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I. INTRODUCTION

Over the past few years, there has been considerable
interest in the study of small scale systems, with special
emphasis on the issue of efficiency [1]. It was shown,
on the basis of general thermodynamic arguments [2]
and using stochastic thermodynamics [3], that the effi-
ciency at maximum power η⋆ of a thermal engine, op-
erating between a hot and cold bath at temperatures
T (1) and T (2), respectively, possesses universal proper-
ties when expanded in terms of the Carnot efficiency
ηC = 1− T (2)/T (1):

η⋆ =
ηC
2

+
η2C
8

+ . . . . (1)

This result is valid for “strong coupling,” meaning that
the particle and energy fluxes are proportional to each
other. The value 1/8 for the coefficient of the quadratic
term in addition requires a left/right symmetry, i.e., re-
versal of fluxes upon inversion of forces. The above uni-
versality ultimately derives from the reversibility of the
underlying microscopic laws [4]. It has been verified
in various models [1], including transport of electrons
through a quantum dot [5] and of photons in a maser
model [3]. The purpose of this brief report is to present
an analogous calculation for the transport of classical
particles. As expected, universality is reproduced. An
additional benefit is that, contrary to the case of quan-
tum transport, an explicit analytic expression is obtained
for η⋆, namely,

η⋆ =
η2C

ηC − (1− ηC) ln(1− ηC)
=

ηC
2

+
η2C
8

+ . . . . (2)

II. MODEL AND MASTER EQUATION

We consider a (small) reservoir of classical non-
interacting particles which for simplicity all have the
same energy ǫ. This small reservoir constitutes our sys-
tem. The number of particles in the system will be de-
noted by n. This system exchanges particles with sev-
eral other particle reservoirs ν with temperatures T (ν)

and chemical potentials µ(ν), respectively. We assume

that the exchange can be described by Markovian dy-
namics. This is the case, for example, if the transitions
between system and reservoirs correspond to thermally
activated processes over sufficiently high potential barri-
ers. The probability distribution pn(t) for the system to
be in state n at time t thus obeys the following master
equation (n ∈ N, quantities with negative n-index being
zero by definition):

ṗn = Wn,n−1pn−1 +Wn,n+1pn+1 − (Wn+1,n +Wn−1,n)pn,

(3)

whereWn+1,n andWn−1,n are the rates (probabilities per
unit time) for transitions n → n+1 (the system gains one
particle) and n → n− 1 (loses one particle), respectively.
From here on we are interested in the steady state op-

eration of our system. The corresponding probability
distribution pst is determined by the set of equations

Wn,n−1p
st
n−1 +Wn,n+1p

st
n+1 − (Wn+1,n +Wn−1,n)p

st
n = 0,

(4)

or (since the flux is zero at the boundaries n = 0 and
n = ∞),

Wn,n−1p
st
n−1 = Wn−1,np

st
n . (5)

Note that the one-step hopping dynamics of our mas-
ter equation has the peculiarity that the above formal
condition of detailed balance is satisfied, at least with re-
spect to the total transition rates W . This however does
not necessarily correspond to true equilibrium, which re-
quires detailed balance at the level of each of the separate
processes taking place in the system, as we will see below.
To proceed further, we have to specify the transition

rates. We first assume that the exchanges of particles
with different reservoirs are independent, so that the cor-
responding rates W (ν) add up to the total rate W , that
is,

Wn+1,n =
∑

ν

W
(ν)
n+1,n, (6)

Wn−1,n =
∑

ν

W
(ν)
n−1,n. (7)

Second, statistical mechanics imposes physical con-
straints on the separate rates W (ν). Let us suppose that
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the contact is broken with all reservoirs except for reser-
voir ν. The stationary state should in this case repro-
duce the equilibrium state of the system in contact with
this reservoir, pst = peq,(ν). As is well know from equi-
librium statistical mechanics, this is the so-called grand
canonical distribution, which for classical non-interacting
(ideal) particles is a Poisson distribution [6],

peq,(ν)n =
{n̄(ν)}n

n!
e−n̄(ν)

. (8)

The average particle occupation while in contact with
reservoir ν, n̄(ν), is given by

n̄(ν) = e−xν , (9)

where we have introduced the dimensionless quantity xν ,

xν = β(ν)(ǫ − µ(ν)), (10)

and β(ν) = 1/kBT (kB = Boltzmann’s constant). One
can rewrite this equation in the more familiar form µ(ν) =
ǫ+ kBT

(ν) ln n̄(ν).
The requirement that pst = peq,(ν) for W = W (ν) leads

to the following “genuine” condition of detailed balance
for these rates with respect to its equilibrium distribu-
tion:

W
(ν)
n,n−1p

eq,(ν)
n−1 = W

(ν)
n−1,np

eq,(ν)
n . (11)

In the following we will adopt the standard choice of tran-
sition rates [7] that satisfy this condition (cf. law of mass
action), namely,

W
(ν)
n+1,n = k

(ν)
+

W
(ν)
n−1,n = n k

(ν)
−

, (12)

with the n-independent rates obeying the balance condi-
tion

k
(ν)
+ = k

(ν)
−

n̄(ν). (13)

III. THERMAL ENGINE

Having identified the thermodynamically correct ex-
pressions (12) and (13) for the transition probabilities,
we can proceed to a stochastic thermodynamic analysis
(see [8] for a brief review) of a system coupled to several
reservoirs, with different temperatures and chemical po-
tentials. One easily verifies that the steady state solution
of (4), is again a Poisson distribution,

pstn =
n̄n

n!
e−n̄, (14)

with a steady state average number of particles reflecting
the influence of each reservoir [compare with (13)]:

n̄ =

∑

ν k
(ν)
+

∑

ν k
(ν)
−

. (15)

This is most easily demonstrated by showing that the
generating function is given by

∑

n s
npstn = e(s−1)n̄

Even though Poissonian, this distribution corresponds
to a nonequilibrium steady state. Using (12)-(15), we
find the following explicit expressions for the separate
particle, energy, and heat fluxes from each reservoir ν
into the system:

J
(ν)
N =

∑

n

(W
(ν)
n,n−1p

st
n−1 −W

(ν)
n−1,np

st
n )

= k
(ν)
+ − k

(ν)
−

n̄ (16)

J
(ν)
E = ǫJ

(ν)
N (17)

J
(ν)
Q = J

(ν)
E − µ(ν)J

(ν)
N = (ǫ − µ(ν))J

(ν)
N . (18)

Note that the fluxes from each reservoir to the system
are strongly coupled, i.e., energy, heat and particle flux
are proportional to each other. This is a result of our
assumption that all particles have the same energy ǫ.
Furthermore, the fluxes from reservoir ν are only zero
when n̄ = n̄(ν), i.e. when the steady state distribution is
the equilibrium distribution, cf. (8) and (14). The above
Poissonian steady state (14) does not, in general, obey
detailed balance with respect to the separate rates W (ν),
and implies the following non-zero entropy production:

Ṡi = kB
∑

ν

∑

n

(W
(ν)
n,n−1p

st
n−1 −W

(ν)
n−1,np

st
n ) ln

W
(ν)
n,n−1p

st
n−1

W
(ν)
n−1,np

st
n

= kB
∑

ν

(k
(ν)
+ − k

(ν)
−

n̄) ln
k
(ν)
+

k
(ν)
−

n̄

=
∑

ν

J
(ν)
N X

(ν)
N ≥ 0, (19)

where we have introduced the thermodynamic forces:

X
(ν)
N = kB ln

n̄(ν)

n̄
. (20)

Of particular interest to us is the situation in which a
heat current from a hot to a cold reservoir is used to drive
particles uphill from low to high chemical potential. To
investigate this case in more detail, we henceforth focus
on the case of only two reservoirs ν = 1, 2, with reservoir
1 the hot reservoir and 2 the cold one, T (1) ≥ T (2). Note
that we have not taken the thermal energy of the particles
into account as this would require the consideration of
a third thermal reservoir, making the comparison with
Carnot efficiency more involved. At the steady state, one
finds, using (9) and (13), the following explicit results for
the fluxes:

J
(1)
N = −J

(2)
N = κ(e−x1 − e−x2) (21)

J
(1)
E = −J

(2)
E = ǫJ

(1)
N (22)

J
(1)
Q = kBT

(1)x1J
(1)
N , (23)

where we have introduced the rate

κ =
k
(1)
−

k
(2)
−

k
(1)
−

+ k
(2)
−

. (24)
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The entropy production reduces to the simple expres-
sion

Ṡi = kBκ(x2 − x1)(e
−x1 − e−x2) ≥ 0. (25)

The power P of the engine, being the amount of net
chemical energy produced per unit time, is given by

P = (µ2 − µ1)J
(1)
N (26)

= κ kBT
(1) [x1 − (1− ηc)x2] (e

−x1 − e−x2).

The corresponding efficiency reads:

η =
(µ2 − µ1)J

(1)
N

J
(1)
Q

= 1− (1− ηc)
x2

x1
(27)

Before turning to the main issue of efficiency at maximum
power, we first note that equilibrium, i.e. zero entropy
production, cf. (25), is attained when x1 = x2. This
does not require that the temperatures T (1) and T (2)and
chemical potentials µ(1), and µ(2) be separately equal, a
feature which is well-known for strongly coupled systems
[9]. In the vicinity of such a point, the machine can oper-
ate reversibly, and its efficiency attains Carnot efficiency,
η = ηC , cf. (27).
Let us now turn our attention to the point of maximum

power. From

∂P

∂x1
=

∂P

∂x2
= 0 (28)

one finds:

x1 = 1− (1− ηC)
ln(1− ηC)

ηC
(29)

x2 = 1−
ln(1 − ηC)

ηC
. (30)

(31)

The corresponding efficiency reads:

η⋆ =
η2C

ηC − (1− ηC) ln(1− ηC)
=

ηC
2

+
η2C
8

+ ..., (32)

which displays the expected universality announced ear-
lier.

IV. DISCUSSION

We close with a number of additional comments. The
above result is identical to the one obtained for a model
based on particle transport via Kramers’ escape [10].
This can be understood from the fact that our model
reduces to this case when the outgoing rates k

−
become

very large. In this limit the number of particles in the
system goes to zero, and the only remaining processes
are the thermally activated transitions from one reservoir

into another, via fast passage through the system, which
plays the role of a short-lived activated state. The fact
that our more general model reproduces the same result
as Kramers’ escape suggests that (2) may have a wider
applicability in classical transport. The above results for
particle flux, power, entropy production and efficiency at
maximum power are also reproduced by taking the clas-
sical limit in the problem of electron transport through
a quantum dot [5].

The above model for particle transport can be repre-
sented as a simple chemical reaction, namely,

X ⇄ X(ν) (33)

where n represents the number of particles of species
X , which can transmute into the species X(ν) whose
chemical potential is fixed by reservoir constraints. This
representation is most natural in an isothermal system,
T (ν) = T .

Finally, we mention a similarity of the model studied
here with that of an underdamped Brownian particle in
contact with several heat baths. The Langevin equation
for such a particle has the following form:

mv̇ =
∑

ν

{−γ(ν)v +
√

γ(ν)T (ν)ξ(ν)}, (34)

where ξ(ν) are independent normal white noises. The
noise intensity is chosen in accordance with the
fluctuation-dissipation theorem so that the stationary
distribution when in contact with each reservoir sepa-
rately reduces to the corresponding Maxwellian veloc-
ity distribution. As in the model studied here, the sta-
tionary distribution of the system in simultaneous con-
tact with multiple reservoirs has an ”equilibrium shape”,
i.e., a Maxwellian distribution, however at a temperature
which is the geometric mean of the bath temperatures.
Detailed balance is broken at the level of the exchange be-
tween particle and separate reservoirs, with the Brownian
particle functioning as a thermal contact between reser-
voirs. This Brownian model has been studied in great
detail, revealing detailed properties of the corresponding
nonequilibrium steady state [11]. The model presented
here has the additional advantage of allowing both heat
and particle transport. We therefore expect it to be an
interesting candidate for revealing further properties of
nonequilibrium steady states.
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