and biological role of
electronic coherence in the exciton basis. While our the-
oretical analysis is general, to make illustrative demon-
strations of specific mechanistic features we take phys-
ical parameters from a prototypical system, the Fenna-
Matthews-Olson (FMO) complex of green sulfur bacteria.
FMO is an extensively studied protein-pigment complex
[13–15] that exhibits excitonic quantum beats [4] and en-
tanglement [16] at room temperature. Biologically, FMO
acts as an energy transmitting wire, delivering an elec-
tronic excitation created by photon absorption in the
chlorosome antenna to a reaction center where it in-
duces charge separation. It exists in the form of a trimer
with a protein backbone and 3 × 7 bacteriochlorophyll-
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FIG. 1: (Color online) Energy transfer pathways in a
monomer of the FMO complex of Chlorobaculum tepidum (C.
tepidum). (a) Side view of a monomer of the FMO com-
plex [15], showing the primary energy transfer pathways [17]
toward the reaction center via site 3 and the inter-complex
coupling (ICC) basis states that couple site 8 to the remain-
der of the complex. Site occupation probabilities for the ICC
basis states are proportional to the area of the colored circles.
(b) Site energies along the upper energy transfer pathway de-
picted in panel (a), with the energy of site 8 approximated
by the antenna baseplate energy [18]. Lines between sites in-
dicate weak (dashed, 10 cm−1 < J < 40 cm−1) and strong
(solid, J > 40 cm−1) electronic couplings. Room temperature
is approximately 200 cm−1.

a molecules, each with different transition energies set
by the local electrostatic environment. These pigments
and energy transfer pathways are illustrated in Figure 1.
Several quantitative estimates of the importance of ex-
citonic coherence under particular models suggest that
it makes ∼10% contribution to transfer energy transfer
efficiency in this system [19, 20]. The section of the en-
ergy transfer path from site 1 to 2 is particularly unusual,
since it is energetically uphill while these sites also have
the strongest electronic coupling of any pair of sites in
the complex. It has been speculated that these factors
may indicate a role for quantum coherence in contribut-
ing to unidirectional energy flow through this system by
avoiding trapping in local minima of the energy land-
scape [18]. All other steps of the FMO electronic energy
transfer pathways in the direction towards the reaction
center are energetically downhill, consistent with a path-
way that would be optimal for classical energy transport.
A key question that is of special importance for the FMO
complex, is thus how the system efficiently directs energy
transport away from the chlorosome antenna towards the
reaction center. Clearly the overall energy gradient in the
system plays a role, but does electronic coherence also
facilitate unidirectional energy transfer? More generally,
can excitonic coherence assist excitation transfer over the
uphill steps found in rough energy landscapes?

A striking feature of all experiments showing electronic
quantum beatings in photosynthesis to date is that they
have been performed on small sub-units of light harvest-
ing antenna systems, such as the 7 pigments of the FMO
complex [1, 2, 4] or the 14 pigments in LHC II [5, 12]. Yet
natural light harvesting antennas are typically composed
of hundreds or thousands of pigment molecules organized

into many pigment-protein complexes through which en-
ergy passes on route to the reaction center [14]. In addi-
tion, natural excitation is by sunlight, not ultrafast laser
pulses. There is dispute about whether or not coherences
can arise after excitation by natural light [21–24], but
many pigment-protein sub-units are actually more likely
to receive excitations indirectly, as a result of weak cou-
pling to another complex in the larger network. Clearly,
understanding the role of excitonic coherence in a sin-
gle protein-pigment complex requires placing the energy
transfer within and through that system in the context of
appropriate initial conditions, as determined by its role
in the larger “supercomplex.” Accordingly, a second key
question for evaluating the relevance of quantum beats to
energy transfer on biological scales is whether or not ex-
citonic coherence could be either arise or be maintained
in the process of transfer between different sub-units.

In the remainder of this paper we shall address these
two open questions with a general theoretical framework
employing a novel basis for analyzing the excitonic dy-
namics of weakly coupled pigment-protein complexes.
First, we develop an analysis of such weakly coupled
complexes that suggests a mechanism for how coherence
should arise and recur in the process of energy trans-
fer. We find that coherence can continue to be regener-
ated during long-range energy transport between weakly
linked sub-units of a larger excitonic system. This is
the ‘propagation’ of quantum coherence, whereby a pro-
cess of continual renewal following incoherent quantum
jumps may allow non-zero coherence to last indefinitely,
despite rapid decay after each jump. This has signifi-
cant implications for long-range energy transfer in light
harvesting supercomplexes composed of multiple units
that individually support coherence, such as photosys-
tems I and II [14]. Second, we address the question as to
whether such spatially propagated intra-complex quan-
tum coherence enables unidirectional flow of energy, with
a specific example that is inspired by the uphill energetic
step in FMO. We construct an explicitly solvable ratchet
model to show that in this situation, the non-equilibrium
nature of even limited quantum beating may allow for
qualitatively new types of dynamics. In particular, we
show that under biologically plausible conditions, these
dynamical features could allow for the operation of a co-
herently enabled ratchet effect to enhance directed en-
ergy flow through light harvesting systems. These anal-
yses provide new understanding of physical mechanisms
reliant on quantum coherence that could be relevant to
the function of natural photosynthetic systems.

II. SPATIAL PROPAGATION OF COHERENCE

In photosynthetic energy transfer, excitons typically
need to travel through a series of protein-pigment com-
plexes before reaching reaction centers [14]. To accu-
rately understand the role of coherent dynamics between
individual sub-units in such a supercomplex, it is first
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necessary to understand which particular sub-unit states
donate or accept excitations for inter-complex transfer.
As we shall show in this work, the nature of these states
informs us whether or not coherence arises under natu-
ral conditions in the process of energy transfer. More-
over, in the context of a light-harvesting complex which
is a subcomponent of a larger light-harvesting apparatus,
the precise nature of the acceptor states on the complex
and the donor states from the complex is paramount to
assessing the possible relevance of coherent dynamics in
the complex. To draw an analogy to the circuit model of
quantum computation [25], these states serve as effective
choices of initial states and measurement basis states, re-
spectively, for dynamics on an individual complex. Both
of these states need to differ from energy eigenstates in
order for strictly unitary dynamics to influence measure-
ment outcomes. The measurement outcomes correspond
to observable energy transfer, for which differences in
rates or success probabilities could in turn influence bio-
logical function.

Since inter-complex couplings are relatively weak, in
our analysis we treat them perturbatively, as in multi-
chromophoric generalizations of Förster theory used to
calculate overall transition rates between donor and ac-
ceptor complexes consisting of multiple chromophores [6–
8]. Our starting point is the equation of motion for the
reduced density matrix, which is derived with the follow-
ing adaptation of the multichromophoric energy transfer
rate model [8]. The zeroth order Hamiltonian is H0 =
HD + HA where HD = He

D +
∑
ij BDij

|Di〉〈Dj | + Hg
D,

with He
D the electronic Hamiltonian of the donor com-

plex, and corresponding definitions for the acceptor com-
plex A. States |Dj〉 and |Ak〉 for j = 1, . . . , n and
k = 1, . . . ,m form an arbitrary orthonormal basis for
donor and acceptor single-excitation electronic states and
BDij are bath operators that couple the electronic chro-
mophore states to environmental states of the pigment-
chromophore system. The ground state donor (acceptor)
bath Hamiltonian Hg

D (Hg
A) can be taken without loss

of generality to be a set of independent harmonic oscilla-
tors. We assume that no bath modes are coupled to both
the donor and acceptor so that [HD, HA] = 0 [8]. The
donor and acceptor complexes are coupled by a dipolar
interaction Hc = J + J† with J =

∑
jk Jjk|Dj〉〈Ak|.

Calculating the evolution of the reduced system density
matrix σ = TrB ρ to second order in Hc ([8] and Ap-
pendix A) yields

σkk′

dt
=
∑
jj′k′′

Jj′k′′

4π~2

∫ ∞
−∞

dω
[
Jjk E

j′j
D (t, ω) Ik

′′k′

A (ω)

+ Jjk′ E
jj′

D (t, ω) Ikk
′′

A (ω)
]

(1)

dσjj′

dt
= −

∑
kk′j′′

Jj′′k′

4π~2

∫ ∞
−∞

dω
[
Jjk E

j′j′′

D (t, ω) Ikk
′

A (ω)

+ Jj′k E
j′′j′

D (t, ω) Ik
′k
A (ω)

]
(2)

for the reduced acceptor and donor density matrix el-
ements, respectively, where ED(t, ω) and IA(ω) denote

matrices of donor and acceptor lineshape functions (see
Eqs. (A6–A7)). We emphasize that these results hold for
arbitrary system-bath coupling strength, provided that
the donor-acceptor coupling is weak: at this point in our
analysis we have not yet made any assumption of weak
system-bath coupling.

Instead of focusing on the multichromophoric energy
transfer rate between complexes that results from sum-
ming Eq. (1) or (2) over all diagonal terms [8], we focus
here on important features relevant to quantum coher-
ence apparent from Eqs. (1–2) directly. These equations
indicate that acceptor populations |Ak〉〈Ak| will grow
and donor populations |Dj〉〈Dj | will decay only if there
is at least one non-zero coupling term Jjk = 〈Dj |J |Ak〉
to those states. Accordingly, we argue that the trans-
fer of electronic states is most sensibly described by the
“inter-complex coupling” basis in which J is diagonal,
rather than the site or exciton (energy) basis, as is as-
sumed in both the original and generalized [6, 7] Förster
theories. This inter-complex coupling (ICC) basis is

given by the singular value decomposition J = UDJ̃U
†
A,

where J̃ is a rectangular diagonal matrix and UD and
UA are unitary transformations of donor and acceptor
electronic states. We can thus write the inter-complex
coupling as Hc =

∑
l J̃l(|D̃l〉〈Ãl| + |Ãl〉〈D̃l|) in terms of

the ICC states |D̃l〉 = UD|Dl〉 and |Ãl〉 = UA|Al〉 for
l ∈ {1, . . . ,min(n,m)}. In the ICC basis, the full elec-
tronic Hamiltonian in block-matrix form is

H̃e =

[
U†DH

e
DUD U†DJUA

U†AJ
†UD U†AH

e
AUA

]
. (3)

Since in general the transformation that diagonalizes J
will not coincide with the (exciton) eigenbases of He

D and

He
A, population growth of an acceptor ICC state |Ãl〉〈Ãl|

thus corresponds to growth of excitonic coherences.
Although in principle Eqs. (1–2) specify all dynamics

relevant to inter-complex transfer, the time-dependent
donor lineshape ED(t, ω) obscures the specific depen-
dence on donor density matrix elements. Accordingly,
we also derive a time-convolutionless quantum master
equation (Appendix B) under the additional assumption
of weak coupling to the bath relative to the donor elec-
tronic Hamiltonian He

D [26]. Under this approximation,

we see that growth of an acceptor population |Ãl〉〈Ãl|
is proportional to populations only of the coupled donor
|D̃l〉〈D̃l|. Likewise, decay of a donor population |D̃l〉〈D̃l|
is proportional to populations only of that donor itself
(see Eqs. (B8–B9) in Appendix B). Accordingly, inter-
complex transfer rates may show oscillations reflecting
donor quantum beats, since the ICC states on the donor
which transmit excitations do not necessarily correspond
to energy eigenstates. While this part of our argument
is only rigorous in the case of weak system-bath cou-
pling, which is not necessarily the case for FMO and
other light harvesting systems [18], our simulations find
excellent agreement even for moderate strength environ-
mental coupling, as we show below.
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To test this analysis of inter-complex energy transfer,
we first consider its predictions for the special case in
which there is only one non-zero inter-complex coupling
in the ICC basis, Hc = J∗|D∗〉〈A∗|+h.c. If the acceptor is
always initialized in the state ρ∗A = |A∗〉〈A∗|, then when
back-transfer to the donor is neglected as is valid in the
perturbative limit, the acceptor density matrix should be
well described by

ρA(t) =

∫ t

0

dt′
dpA(t′)

dt′
G(t− t′)ρ∗A, (4)

where G(t) is the Greens function denoting evolution of
the acceptor-bath system for time t, with the bath ini-
tialized at equilibrium. If the predicted donor state is
correct, then neglecting temporary bath reorganization
effects, the rate of inter-complex transfer should then be
proportional to the population of the predicted donor
state, for a predicted inter-complex transfer rate

dpA(t)

dt
∝ pD∗(t), (5)

where pD∗(t) denotes the probability of the donor be-
ing in the state |D∗〉 and pA the total probability of the
excitation being on the acceptor.

For a model system, these predictions show remark-
able agreement with results derived from an independent
simulation based on a 2nd-order cumulant time-nonlocal
(2CTNL) quantum master equation [27]. We consider
transfer between two dimer complexes (labelled sites 1, 2
and sites 3, 4), with intra-dimer Hamiltonian parameters
matching those of the 1-2 dimer of FMO (Appendix E,
Eq. (E1)) and inter-complex coupling J = J∗|2〉〈3|. We
perform calculations in the limit J∗ → 0 (see Appendix
D), to ensure accuracy of the perturbative description
and eliminate back-transfer effects. The 2CTNL cal-
culations are carried out at 300 K with a bath mod-
eled by a Debye spectral density with reorganization en-
ergy 35 cm−1 and correlation time 50 fs, with the initial
condition on site 1 [18]. Figure 2 compares simulated
2CTNL results with the predicted time-dependent inter-
complex transfer rate, Eq. (5), and acceptor density ma-
trix, Eq. (4) (normalized to unity for greater clarity),
calculated from the 2CTNL results. The results show
that estimates based on the dominant elements of the
ICC basis provide an accurate representation of both the
energy transfer rate (panel a) and acceptor density ma-
trix (panels b-e). We see that transfer of excitation in
the ICC basis from |D∗〉 to |A∗〉 produces a superposi-
tion of acceptor eigenstates (of HA) that gives rise to
excitonic coherence (panel b) and hence to oscillatory
behavior of both the site populations (panel c) and co-
herences (panels d-e). Two features are of particular
significance, since they show that these ICC-dominated
dynamics satisfy the conditions that are necessary for
intra-dimer coherence to be relevant to larger scale en-
ergy transfer, namely that the dynamics guarantee the
preparation and measurement of states which are not
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FIG. 2: (Color online) Testing the theory of propagation of
coherence via the inter-complex coupling (ICC) basis. Sim-
ulations were made for the coupled dimer model described
in the text, with ICC donor and acceptor states |D∗〉 = |2〉,
|A∗〉 = |3〉, respectively, and initial condition |ψ0〉 = |1〉. (a)
Simulated (solid black, 2CTNL) and predicted (dashed blue,
Eq. (5)) inter-complex transfer rate as a function of time. (b)
Coherence between the two acceptor excitonic eigenstates α
and β as a function of time. (c) Population of site 3 in the
acceptor, i.e., ρ∗A = |3〉〈3|, as a function of time. (d) Real and
(e) imaginary parts of the 3-4 site coherence for the simulated
(solid black) and predicted (dashed blue, Eq. (4)) acceptor
density matrix ρA, as a function of time. The acceptor den-
sity matrix ρA was normalized to unit probability at all times
in panels (b-e).

energy eigenstates. The first feature is that the inter-
dimer transfer rate clearly tracks coherent oscillations of
the donor population |D∗〉〈D∗| (panel a). The second
feature is that the acceptor is initialized in a state with
non-zero excitonic coherence (panel b). Although Fig. 2
shows results for only a single initial condition, additional
simulations (not shown) show that these features hold for
arbitrary initial conditions of the donor. In particular,
excitonic coherence in the acceptor (and thus coherent
beating) is triggered even when the initial condition in
the donor has no such excitonic coherence.

A simple example of the usefulness of the ICC basis
is to determine the initial conditions for electronic exci-
tation transfer through the FMO complex. The recently
discovered 8th chromophore [28, 29] provides a plausi-
ble donor to the remainder of the complex since it sits
on the side nearest the chlorosome antenna complex [30].
Since structural information concerning the location of
the FMO complex is limited, standard practice to date
has been to choose initial and final conditions for simu-
lation of energy transfer in FMO based on approximate
orientation and proximity of chromophores. The choice
of such initial conditions has varied [11, 13, 30], particu-
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larly with regards to whether or not the initial quantum
states include any excitonic coherence. Evaluation of the
ICC basis between a donor complex consisting solely of
site 8 and an acceptor complex consisting of the remain-
der of the complex (sites 1-7) implies that the acceptor
state is mostly localized on site 1 (see Appendix E). We
illustrate this in Figure 1(a). This initial condition is not
an energy eigenstate, so the resulting in vivo dynamics
would necessarily start from a state with coherence in the
exciton basis and thus give rise to the quantum beating
seen in the laboratory experiments [2].

III. COHERENT VERSUS THERMAL
TRANSPORT IN A MODEL DIMER WITH AN

ENERGY GRADIENT

The way in which this coherence regenerating transfer
mechanism can yield a non-trivial biological role for co-
herence can be already illustrated with a simple model
dimer complex connected to other complexes. Choosing
inter-complex couplings to and from the dimer to be at
individual sites as above implies that initialization and
transfer in the ICC basis will be at these sites. Consider
preferred ‘forward’ excitation transfer to be that from the
donor at site 2 onward to the next complex. Then the
asymptotic probability of successful transfer through the
complex will be proportional to that population. For a
dimer, the electronic Hamiltonian is given by

H =

[
cos θ sin θ
− sin θ cos θ

] [
0 0
0 ∆E

] [
cos θ − sin θ
sin θ cos θ

]
,

where θ is the mixing angle, which measures the intra-
dimer delocalization, and ∆E the exciton energy differ-
ence. A non-zero mixing angle corresponds to non-zero
exciton delocalization, as indicated by the inverse partic-
ipation ratio N = 1/(sin4 θ + cos4 θ).

The dimer admits two extreme models of energy trans-
fer: quantum beating due to coherent evolution and in-
stantaneous relaxation to thermal equilibrium between
excited electronic states. Instantaneous relaxation pro-
vides an upper bound on the speed of excitation transfer
governed by a classical master equation, since the dynam-
ics governed by such equations are driven toward thermal
equilibrium. This is imposed by the requirement of de-
tailed balance which governs classical dynamics, whether
between sites as in Förster theory [31] or between exciton
populations as in variants of Redfield theory [32]. For in-
stantaneous relaxation to the thermal distribution, the
probability that site 2 is occupied is independent of the
initial condition:

pth
2 ∝ 〈2|e−βH |2〉 =

cos2 θ + eβ∆E sin2 θ

1 + eβ∆E
. (6)

In contrast, boosts in population due to quantum beating
are not restricted by such classical limits [27, 33, 34]. For
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FIG. 3: (Color online) Difference between coherent and ther-
mal populations on site 2, pcohi→2 − pth2 , as a function of dimer
Hamiltonian parameters for (a) initial site i = 1 and (b) ini-
tial site i = 2. The empty symbols � and � indicate location
of parameters for the 1-2 dimer in the FMO complex of C.
tepidum at 300 K as determined in Refs. 13 and 35 respec-
tively. Filled symbols indicate the corresponding parameters
at 77 K.

coherent motion with initialization at site 1, the time-
averaged probability of an excitation at site 2 is

pcoh
1→2 = 〈

∣∣〈1|e−iHt|2〉∣∣2〉t = 2 cos2 θ sin2 θ, (7)

while for initialization at site 2, we have pcoh
2→2 = 1−pcoh

1→2.
Figure 3 plots the difference between coherent and ther-
mal population on site 2, as a function of both the
intra-dimer delocalization measure θ and energy differ-
ence ∆E, for both possible initial conditions. It is evident
that regardless of initial conditions, for a sufficiently up-
hill energetic arrangement (∆E > 0) intra-dimer quan-
tum beating will be asymptotically more effective than
intra-dimer thermalization in enabling transfer onward
from the complex via site 2. The location of the FMO
parameters in Fig. 3 shows that the 1-2 dimer of FMO
satisfies such an arrangement at 77 K and is on the bor-
derline for strictly enhanced transfer due to coherence at
room temperature.

IV. DESIGN FOR BIOMIMETIC RATCHET

The asymmetry between incoherent and coherent pop-
ulation transfer seen above for a simple model dimer
suggests a design principle that could be exploited for
enhanced unidirectional transfer [18] and, more gener-
ally, a novel type of ratchet based on quantum dynamics
[36]. Ratchets and Brownian motors [37] utilize a com-
bination of thermal and unbiased non-equilibrium mo-
tion to drive directed transport in the presence of bro-
ken symmetry. To take advantage of such a ratchet ef-
fect, strongly linked chromophores with coherent trans-
fer not limited by detailed balance should have an up-
hill energy step relative to the desired direction of trans-
port, whereas weakly linked chromophores with incoher-
ent transfer steps should be arranged downhill.



6

... ...
3 nm

(a)

à
à

à

à

à

à

à

à

à

à

ìììì
ì
ì

ì

ì

ì

ì

0 500 1000 1500 2000

Time HfsL

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T
ra

ns
fe

r
ra

te
as

ym
m

et
ry

HbL
c = 0
c = 0.6
c = 0.9

0 100 200 300 400 500 600

Coherence time HfsL
0

10

20

30

40

50

D
ri

ft
ve

lo
ci

ty
Hnm

�ns
L

HcL

FIG. 4: (Color online) Biased energy transport in an excitonic
wire due to spatial propagation of coherence. (a) A weakly
linked chain of heterodimers is arranged such that the higher
energy state is always to the right, with a typical inter-dimer
distance of 3 nm. The arrow indicates the direction of biased
transport. (b) Relative asymmetry between left and right
inter-dimer transfer rates (Eq. (D19) of Appendix D) as a
function of the time before transferring for a dimer excitation
initialized in the asymptotic distribution of site populations.
(c) Drift velocity vs coherence time as modified by bath corre-
lation time (squares) and cross correlation coefficient between
dimer sites (diamonds). The dashed line is a linear fit to guide
the eye. Full details of the simulations in panels b and c are
in Appendix D.

As a proof of principle, we present an example in which
this coherent ratcheting effect results in asymptotic spa-
tial bias of transport. Consider a weakly linked chain
of heterodimers breaking spatial inversion symmetry, as
illustrated in Figure 4(a). In any classical random walk,
transition rates must satisfy detailed balance to assure
thermal equilibrium. This guarantees that a classical
walk along such a chain is unbiased (Appendix C). How-
ever, we have carried out 2CTNL quantum simulations
on small chains of dimers that suggest that including
the effects of coherence in each dimer breaks the symme-
try of detailed balance to yield a non-zero drift velocity.
Since simulations with the 2CTNL approach would be
computationally prohibitive for large numbers of dimers,
these simulations were carried out on a chain of three
weakly linked dimers with parameters for each dimer
matching those of the 1-2 dimer of FMO used earlier
and an inter-dimer coupling of 15 cm−1. We note that
this inter-complex coupling strength is well below the
cut-off below which energy transport in light harvesting
complexes is usually described by completely incoherent
hopping within Förster theory, though without the pos-
sibility of coherence regeneration [17, 35]. The results of
these simulations are used to define left and right inter-
dimer transition rates for the central dimer. These are
then used together with ICC initial conditions from our
analysis of the inter-complex coupling as input into a gen-
eralized classical random walk describing energy transfer
along the chain of dimers. The physical model corre-

sponds to the chain shown in panel (a) of Figure 4, with
red sites (dimer internal site 1) at energy zero, while blue
sites (dimer internal site 2) are at energy 120 cm−1. Full
details of the construction of transition rates and of the
set up and solution of the generalized random walk are
described in Appendix D.

Formally, this theoretical approach corresponds to us-
ing the microscopic quantum dynamics within and be-
tween complexes to define state-specific rates between
complexes that generate ‘quantum state controlled’ in-
coherent energy transfer dynamics over long distances.
A feature of this simulation strategy is that we have a
priori eliminated the possibility of reaching true thermal
equilibrium, since we do not include the long range co-
herence terms between different dimers. However, it is
reasonable to expect the long term influence of such co-
herences to be negligible, since the inter-dimer couplings
are very small. We choose this hybrid approach to the
excited state dynamics since we wish to base our simula-
tions on numerically exact calculations, made here with
the 2CTNL method that is valid in both limits of strong
and weak environmental couplings [27].

These quantum state controlled incoherent dynamics
can generate a significant bias in the spatial distribu-
tion of excitation transfer when the intra-dimer dynam-
ics display long lasting quantum coherence. We ana-
lyzed the random walk with both Monte Carlo simula-
tions on long finite chains and an analytic solution [38]
of the asymptotic mean and variance of the distribution,
as detailed in Appendix D. Figure 4(b) shows that the
underlying asymmetry of transfer rates and violation of
detailed balance dynamics is due to the non-equilibrium
state of the donor. The bias is in the forward direction,
corresponding to the uphill step within dimers. Fig-
ure 4(c) plots the asymptotic drift velocity of the ran-
dom walk against the timescale of excitonic coherence.
We determine this coherence time from a best fit of the
timescale of exponential decay of intra-dimer excitonic
coherence. The timescale of coherent oscillations was
tuned in two ways, (i) by changing the bath correlation
time and (ii) by increasing the spatial correlations be-
tween the chromophore-bath couplings [39]. We see a
close correlation between the timescale for quantum beat-
ing and the magnitude of the bias, regardless of the un-
derlying physical mechanism used to tune the coherence
time. In general, we cannot rule out the possibility that
a non-equilibrium/non-Markovian classical model might
also yield such biased transport. (We already ruled out
such a possibility for a Markovian classical model in Ap-
pendix C.) However, this strong correlation between the
duration of quantum beating, independent of its origin,
and the asymptotic transport bias supports our interpre-
tation that in this model system the ratchet effect is due
to quantum coherent motion. Indeed, the fact that the
drift velocity appears to approach a small or zero value as
the coherence time goes to zero in Figure 4(c) shows that
any contribution deriving from classical non-equilibrium
system/non-Markovian bath dynamics here is extremely
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small relative to that deriving from the quantum coher-
ence maintained in the system degrees of freedom.

Since our results demonstrate a ratchet effect, it is im-
portant to consider why this sort of motion is not for-
bidden by the second law of thermodynamics. The an-
swer is that the system is never allowed to reach thermal
equilibrium along the infinite chain of dimers. This fea-
ture is shared by the excitations transferred in natural
light harvesting systems, which also do not exist for long
enough to reach equilibrium. The resulting directed mo-
tion shows some similarity to the operation of a quantum
photocell [40], where coherence can (in principle) allow
for enhanced conversion of energy by similarly breaking
a limit imposed by detailed balance. In both cases, no
additional source of energy is supplied besides that of the
non-equilibrium photon which creates the initial excita-
tion. This contrasts with the operation of typical clas-
sical and quantum brownian motors [37], where detailed
balance is broken by applying an additional driving force.

Our results for an infinite chain of heterodimers con-
firm the effectiveness of our ratchet for energy transfer,
which we ascribe to the combination of intra-complex
excitonic coherence within dimers and an uphill intra-
complex energy gradient. The non-zero drift veloc-
ity means that over long distances this ratchet offers a
quadratic improvement in transfer times over any corre-
sponding classical walk, which is unbiased (Appendix C).
However, in contrast to the speedup offered by quantum
walks [10], this ratchet requires only short ranged and
short lived coherences that will be resilient to the static
and dynamic disorder of biological environments. This
spatial bias constitutes a preferential direction for the
energy flow across multiple light-harvesting complexes.
It could thus be of direct biological relevance for FMO,
which serves as a quantum wire connecting the antenna
complex to the reaction center. We therefore now con-
sider the implications for FMO in more detail.

V. ROLE OF COHERENT ENERGY
TRANSPORT IN THE

FENNA-MATTHEWS-OLSON COMPLEX

We now specifically consider the role of the coherent
dynamics in the uphill step energy of the FMO complex,
which corresponds to the 1-2 dimer in the usual nota-
tion (see Fig. 1). Since the 1-2 dimer is relatively weakly
coupled to the other chromophores in the complex, we
may consider transfer to and from this dimer on the ba-
sis of our perturbation analysis using ICC states. By
performing a singular value decomposition of the appro-
priate coupling matrices (see Appendix E), we find that
the dominant couplings to and from this dimer are from
site 8 to site 1, and from site 2 to site 3. This suggests
the relevance of our dimer model from Section III, where
site 8 acts as a donor to the 1-2 dimer, and site 2 in turn
acts as a donor to the 3-7 complex. Figure 5(a) presents
results of a 2CTNL simulation on sites 1-7 of FMO, par-
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FIG. 5: (Color online) Simulations of FMO dynamics at room
temperature. (a) Population of dominant ICC donor state

at site 2 in the 1-2 dimer (|D̃2〉〈D̃2|, solid line) compared
with the rate of population change of its ICC acceptor state
in the 3-7 complex (|Ã2〉〈Ã2|, dashed line) and the rate of
population change of the other ICC acceptor state not coupled
to this donor state (|Ã1〉〈Ã1|, dash-dotted line), for the initial
condition is |ψ0〉 = |1〉.. The time derivatives have been scaled
to aid comparison of correlations. (b) Population of site 2
relative to the total 1-2 dimer population, p2/(p1 + p2), for
both choices of initial conditions.

titioning FMO between donor state on the 1-2 dimer and
acceptor states on the remaining sites 3-7 (i.e., neglecting
the prior donation from the 8th site to the 1-2 dimer).
The corresponding ICC donor/acceptor states are given
in Appendix E (Eqs. (E5–E6)). We see that the ICC

donor population |D̃2〉〈D̃2| ≈ |2〉〈2| is positively corre-
lated with the rate of growth of its coupled ICC acceptor
|Ã2〉〈Ã2|, but negatively correlated with the growth of

the other ICC acceptor state |Ã1〉〈Ã1|, to which it is not
coupled. This is in agreement with the predictions of our
theory from Section II. (The small deviations arise be-
cause FMO is not quite in the regime of validity for the
perturbation theory and because Eq. (5) is not strictly

valid for the situation with two acceptor states |Ã〉.) The
simulation is performed at 300 K for a bath correlation
time of 50 fs as described previously [18].

As indicated by the location of the FMO 1-2 dimer
Hamiltonian parameters in Figure 3, this particular chro-
mophore dimer appears be optimized to have an uphill
energy gradient just large enough so that excitonic co-
herence enhances transfer if initialized at site 2 (panel
a) without also suppressing transfer initialized at site 1
(panel b). In Figure 5(b) we compare the portion of
dimer population on site 2 from 2CTNL calculations with
the classical upper bound of the thermal average, for ini-
tial conditions in both of the ICC states |1〉 and |2〉. The
populations show quantum beating deriving from par-
tially coherent motion. The populations also agree with
the predications of our simple dimer model (Section III):
the population at site 2 averaged over quantum beats
(Eq. (7)) is nearly equal to the thermal average (Eq. (6))
for initialization at site 1 and greater than the thermal
average for initialization at site 2.

As evident from Fig. 5, these temporary boosts in pop-
ulation at site 2 due to coherence should correspond to
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enhanced biological function, since they drive excitations
preferentially toward site 3 instead of backwards toward
the antenna complex. The 1-2 dimer in the FMO com-
plex thus appears to act as one link of our proposed
ratchet for energy transport, thereby enhancing unidi-
rectional energy flow through this pathway of the FMO
complex. Consistent with previous numerical estimates
of the contribution of coherent energy transfer to transfer
efficiency in photosynthetic systems [19, 20], we expect
that any quantitative enhancement to the speed of energy
transfer through FMO due to such a limited ratchet ef-
fect will be relatively small compared to the contribution
of incoherent energy relaxation. Refining such estimates
is not the purpose of this work. Rather, our new dynam-
ical model of transport between ICC states allows us to
propose specific physical advantages that the electronic
coherence provides for general light harvesting systems.
In particular, we established the ability to propagate ex-
citonic coherence between weakly coupled sub-units and
to use the ratchet effect to enhance unidirectional trans-
port. It is also conceivable that the cumulative contri-
bution of many such small contributions from propagat-
ing coherence through the entire photosynthetic appara-
tus of green sulphur bacteria (of which FMO is only a
small part) could indeed make a major contribution to
the speed of energy transfer, as in the full ratchet exam-
ple.

VI. CONCLUSIONS

We have proposed a microscopic mechanism for the
propagation of excitonic coherence in energy transfer be-
tween photosynthetic complexes. The mechanism allows
coherence to be propagated between sub-units of a large
light harvesting “supercomplex” that is composed of mul-
tiple complexes that individually support coherence. Our
analysis shows that the key role in the inter-complex
transfer is played by the inter-complex coupling (ICC)
basis, rather than energy or site bases employed by prior
analyses. By utilizing ICC donor and acceptor states,
we showed that coherence can enable biased energy flow
through a ratchet mechanism. We provided evidence that
this same principle acts to ensure unidirectional energy
flow in the FMO complex. Since one-way transmission
of electronic energy from the antenna complex to the re-
action center constitutes the main function of the FMO
protein in the light harvesting apparatus of green sulfur
bacteria, this supports a biological role for the electronic
quantum coherence in this particular light harvesting sys-
tem.

Propagating coherence provides both a mechanism by
which coherent motion can influence transfer rates and
photosynthetic efficiency in light harvesting systems of
arbitrary size (a possible quantum advantage), and a
scalable method for multi-scale modeling of such exci-
tonic systems without neglecting the contributions of co-
herence (practical simulations). Our example and analy-

sis of a coherently enabled ratchet effect along a chain of
heterodimers demonstrates both of these features. This
proof of principle model shows that even short-lived ex-
citonic coherence can, since it propagates spatially, lead
to large scale dynamics that are incompatible with any
completely classical description. We also demonstrated
how fully quantum models need only to be used for
tightly coupled sub-complexes, while transfer between
sub-complexes may take the form of classical hops with
connections between states of different sub-complexes
constrained by the ICC basis.

Similar techniques should allow us to assess the role
of coherence in natural photosynthetic super-complexes
with hundreds of chlorophyll molecules, such as arrays
of LH1 and LH2 rings in purple bacteria, and the pho-
tosystem I and II super-complexes of higher plants [14].
For example, direct calculation of ICC states should help
us evaluate the significance of long lasting coherences in
bacterial reaction centers [41, 42], since these systems are
also usually unlikely to absorb light directly [14] and thus
might be benefitting from recurrence of coherence prop-
agated from light harvesting complexes. Some bacterial
reaction centers also feature an uphill step opposing the
direction of desired energy flow [43], resembling the ener-
getic arrangement in the uphill step of the FMO complex.

Finally, the dynamics in our chain of heterodimers
model constitute a novel type of ratchet that utilizes spa-
tial propagation of quantum coherence in place of a driv-
ing force and as such are also of more general interest.
Thus, in addition to excitonic systems, we expect that
a similar ratchet effect could be demonstrated in other
experimental systems described by spin-boson Hamilto-
nians, such as cold atoms in optical lattices [44, 45].
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Appendix A: Extending multichromophoric Förster
theory

In this Appendix, we provide additional technical de-
tails of the derivation of Eqs. (1–2). Consider a sys-
tem under zeroth order Hamiltonian H0 with perturba-
tion Hamiltonian V . In the interaction picture ρI(t) =
eiH0t/~ρ(t)e−iH0t/~ the von Neumann equation is

dρI

dt
= − i

~
[VI(t), ρI(t)], (A1)
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which can be formally integrated to yield,

ρI(t) = ρI(0)− i

~

∫ t

0

dt′[VI(t
′), ρI(t

′)]. (A2)

Inserting Eq. (A2) into Eq. (A1), keeping all terms second
order in V and transforming back to the Schröedinger
picture yields the second order contribution to the time-
convolutionless equation of motion

dρ

dt
= − 1

~2

∫ t

0

dτ [V, [e−iH0τ/~V eiH0τ/~, ρ(t)]], (A3)

where we approximated e−iH0τ/~ρ(t − τ)eiH0τ/~ ≈ ρ(t)
(valid to this order in V ).

We are interested in the lowest order contribution to
the donor and acceptor electronic states from a perturba-
tive treatment of the inter-complex coupling terms with
the zeroth order Hamiltonian given by that of the other-
wise independent donor and acceptor complexes. Since a
first order treatment of Hc gives coherences between the
donor and acceptor but no population transfer, we thus
consider the second order contribution. Note that our
perturbation parameter is this inter-complex coupling Hc

rather than the usual coupling to the bath, so our results
will apply to any bath coupling strength. Substituting
our perturbation V = Hc into Eq. (A3) and tracing over
the bath yields the equation of motion for acceptor states,

dσkk′

dt
=
∑
j

∑
j′′k′′

Jj′′k′′

~2

∫ t

0

dτ

× TrB

[
Jjk〈Dj |ρeDρ

g
Ae
−iH0τ/~|Dj′′〉〈Ak′′ |eiH0τ/~|Ak′〉

+ 〈Ak|e−iH0τ/~|Ak′′〉〈Dj′′ |eiH0τ/~ρeDρ
g
A|Dj〉Jjk′

]
,

(A4)

where we used the initial condition ρ = ρeDρ
g
A for a gen-

eral excited donor state with the acceptor in the ground
state at thermal equilibrium [8]. The donor equation is
similar and thus omitted for conciseness. To simplify
these equations, we use the following identity, which fol-
lows from the substitution H0 = HA+HD, by employing
the cyclic properties of the trace as well as the assump-
tions that the donor and acceptor baths are independent
and that all strictly donor and strictly acceptor terms
commute,

TrB

[
〈Dj |ρeDρ

g
Ae
−iH0τ/~|Dj′′〉〈Ak′′ |eiH0τ/~|Ak′〉

]
= TrB

[
eiH

g
Dτ/~〈Dj |ρeDe−iHDτ/~|Dj′′〉

]
× TrB

[
e−iH

g
Aτ/~〈Ak′′ |eiHAτ/~|Ak′〉ρgA

]
. (A5)

Substitution of this identity and its Hermitian conjugate
into Eq. (A4) gives a form amenable to substitution by
products of acceptor and donor lineshape functions [8],

given by

Ik
′k
A (ω) =

∫ ∞
−∞

dt eiωt

× TrB

{
eiH

g
At/~〈Ak′ |e−iHAt/~|Ak〉ρgA

}
(A6)

Ej
′j
D (t, ω) =2

∫ t

0

dt′e−iωt
′

×TrB

{
e−iH

g
Dt/~〈Dj′ |eiHDt/~ρeD|Dj〉

}
. (A7)

Inserting these lineshapes yields Eqs. (1–2). Explicit de-
pendence upon t in the donor lineshape can be removed
by applying the Markov approximation, that is, allow-
ing the upper limit of this integral to be extended to
infinity and assuming that the donor ρeD is stationary.
This would give rate expressions corresponding to those
of equilibrium multichromophoric Förster theory [8].

We note that the result in Eqs. (1–2) shows that these
equations do not necessarily conserve positivity, a fea-
ture hidden by the sum over states to determine an over-
all transfer rate [8]. This is an intrinsic limitation of
the perturbative approach to inter-complex transfer. In
particular, these expressions may predict the creation of
non-physical acceptor coherences of the form |Ak〉〈Ak′ |
even without necessarily increasing both of the corre-
sponding population terms |Ak〉〈Ak| and |Ak′〉〈Ak′ |. For
this reason, in determining ICC states, we explicitly only
consider those states which will experience population
growth or decay.

Appendix B: Weak system-bath coupling

Under an approximation of weak system-bath coupling
relative to the electronic Hamiltonian of the isolated
donor He

D, the full density matrix can be factorized in
the form ρ(t) = ρB

eqσ(t) between the equilibrium state of

the bath ρB
eq = ρgDρ

g
A and the electronic state of the sys-

tem σ(t). We do not need to assume weak system-bath
coupling for the acceptor, since it is already in factor-
ized form in the electronic ground state. Likewise, we do
not need to assume weak system-bath coupling relative
to the inter-complex coupling Hc, since Hc does not en-
ter into lineshape expressions for either the donor or the
acceptor. Accordingly, Eq. (A3) becomes,

dσ

dt
= − 1

~2
[V, [K(t), σ]], (B1)

K(t) =

∫ t

0

dτ TrB[e−iH0τ/~V eiH0τ/~ρB
eq], (B2)

where the explicit perturbation V is still the inter-
complex coupling Hc. The Markov approximation is
given by taking t → ∞, in which case we write K =
limt→∞K(t). Since V and K are not in general equal,
the Markovian expression is not in Lindblad form and
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thus does not necessarily conserve positivity, a standard
limitation of perturbative derivations of quantum master
equations [26].

For convenience, from now on we apply the Markov ap-
proximation. Similar conclusions hold in the more gen-
eral case. We then can write Eq. (B1) in terms of the
evolution of each density matrix element as

dσab
dt

=
1

~2

∑
cd

Rabcdσcd (B3)

by defining Redfield-like tensor elements

Rabcd = −
∑
e

[δdbVaeKec + δacKdeVeb]

+KacVdb + VacKdb. (B4)

To evaluate our particular model of inter-complex trans-
fer, it is useful to define an acceptor lineshape that only
depends upon the bath state in the same form as the
donor lineshape (Eq. (A7)),

Ej
′j
D (ω) =

∫ ∞
−∞

dt eiωt

× TrB

{
eiH

g
Dt/~〈Dj′ |e−iHDt/~|Dj〉ρgD

}
. (B5)

For weak system-bath coupling and in this Markov
limit, we can write the general donor lineshape ED(t, ω)
(Eq. (A7)) in terms of this modified lineshape,

Ej
′j
D (∞, ω) =

∑
j′′

Ej
′j
D (ω)σjj′′ . (B6)

Since K is Hermitian, to evaluate the model of Section II
it suffices to calculateKjk = 〈Dj |K|Ak〉. Using the cyclic
property of the trace and inserting the donor and accep-
tor lineshapes, we find

Kjk =
1

4π

∑
j′k′

Jj′k′

∫ ∞
−∞

dω Ej
′j
D (ω)Ik

′k
A (ω). (B7)

We can now evaluate the tensor elements in Eq. (B4)
that specify the influence of donor density matrix ele-
ments on inter-complex transfer, either by using the ma-
trix elements for K given in Eq. (B7) or by using the
equivalence in Eq. (B6) to insert the modified donor line-
shape into Eqs. (1–2). The relevant tensor elements for
the change of the acceptor elements due to the donor are
given by,

Rkk′j0j′0 =
∑
k′′j

Jjk′′

4π

∫ ∞
−∞

dω
[
Jj′0k′ E

j0j
D (ω) Ikk

′′

A (ω)

+ Jj0k E
jj′0
D (ω) Ik

′′k′

A (ω)
]

(B8)

and for the change of the donor itself due to donating an
excitation,

Rjj′j0j′0 = −
∑
kk′j′′

Jj′′k′

4π

∫ ∞
−∞

dω
[
δj′j′0Jjk E

j0j
′′

D (ω)Ikk
′

A (ω)

+ δjj0Jj′k E
j′′j′0
D (ω)Ik

′k
A (ω)

]
. (B9)

Since these tensor elements are given in terms of an arbi-
trary basis for the donor and acceptor electronic states,
we may write them in terms of the ICC states for which
J is diagonal. Considering the elements that affect pop-
ulations (k = k′ for acceptor, j = j′ for donor), it is
then evident that in the ICC representation, the factors
Jj0k restrict nonzero contributions from donor states j
to only those deriving only from the coupled donor ICC
state |Dj0〉〈Dj0 |. Each of these terms also includes a
sum over other inter-complex coupling matrix elements
and lineshapes, but these only affect the magnitude of
the allowed transitions. In the case where there is only
a single nonzero ICC coupling, Eq. (B3) thus reduces to
Eq. (5) of the main text.

Note that since our donor and acceptor lineshapes
(Eq. (B5) and Eq. (A6)) take identical forms under weak
environmental coupling, resulting forward and backward
transfer rates will be equal and thus may not necessarily
respect detailed balance. Therefore we do not calculate
actual rates using Eq. (B5).

Appendix C: Proof that classical Markovian
transport is unbiased

Consider a classical Markov process that models trans-
port along a chain of dimers like the chain we used for
the quantum coherent ratchet model (Figure 4). We im-
pose only one requirement on the transition rates in this
model: thermal equilibrium must be a steady state. For
a Markov process, this implies that the transition rates
satisfy detailed balance. On each dimer, we consider
two states in the single excitation subspace, which could
equally well be sites or excitons. For simplicity, consider
excitation transfer only between nearest-neighbor states
(similar symmetry constraints guarantee unbiased trans-
port even in the general case). Then an excitation ini-
tially at the lower energy state of each dimer has two pos-
sible moves: with probability p to the higher energy state
of the same dimer, or with probability 1−p to the higher
energy site of the neighboring dimer to the left (the non-
zero coupling guarantees that eventually the excitation
will move). For an excitation at the higher energy state
of a dimer, detailed balance requires that the rate of tran-
sitions to each neighboring state (at the lower energy) is
the rate from those states scaled by the Boltzmann factor
eβ∆E . The relative intra- vs inter-dimer transition rates
are still the same, so the probability of an intra-dimer
jump is still p, and 1 − p for the inter-dimer jump, now
to the right. Since every jump alternates between high
and low energy states, and these intra- and inter-dimer
transitions are alternatively to the left and to the right,
on average the random walk must be stationary.
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Appendix D: Ratchet methods

a. Propagation of coherence With weak coupling
between different dimers, inter-dimer transfer should fol-
low the principles of our theory of propagated coherence
described in Section II. Here we restrict the inter-dimer
coupling to be between nearest neighbors, to simplify the
singular value decomposition. This is a reasonable ap-
proximation for realistic dipole-dipole couplings in light
harvesting arrays because the 1/r3 scaling ensures a rapid
fall-off with inter-chromophore distance. Accordingly, an
ICC analysis tells us that after an inter-dimer transfer
the dynamics will be reset with the initial condition on
the site in the dimer nearest the side from which the ex-
citation was received. Thus if an excitation is received
from the dimer to the left (right), we restart dynamics
the initial condition is on the left (right) site of the new
dimer. For the complex consisting of the nth dimer, this
corresponds to the explicit inter-complex coupling matrix
(in the ICC basis)

J =
∑

ε∈{−1,+1}

J |n, ε〉〈n− ε,−ε|, (D1)

where J is an arbitrary inter-dimer coupling strength and
|n, ε〉 is the state corresponding to occupation of the right
(ε = −1) or left (ε = +1) site of dimer n. We also assume
that upon excitation at a site in a new dimer, the baths
of the donating chromophore will instantaneously revert
to thermal equilibrium. Accordingly, since the chain of
dimers is periodic, we can build overall dynamics in this
manner from full quantum calculation of just four time-
dependent transfer rates corresponding to left or right
transfer to a neighboring dimer from each of the two ini-
tial conditions on sites.

b. Scaled 2CTNL calculations For computational
feasibility, we based our calculations of transfer rates
on scaling the results of 2CTNL simulations on a three
dimer (six site) system. We may denote the left, cen-
tral and right dimers as −1, 0,+1, respectively. We use
the 2CTNL method because it accurately models dy-
namics under both strong and weak environmental cou-
pling [27]. Since we need to calculate rates neglecting
back-transfer while these simulation methods describe
full system dynamics, we calculate the dynamics here
with the inter-dimer coupling J0 set to be very small
so that back-transfer was negligible. To begin, we need
cumulative transition probabilities F 0

εδ(t) for the transi-
tion from initial conditions ε ∈ {+1,−1} to neighboring
dimer δ ∈ {+1,−1} at time t. From our simulations on
the three dimer chain, the quantity F 0

εδ(t) is simply the
total population at time t on dimer δ obtained by start-
ing with initial condition on site ε of the central dimer.
The probability density as a function of t, which is the
transition rate, is then given by f0

εδ(t) = ∂
∂tF

0
εδ(t) and

evaluated numerically. We then scale the transfer rate
to obtain the rescaled rate fεδ(t) = (J/J0)2f0

εδ(t) cor-
responding to the coupling J . The rescaled cumulative
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FIG. 6: (Color online) Inter-complex transfer rates fεδ(t) with
initial conditions (a) ε = +1 and (b) ε = −1 for steps δ = +1
(solid lines) and δ = −1 (dashed lines). These rates are de-
rived from 2CTNL simulations for a chain of three dimers
with correlation time 50 fs and no spatial correlations, as de-
scribed in the text. The transfer rates oscillate, corresponding
to quantum beatings in the donor, but eventually converge
to the same equilibrium rate, as required to satisfy detailed
balance. However, at early times, the left (δ = +1) and right
(δ = −1) transfer rates are not equal, oscillating out of phase.
When averaged over the limiting distribution πε of the initial
condition this gives rise to the marked short time asymmetry
in the left and right inter-dimer transfer rates that is shown in
Figure 4(b) of the main text. This asymmetry, although small
in absolute terms, is amplified by being repeated over many
hops between dimers and is responsible for the asymptotic
bias of the random walk.

transition probability is obtained by numerical integra-

tion, Fεδ(t) =
∫ t

0
dτfεδ(τ). This scaling of the transfer

rate assumes that to lowest order in J the transfer rate
is proportional to J2, as given by Eq. (1). For our pa-
rameters, we found that the scaled transfer rate fεδ(t)
does indeed converge as J0 → 0 and that using a value
J0 = 1 cm−1 was sufficiently small to make any error neg-
ligible. This method neglects the effects of excitation loss
on the dynamics of the donating dimer, which is reason-
able to lowest order in J . We simulated the three dimer
chain using two such 2CTNL calculations, one for each
initial condition on a specific site of the central dimer.
Calculations including spatially correlated baths on each
dimer were performed as described previously [39]. In
principle, one could perform calculations taking into ac-
count static disorder, but we do not expect static disorder
would influence our qualitative findings since the primary
effect of disorder is to limit delocalization and our scal-
ing procedure already constrains exciton delocalization
to individual dimers.

Figure 6 gives an example of these transfer rates fεδ(t).
The transfer rates oscillate, corresponding to quantum
beatings in the donor, but eventually converge to the
same equilibrium rate, as required to satisfy detailed bal-
ance. However, at early times, the left (δ = +1) and right
(δ = −1) transfer rates are not equal, oscillating out of
phase. When averaged over the limiting distribution πε
of the initial condition this gives rise to the marked short
time asymmetry in the left and right inter-dimer transfer
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rates that is shown in Figure 4(b) of the main text. This
asymmetry, although small in absolute terms, is ampli-
fied by being repeated over many hops between dimers
and is responsible for the asymptotic bias of the random
walk.

c. Generalized random walk With each transition to
a neighboring dimer only depending on the initial con-
ditions at each dimer, the dynamics constitute a type of
Markov chain controlled random walk known as a semi-
Markov process [46]. In each step of the random walk, we
start with a state of the form |n, ε〉 denoting occupation of
the right (ε = −1) or left (ε = +1) site of the nth dimer.
The cumulative transition probabilities Fδε(t) for transi-
tioning from |n, ε〉 to the left or right dimer ICC acceptor
state |n+ δ, δ〉 for δ = ±1 (see Eq. (D1)) are determined
by the rescaled 2CTNL calculations as described above.
The update ε′ = δ is the initial condition for the excita-
tion on the new dimer following from our ICC analysis.
The walk is memory-less in terms of a two-dimensional
clock variable (n, t) denoting “space-time” position, but
the initial condition at each dimer nevertheless functions
as an additional “coin” degree of freedom ε that controls
the likelihood of jumps to a new clock state (n′, t′).

d. Monte-Carlo algorithm Given the transition
probabilities Fεδ(t) for this random walk, we used two
techniques to calculate the long time behavior of the over-
all random walk. First, we performed Monte-Carlo sim-
ulations of the evolution for a total time T by averaging
over trajectories of many jumps. We start by setting the
clock to the state (n, t) = (0, 0) and the coin to ε = +1.
We sample from the distribution of possible space-time
shifts ξεδ = (δ, tεδ) by choosing a pair (u1, u2) of inde-
pendent uniformly distributed random numbers between
0 and 1. For convenience, we define the final transition
probability pεδ ≡ limt→∞ Fεδ(t). If u1 ≤ pε,+1, we choose
δ = +1 for this jump; otherwise, δ = −1. The time tεδ it
takes for this jump is determined by numerically solving
the equation u2 = Fεδ(tεδ)/pεδ for t. We then update
the clock (n′, t′) = (n + δ, t + tεδ) and the coin ε′ = δ.
This process is repeated until time t+ tεδ > T , at which
point we record the location of the previous dimer n as
the final state of that trajectory. The probability density
of the final distribution over dimers is derived by bin-
ning over many such trajectories (∼5000). Empirically,
our Monte-Carlo simulations suggest that the distribu-
tion converges to a normal distribution characterized by
its mean and variance, as expected from a central limit
theorem for weakly dependent variables [47].

e. Analytic model Second, we calculated the mean
and variance of final distribution analytically in the
asymptotic limit of the total walk time T → ∞, using
the method suggested in Ref. 38. Since the results of
these calculations agreed with the Monte-Carlo simula-
tions but were much faster, we use this second method
for the plots in Figure 4. To begin, we calculate the mo-

ments of the transition time tεδ for each jump ε→ δ,

E(tεδ) =
1

pεδ

∫ ∞
0

tfεδ(t)dt (D2)

E(t2εδ) =
1

pεδ

∫ ∞
0

t2fεδ(t)dt (D3)

by numerical integration. Now, note that transitions be-
tween coin states can be described as a Markov chain
with transition matrix P with entries given by the final
transition probabilities pεδ = limt→∞ Fεδ(t) as defined
above, i.e.,

P =

(
p+1,+1 p+1,−1

p−1,+1 p−1,−1

)
. (D4)

Accordingly, the limiting distribution πε over the coin
space is given by the left eigenvector of P with eigenvalue
1, that is, the solution π of the equation πε′ =

∑
ε πεpεε′ .

The quantity πεpεδ gives the probability of the step ε→
δ in the limiting distribution. Recalling the definition
of the space-time shift ξεδ = (δ, tεδ) associated with the
step ε → δ, we obtain an average space-time shift ξ̄εδ =
(δ,E(tεδ)) for this step. Since the coin will converge to
the limiting distribution πε, we now obtain the average
space-time shift over all steps as

ξ̄ = E(ξ) =
∑
εδ

πεpεδ ξ̄εδ ≡ (n̄, t̄). (D5)

Now let nT denote the spatial position of the random
walk after a total time T . This random walk is the sum
of T/t̄ independent steps on average, each of which has
an average spatial shift n̄. Since the expectation adds
linearly, we then obtain the average position of the overall
walk as

E(nT ) = n̄T/t̄. (D6)

Figure 4 plots the corresponding drift velocity v =
E(nT )/T .

Given that our random walk appears to converge to a
normal distribution, we can fully characterize the distri-
bution with its mean, calculated above, and its variance.
As a practical matter, the variance indicates the width
of the distribution and thus determines whether or not
a non-zero drift velocity would be observable experimen-
tally. To calculate the variance, we consider two sources
of space-time deviations,

ηεδ = ξεδ − ξ̄εδ (D7)

µεδ = ξ̄εδ − ξ̄, (D8)

corresponding to deviations ηεδ of the space-time shift of
a particular transition from its average value, and devia-
tions µεδ of the average space-time shift for a particular
transition from the average space-time shift over all tran-
sitions. Since successive steps are weakly correlated by
the ICC conditions, the latter quantity must be averaged
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over all possible steps in all possible trajectories. We
therefore define µ̄ as the single step average obtained by
summing µεδ over all possible sequential steps:

µ̄ = lim
n→∞

1

n

n∑
i=1

µεiδi . (D9)

Note that for a standard Markov chain with no corre-
lation between steps, this single step average reduces to
µ. Assuming the covariation between ηεδ and µ̄ is small,
we can combine them to calculate the overall space-time
covariance matrix,

Var(ξ) = Var(ξ − ξ̄) (D10)

= Var(η + µ̄) (D11)

= Var(η) + Var(µ̄). (D12)

Averaging over the limiting distribution πε, we find for
the first contribution to the variance,

Var(η) =
∑
εδ

πεpεδ Var(ηεδ) (D13)

where

Var(ηεδ) =

(
0 0
0 Var(tεδ)

)
, (D14)

with Var(tεδ) = E(t2εδ)−E(tεδ)
2. Now consider the second

contribution to the variance, Var(µ̄). The variance of the
single step average µ̄, Eq. (D8), introduces a double sum
over products of deviations µεδ. With a correlated ran-
dom walk, the products of deviations at different space-
time values are also correlated and hence evaluation of
these requires enumeration of all possible jumps connect-
ing them, where these are determined by the transition
probability matrix P , Eq. (D4). This enumeration, which
constitutes a multi-state generalization of the variance for
weakly dependent processes [47], is given explicitly by

Var(µ̄) =
∑
εδ

πεpεδµ
T
εδµεδ

+
∑
εδρσ

∑
m≥0

πεpεδp
(m)
δρ pρσ[µT

εδµρσ + µT
ρσµεδ], (D15)

where p
(m)
δρ = (Pm)δρ and we sum each variable ε, δ, ρ, σ

over ±1. The second term in Eq. D15 sums up all contri-
butions that m-steps apart, where these are specified by
the Chapman-Kolmogorov equation [26]. We note that
for convenience, instead of explicitly performing the sum

over m, one can equivalently replace the term
∑
m p

(m)
δρ in

the equation above with Qδρ [38], where Q = (1−P ∗)−1

and P ∗ is the non-equilibrium portion of P , that is, with
entries p∗εδ = pεδ − πε. Combining Eqs. (D13) and (D15)
into (D13) yields a space-time covariance matrix Var(ξ)
for the two dimensional shift variable ξ. This covariance
matrix has explicit entries,

Var(ξ) =

(
Var(n) Cov(n, t)

Cov(n, t) Var(t)

)
. (D16)

To calculate the final spatial variance Var(nT ), we must
take into account the uncertainty associated with the
number m of discrete hops that happened in time T , in
addition to the uncertainty over n. To correctly incorpo-
rate both contributions, we calculate the variance of the
spatial displacement n over a single coin shift over the
full two-dimensional coin space,

Var(n,t)(n) = Var(n,t)(n− n̄t/t̄)
= Var(n)− 2(n̄/t̄) Cov(n, t) + (n̄/t̄)2 Var(t)

= (1,−n̄/t̄) Var(ξ)(1,−n̄/t̄)T, (D17)

where in the first step we subtracted the average value
of n over the coin space. We write the variances over the
full coin space (n, t) to emphasize that they are distinct
from terms like Var(n), which is only over the spatial
degree of freedom n. Since the variance adds linearly
over m ≈ T/t̄ independent steps, we obtain the variance
of the distribution after time T as

Var(nT ) = (1,−n̄/t̄) Var(ξ)(1,−n̄/t̄)TT

t̄
. (D18)

The diffusion coefficient for the walk is then given as
D = Var(nT )/2T .

Figure 7 plots the full results of scans over correla-
tion time and cross-correlation coefficients used to cre-
ate Figure 4 of the main text. We see that the width
of the excitation transfer distribution is approximately
constant over all parameter choices at about 60 nm after
1 ns, and that the asymmetry between initial conditions
∆π = π+1 − π−1 accounts for most of the variation in
drift velocity. Figure 4(b) of the main text is a plot of
the relative transfer rate asymmetry for the limiting dis-
tribution of the initial condition πε,

A(t) =

∑
εδ πεδfεδ(t)∑
εδ πεfεδ(t)

, (D19)

where the sums are over ε, δ ∈ {−1,+1} as usual.

Appendix E: FMO Hamiltonian and singular value
decompositions

The FMO complex exists in a trimer arrangement,
where each monomer contains 7 bacteriochlorophyll
molecules, and three additional BChl molecules (termed
the 8th Bchl for each of the three monomers) are each
located between a distinct pair of monomers [29]. In
this paper, we use a Hamiltonian for a monomer of the
FMO complex of C. tepidum calculated by Adolphs and
Renger [13], augmented by dipole-dipole couplings to the
8th BChl site calculated using their same methodology
with the crystal structure of Tronrud et al. [29]. We as-
sign each of the three BChl 8 pigments to the monomers
with which they have the strongest dipole-dipole cou-
pling. The Hamiltonian matrix is given below in units of
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FIG. 7: (Color online) Full results of simulations used for
analysis of the unidirectional random walk, as used to cre-
ate Figure 4 of the main text. The parameters of each dimer
match that of sites 1-2 in FMO, as described in the main
text. We used a Debye spectral density with a reorganiza-
tion energy of 35 cm−1 and variable bath and spatial correla-
tions, as indicated on the figure. For the left panels we have
variable time correlation and no spatial correlations. For the
right panels we vary the spatial correlation (see Ref. [39]) and
fix the correlation time at 50 fs. (a,b) Drift velocity, from

Eq. (D6). (c,d) Standard deviation σ =
√

Var(nT ) of the
walk at 1 ns, from Eq. (D18). (e,f) Coherence time τ , from
a least squares fit of the exponential decay of excitonic co-
herence, |ρe1e2 | ∼ Ae−t/τ + B: we evaluate this here and in
Figure 4 for t > 100 fs to exclude non-exponential decay. (g,h)
Asymptotic transfer asymmetry ∆π = π+1 − π−1 indicating
the overall preference for right over left transfer.

cm−1 above 12 210 cm−1, where elements of the matrix
are indexed according to site from 1 to 8:

200 −87.7 5.5 −5.9 6.7 −13.7 −9.9 37.5
−87.7 320 30.8 8.2 0.7 11.8 4.3 6.5

5.5 30.8 0 −53.5 −2.2 −9.6 6. 1.3
−5.9 8.2 −53.5 110 −70.7 −17. −63.3 −1.8
6.7 0.7 −2.2 −70.7 270 81.1 −1.3 4.3
−13.7 11.8 −9.6 −17. 81.1 420 39.7 −9.5
−9.9 4.3 6. −63.3 −1.3 39.7 230 −11.3
37.5 6.5 1.3 −1.8 4.3 −9.5 −11.3 ?


.

(E1)

The energy of site 8 is marked with a question mark to
indicate that it is unknown, since it has not been cal-
culated. Accordingly, our simulations of the full FMO

complex use only the portion of this Hamiltonian for sites
1-7, as in previous studies [18].

To determine donor and acceptor ICC states for a given
coupling matrix J , we perform the singular value decom-

position J = UDJ̃U
†
A =

∑
l J̃l|D̃l〉〈Ãl| as described in

Section II. Here are the results of two examples we use
with our FMO Hamiltonian. Let the notation JAD de-
note the coupling matrix from the donor (D) rows and
the acceptor (A) columns of Eq. (E1). As plotted in Fig-
ure 1, for the coupling from site 8 to sites 1-7, we have
J1-7

8 = J∗|D∗〉〈A∗| with

J∗ = 41.9 |D∗〉 = |8〉 |A∗〉 =



−0.912
−0.158
−0.031
0.043
−0.105
0.229
0.275


, (E2)

with entries 〈i|A∗〉 for states |i〉 = |1〉, . . . , |7〉. With only
a single donor site, the ICC acceptor (donor) state from
the singular value decomposition is as simple as the nor-
malized vector corresponding to the dipole-dipole matrix.
Since occupation probabilities correspond to these am-
plitudes squared, the acceptor among sites 1-7 is mostly
(83%) on site 1, as shown in Fig. 1(a).

A less trivial example is given by considering the 1-
2 dimer as a donor to and acceptor from the remain-
der of the complex 3-8. In this case, we have J3-8

1-2 =∑
i=1,2 J̃i|D̃i〉〈Ãi| with

J̃1 = 43.6 |D̃1〉 =

[
−0.969
−0.247

]
|Ã1〉 =


−0.297
0.085
−0.153
0.238
0.196
−0.887

 ,
(E3)

J̃2 = 34.3 |D̃2〉 =

[
0.247
−0.969

]
|Ã2〉 =


−0.832
−0.274
0.028
−0.432
−0.193
0.089

 ,
(E4)

with entries corresponding to states |i〉 in ascending or-
der. Thus the coupling in the ICC basis is mostly from
site 8 (78%) to site 1 (94%), and from site 2 (94%) to
site 3 (69%). If we omit site 8 from the acceptor, these
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acceptor and donor states are modified as follows:

J̃1 = 19.7 |D̃1〉 =

[
0.995
0.099

]
|Ã1〉 =


0.433
−0.257
0.342
−0.633
−0.479

 ,
(E5)

J̃2 = 34.4 |D̃2〉 =

[
0.099
−0.995

]
|Ã2〉 =


−0.876
−0.254
−0.001
−0.381
−0.153

 .
(E6)

We use these ICC states in Fig. 5 since only sites 1-7
are included in the 2CTNL simulation, as the site energy
of the 8th BChl is unknown (see Eq. (E1)), and as it is
furthermore unclear whether this 8th BChl is present in
all cases in the natural system [29].
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