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We study systems with a crossover parameter λ, such as the temperature T , which has a threshold
value λ∗ across which the correlation function changes from exhibiting fixed wavelength (or time
period) modulations to continuously varying modulation lengths (or times). We report on a new

exponent, νL, characterizing the universal nature of this crossover. These exponents, similar to
standard correlation length exponents, are obtained from motion of the poles of the momentum
(or frequency) space correlation functions in the complex k-plane (or ω-plane) as the parameter λ
is varied. Near the crossover (i.e., for λ → λ∗), the characteristic modulation wave-vector KR in
the variable modulation length “phase” is related to that in the fixed modulation length “phase”,
q, via |KR − q| ∝ |T − T∗|νL . We find, in general, that νL = 1/2. In some special instances, νL
may attain other rational values. We extend this result to general problems in which the eigenvalue
of an operator or a pole characterizing general response functions may attain a constant real (or
imaginary) part beyond a particular threshold value, λ∗. We discuss extensions of this result to
multiple other arenas. These include the axial next nearest neighbor Ising (ANNNI) model. By
extending our considerations, we comment on relations pertaining not only to the modulation lengths
(or times) but also to the standard correlation lengths (or times). We introduce the notion of a
Josephson timescale. We comment on the presence of aperiodic “chaotic” modulations in “soft-spin”
and other systems. These relate to glass type features. We discuss applications to Fermi systems –
with particular application to metal to band insulator transitions, change of Fermi surface topology,
divergent effective masses, Dirac systems, and topological insulators. Both regular periodic and
glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.

PACS numbers: 05.50.+q, 75.10.Hk, 75.60.Ch

I. INTRODUCTION

In complex systems, there are, in general, possibly
many important length and time scales that characterize
correlations. Aside from correlation lengths describing
the exponential decay of correlations, in some materials
there are length scales that characterize periodic spatial
modulations or other spatially non-uniform properties as
in Fig. 1. We investigate the evolution of these length
scales as a function of some parameter λ. This param-
eter may be the temperature, the chemical potential, or
some other physical quantity relevant for description of
the system being studied. To illustrate our basic premise,
we will largely focus on temperature dependences of the
correlation function in this work. However, with a trivial
change of variables, our results are valid for any parame-
ter that, when tuned, connects a phase with continuously
varying modulation lengths (or times) to one in which the
modulation length (or time) is pinned to a fixed value.
The crossovers we consider are not symmetry breaking
transitions. Consequences of our considerations also re-
late to correlation lengths as we will comment on later.

Many systems exhibit subtle changes in their correla-
tion functions at certain special temperatures. The main
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focus of our work pertains to the following situation. As
the temperature is varied across a certain crossover tem-
perature, T∗, an unmodulated phase of a system may
start exhibiting modulations, even though a thermody-
namic phase transition does not occur. A generalization
of this occurs when modulations in a system are charac-
terized by a fixed wavelength on one side of a crossover
temperature and by continuously varying wavelengths on
the other side. Such an occurrence may generally be seen
when interactions of different scales compete with one
another. A wealth of interesting periodic spatial patters
appear in disparate arenas: e.g., the manganites,[2] pnic-
tide [3, 4] and cuprate [5–10] superconductors, quantum
Hall systems,[11–13] dense nuclear matter,[14, 15] mag-
netic systems,[16–21] heavy fermion compounds,[22, 23]
membranes,[24] cholesterols,[25] magnetic garnets,[26]
dipolar systems,[27, 28] systems with nematic phases,[29]
and countless other systems.[30–34]

II. OUR MAIN RESULTS AND THEIR
IMPLICATIONS

In this work, we report on the temperature (or other
parameter) dependence of emergent modulation lengths
that govern the size of various domains present in some
systems. In its simplest incarnation, our central result
is that if fixed wavelength modulations characterized by
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FIG. 1: (Color online) Sub-unit-cell resolution image of
the electronic structure of a cuprate superconductor at the
pseudo-gap energy. Inset shows Fourier space image of the
same figure. Nematic and smectic phases are highlighted us-
ing the red and blue circles respectively. The nematic phase is
characterized by commensurate wave-vectors ~Q. The smectic
wave-vector, on the other hand takes incommensurate values,
~S which is dependent on the amount of doping, albeit weakly.
(From Ref. [1]. Reprinted with permission from AAAS.)

a particular finite length scale, L∗, appear beyond some
temperature, T∗, then, the modulation length, LD, on
the other side of the crossover differs from L∗ as

|LD − L∗| ∝ |T − T∗|νL . (1)

When there are no modulations on one side of T∗, i.e.,
L∗ → ∞, we have near the crossover,

LD ∝ |T − T∗|−νL . (2)

Apart from some special situations, we find that irre-
spective of the interaction, νL = 1/2. We arrive at this
rather universal result assuming that there is no phase
transition at the crossover temperature, T∗. Our result
holds everywhere inside a given thermodynamic phase of
a system.
The large n Coulomb frustrated ferromagnet.

The reader might find it useful to think about the
Coulomb frustrated ferromagnet in the back of his/her
mind when thinking about the above result. This was
discussed in Ref. [35] and will be further elaborated in
Sec. VC. In this system, the modulation length diverges
across a crossover temperature T∗ exhibiting an exponent
of νL = 1/2.

Our considerations are not limited to continuous
crossovers. A corollary of our analysis pertains to sys-
tems with discontinuous (“first-order” like) jumps in the
correlation or modulation lengths.

We will further comment on situations wherein a
branch point appears at T∗. We will present examples
where we obtain rational and irrational exponents and
also the anomalous critical exponent, η. Our analysis
affords general connections to the critical scaling of cor-
relation lengths in critical phenomena.

Our results for spatial dependence of the correlation
functions can be extended to the time domain. Amongst
other notions, by a formal interchange of spatial with
temporal coordinates, we introduce the concept of a
Josephson timescale. Similarly, by further deepening
the analogy between results in the spatial and tempo-
ral domains, we will comment on the presence of phases
with aperiodic/“chaotic” spatial modulations (character-
istic of amorphous configurations) in systems governed
by non-linear Euler-Lagrange equations. Such aperi-
odic/“chaotic” modulations may appear in strongly cor-
related electronic systems.

In the appendix, we present applications to Fermi
systems pertaining to metal–band insulator transition,
change of Fermi surface topology, divergence of effective
masses, Dirac systems and topological insulators.

III. THE SYSTEMS OF STUDY

In this work, we will predominantly consider transla-
tionally invariant systems on a lattice whose Hamiltonian
is given by

H =
1

2

∑

~x 6=~y

V (|~x− ~y|)S(~x)S(~y). (3)

The quantities {S(~x)} portray classical scalar spins or
fields. The sites, ~x and ~y, lie on a d-dimensional hyper-
cubic (or some other) lattice with N sites. We will set
the lattice constant to unity. [In the quantum arena, we

replace the spins, ~S(~x), in Eq. (3) by Fermi or Bose or
quantum spin operators.]

The results that will be derived in this work apply to a
variety of systems. These include theories with trivial n-
component generalizations of Eq. (3). In the bulk of this
work, the Hamiltonian has a bilinear form in the spins.
We will however, later on, study “soft” spin model with
explicit finite quartic terms as we now expand on. An
n-component generalization of Eq. (3) is given by the
Hamiltonian

H =
1

2

∑

~x6=~y

V (|~x− ~y|)~S(~x) · ~S(~y) +

u

4

∑

~x

(

~S(~x) · ~S(~x)− n
)2

. (4)
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Such a Hamiltonian represents standard (or “hard”) spin
or O(n) systems in the large u limit (u ≫ 1). The quar-
tic term enforces a “hard” normalization constraint of
the particular form ~S(~x) · ~S(~x) = n. For finite (or small)
u, Eq. (4) describes “soft”-spin systems wherein the nor-
malization constraint is not strictly enforced.

In what follows, v(~k) and s(~k) will denote the Fourier
transforms of V (|~x − ~y|) and S(~x). We employ the fol-
lowing Fourier conventions,

a(~k) =
∑

~x

A(~x)ei
~k·~x,

A(~x) =
1

N

∑

~k

a(~k)e−i~k·~x. (5)

With these conventions in tow, in Fourier space, Eq. (3)
reads

H =
1

2N

∑

~k

v(~k)|s(~k)|2. (6)

When v(~k) is analytic in all momentum space coordi-

nates, it is a function of |~k|2 = k2 (and not a general

function of k ≡
√

∑d
l=1 k

2
l with {kl} being the Cartesian

components of ~k). This is so as |~k| has branch cuts when
viewed as a function of a particular kl (with all other
kl′ 6=l held fixed). The lattice Laplacian that links nearest
neighbors sites in real space becomes

∆~k = 2
d
∑

l=1

(1− cos kl) (7)

in k-space. ∆~k veers towards |~k|2 in the continuum (small
k) limit. The two point correlation function for the sys-
tem in Eq. (3) is, G(~x) = 〈S(0)S(~x)〉. At large distances,
x = |~x|, the correlation function has a general asymptotic
behavior

G(x) ≈
∑

i

fi(x) cos

(

2πx

L
(i)
D

)

e−x/ξi . (8)

In the i-th term, fi(x) is an algebraic prefactor, L
(i)
D is

the modulation length and ξi is the corresponding corre-
lation length. In general, the function, fi(x), may contain
a factor with an anomalous exponent, η, (usually not an
integer), such as, fi(x) ∝ 1/xd−2+η. Generally, there
can be multiple correlation and modulation lengths. In

Fourier space, G(~k) = 1
N 〈|s(~k)|2〉. The modulation and

correlation lengths can be obtained respectively from the

real and imaginary parts of the poles of G(~k) in the com-
plex k-plane.

General considerations: Correlation and modulation
lengths from momentum space correlation function

The correlation function, G(~x), in (d-dimensional) real
space is related to the momentum space correlation func-

tion, G(~k), by

G(~x) =

∫

ddk

(2π)d
G(~k)e−i~k·~x. (9)

On the lattice, the integral above must be replaced by

summation over ~k-values belonging to the first Brillouin
zone. In the continuum, which we discuss here, the inte-
gral range is unbounded. Even in lattice systems, doing

an unbounded summation over ~k-values provides a good
approximation for the correlation function in real space
in many scenarios.

For spherically symmetric problems, i.e., when G(~k) =
G(k),

G(x) =

∫ ∞

0

kd−1dk

(2π)d/2
Jd/2−1(kx)

(kx)d/2−1
G(k), (10)

where Jν(x) is a Bessel function of order ν. The above
integral can be evaluated by choosing an appropriate con-
tour in the complex k-plane. The contour can be closed
along a circular arc of radius R → ∞ provided

|G(k)| . k−
d+1

2 , as k → ∞. (11)

In evaluating the integral in Eq. (10), we obtain con-
tributions from residues associated with the poles of the
integrand as well as contributions from its branch points.
We use K = KR+ iKI to represent the poles and branch
points of the integrand in the complex plane. The cor-
relation and modulation lengths in the system are deter-
mined respectively by the imaginary (KI) and real parts
(KR) of these poles and branch points. Together, all
these singularities can be compactly expressed as

1

G(m)(K)
= 0 , (12)

where 0 ≤ m < ∞ is the order of the smallest order
derivative of G(k) which diverges at k = K.[36]
In footnote [37], we comment on the situation in which

the function, G(T, k), is an entire function of k (i.e., when
G is analytic everywhere).

IV. A UNIVERSAL DOMAIN LENGTH
EXPONENT – DETAILS OF ANALYSIS

We now derive (via various inter-related approaches),
our central result – the existence of a new exponent for
the domain length in rather general systems with real or
complex scalar fields, vectorial (or tensorial) fields of both
the discrete (e.g., Potts like) and continuous variants.
We will now consider the situation in which the sys-

tem exhibits modulations at a fixed wave-vector, q, for a
finite range of temperatures on one side of T∗, [viz., (i)
T > T∗, or, (ii) T < T∗] and starts to exhibit variable
wavelength modulations on the other side [(iii) T < T∗
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FIG. 2: Schematic showing the trajectories of the singularities of the correlation function near a fixed – variable modulation
length crossover. Two poles of the correlation function merge at k = k∗ at T = T∗. On the fixed modulation length side of the
crossover point, Re k = q.

for (i) and T > T∗ for (ii)]. A schematic illustrating
this is shown in Fig. 2. In sub-section IVA, we will as-
sume that the pair correlation function is meromorphic
(realized physically by absence of phase transitions) at
the crossover point and illustrate how modulation length
exponents may appear. In sub-section IVD, we will com-
ment on the situation where the crossover point may be
a branch point of the correlation function.

A. Crossovers at general points in the complex
k-plane

In the up and coming, we will assume that the pair
correlator, G(T, k), is a meromorphic function of k and
T near a crossover point. Our analysis below is exact
as long as we do not cross any phase boundaries. Such
a case is indeed materialized in the incommensurate-
commensurate crossovers in the three-dimensional ax-
ial next-nearest-neighbor Ising (ANNNI) model [38, 39]
(which is of type (ii) in the classification above). This
phenomenon is also seen in the ground state phase dia-
gram of Frenkel-Kontorova models [40] in which one of
the coupling constants is tuned instead of temperature.
In the following, we present two alternative derivations

for the universal exponent characterizing this crossover.

1. First approach

In general, if the pair correlation function, G(T, k),
is a meromorphic function of the temperature, T , and
the wave-vector, k, near a crossover point, (T∗, k∗), then
G−1(T, k) must have a Taylor series expansion about that
point. We have,

G−1(T, k) =

∞
∑

m1,m2=0

Am1m2
(T − T∗)

m1(k − k∗)
m2 .(13)

Since G−1(T∗, k∗) = 0, we have, A00 = 0. In the simple
canonical case, the leading order terms in Eq. (13) are
given by

G−1 = A(T − T∗)
a +B(k − k∗)

b + ... (14)

with a and b natural numbers.
We may examine the trajectory of the pole K(T ) of

G(T, k) (wherein K(T∗) = k∗) in the complex k-plane
as the temperature is varied around T∗. The case of
Eq. (14) was written both for clarity and pedagogical
purposes as well as its prevalence. In such a case the
pole K for which G−1(T, k = K) = 0 will scale as

K(T ) ∼ k∗ + C(T − T∗)
a/b, (15)

where C is some constant, yielding νL = a/b. There can,
of course, be more interesting situations in which some
number of mixed terms, all of which are products of pow-
ers of (k−k∗) and (T−T∗), are of the same order asK(T )
approaches k∗. In the general case, more interesting situ-
ations arise wherein some number of mixed terms in Eq.
(13) [i.e., terms containing products of powers of both
(T −T∗) and (k− k∗)] are of the same order as K(T ) ap-
proaches k∗. After group the leading order terms, we will
once again, obtain Eq. (15) with some rational exponent
(a/b).
By the very definition of T∗, on one side of T∗ [(i)

or (ii) above], there exists at least one root, K(T ), of
G−1 satisfying KR(T ) = q, where q is a constant. On
the other side [(iii) above], KR(T ) 6= q. As such, the
function, K(T ), is non-analytic at T∗. The left hand side
of Eq. (15) is therefore not analytic at T = T∗, implying
that the right hand side cannot be analytic. This means
that (a/b) cannot be an integer, which in turn implies
that b ≥ 2. Therefore, in the most common situations
we might encounter,

G−1(T, k) ∼ A(T − T∗) +B(k − k∗)
2

=⇒ a = 1 and b = 2. (16)

When Fourier transforming G(T, k) by evaluating the in-
tegral in Eqs. (9, 10) using the technique of residues, the
real part of the poles (i.e., KR) gives rise to oscillatory
modulations of length, LD = 2π/KR. If the modulation
length locks its value to 2π/q on one side of the crossover
point, then, on the other side, near T∗, it must behave as

|2π/LD − q| ∝ |T − T∗|1/2

=⇒ νL = 1/2. (17)



5

2. Second approach

We now turn to a related alternative approach that
similarly highlights the universal character of the mod-
ulation length exponent. If the correlation function,
G(T, k), is a meromorphic function of k, then, expanding
about a zero, K1(T ), of G

−1, we have,

G−1(T, k) = A(T ) (k −K1(T ))
m1 G−1

1 (T, k), (18)

where G−1
1 (T, k) is an analytic function of k and

G−1
1 (T,K1(T )) 6= 0. We can do this again for the func-

tion, G−1
1 (T, k), choosing one of its zeros, K2(T ), and

continue the process until the function left over does not
have any more zeros. We have,

G−1(T, k) = A(T )

p
∏

a=1

(k −Ka(T ))
ma G−1

p (T, k), (19)

where the function, G−1
p (T, k), is an analytic function

with no zeros, mas are integers and, in principle, p may
be arbitrarily high. This factorization can be done in
each phase whereG is meromorphic. LetK1(T ) be a non-
analytic zero of G−1, i.e., one for which Re K1(T ) = q
on one side of T = T∗. To ensure analyticity of G−1 in
T in the vicinity of T = T∗, there must be at least one
other root, K2(T ), such that as T → T∗, both K1(T ) and
K2(T ) veer towards k∗, where Re k∗ = q [e.g., see Fig.
3 which is of type (i) above, k∗ = ±i]. In other words,
p in Eq. (19) cannot be smaller than two. The proof of
this assertion is simple. If p = 1, then, according to Eq.
(19), G−1(T, k) = A(k −K1(T ))G

−1
1 (T, k). At T = T∗,

however, K1(T ) is not analytic, implying that G−1(T, k)
can be analytic only if p ≥ 2. For p ≥ 2, at T∗, G−1

will, to leading order, vary quadratically in (k − k∗) in
the complex k-plane near k∗. Thus,

∂G−1

∂k

∣

∣

∣

∣

(T∗,k∗)

= 0. (20)

Now, if G−1 has a finite first partial derivative relative
to the temperature, T , then, for a pole, K, near k∗, to
leading order,

G−1(T∗, k∗) + (T − T∗)
∂G−1

∂T

∣

∣

∣

∣

(T∗,k∗)

+
(K − k∗)2

2!

∂2G−1

∂k2

∣

∣

∣

∣

(T∗,k∗)

= 0. (21)

By its definition, k∗ satisfies the equality G−1(T∗, k∗) =
0. Therefore,

|K − k∗| =

√

√

√

√

√

√

2(T∗ − T ) ∂G−1

∂T

∣

∣

∣

(T∗,k∗)

∂2G−1

∂k2

∣

∣

∣

(T∗,k∗)

. (22)

Equation (17) is an exact equality. It demonstrates
that the exponent, νL = 1/2 universally unless one
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FIG. 3: Location of the poles of the correlation function of
the large n Coulomb frustrated ferromagnet for J = Q = 1
in the complex k-plane. The circle and the Y -axis show the
trajectory, K(T ), of the poles as the temperature, T , is varied.

of ∂2G−1

∂k2 and ∂G−1

∂T vanishes at (T∗, k∗).[41] Often,

G−1(T, k) is a rational function of k, i.e.,

G−1(T, k) =
G−1

n (T, k)

G−1
d (T, k)

, (23)

where G−1
n (T, k) and G−1

d (T, k) are polynomial functions
of k. In those instances, we get the same result as above
by using G−1

n (T, k) in the above arguments. The value
of the modulation length exponent is similar to that ap-
pearing for the correlation length exponent for mean-field
or large n theories. It should be stressed that our result
of Eq. (17) is far more general.

B. Lock-in of the correlation length

Apart from the crossovers across which the modula-
tion length locks in to a fixed value, we can also have
situations where the correlation length becomes constant
as a crossover temperature, T∗∗, is crossed. If this hap-
pens, our earlier analysis for the modulation length may
be replicated anew for the correlation length. Therefore,
if the correlation length has a fixed value ξ0 on one side
(T < T∗∗ or T > T∗∗) of the crossover point, then, on the
other side (T > T∗∗ or T < T∗∗, respectively), near T∗∗,
it must behave as,

|1/ξ − 1/ξ0| ∝ |T − T∗∗|νc , (24)
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where, like νL, νc = 1/2 apart from special situations
where it may take some other rational values. Here and
throughout, we use νc to represent the usual correlation
length exponent, ν, to distinguish it from the modulation
length exponent, νL.

C. Exponents in parity invariant systems
associated with real (or imaginary) poles

Our results of subsections (IVA1, IVA 2) pertained to
general crossovers associated with general wave-vectors.
A simplification occurs, in parity (or reflection) invari-
ant systems with real spatial correlation functions, when
either the real or imaginary parts of the poles of the cor-
relation function vanish (i.e., KI = 0 or KR = 0). In this
case, we can re-obtain the results of subsections (IVA1,
IVA2) along an alternate route as we now illustrate.
As is well known, whenever the spatial pair correlation

functions G(T, ~x) are real, a Fourier transform about the
lth direction yields

G(T, {xl′ 6=l},−kℓ) = G∗(T, {xl′ 6=l}, kl), (25)

with G∗ the complex conjugate of G. Furthermore, in
systems with an invariance associated with a reflection
about the l-th Cartesian direction,

G(T, {kl′ 6=l}, kl) = G(T, {kl′ 6=l},−kl). (26)

Taken together, Eqs. (25, 26) imply that if, for a fixed
value of {xl′ 6=l}, G as a function of kl has a pole at K
then it must also have poles at {−K,K∗,−K∗}. In rota-

tionally invariant systems, G(T,~k) is a function of k2 (k

is the modulus of the wave-vector ~k) and similar results
hold. That is, if G(k) has a pole at K then it also has
poles at {−K,K∗,−K∗}.
We now consider two situations:

1. The crossover is associated with k∗ that lies on the

imaginary axis in the complex k plane

In this case, by virtue of the above considerations as
a pole K veers towards k∗ so must its counterpart −K∗

(which as illustrated above is also a pole of G). Thus in

expanding G−1(T, kl) or G(T, k) [with k2 = ~k · ~k] about
the zero at k∗ and T = T∗ we have, exactly as in Eq.
(16),

G−1 ∼ A(T − T∗) +B(k − k∗)
2s, (27)

with s = 1. In such a case, as in our earlier discussion, the
modulation length diverges at T = T∗ with an exponent
of νL = 1/2. (The size of the modulation length scales
as the reciprocal of the absolute value of the real part
(|KR|) of K.) It is, of course, also possible to have any
even number (2s) of pairs of momenta {K,−K∗} in the

complex k plane converging on k = k∗ at T = T∗. In
such instances, the modulation length diverges

νL =
1

2s
. (28)

2. The crossover is associated with k∗ that lies on the real

axis in the complex k plane

Here, invoking anew the results that stem from Eqs.
(25, 26), we have that as a pole K of G veers towards a
real k∗, so does the pole K∗ of G. Replicating the con-
siderations above, we arrive at Eq. (27) once again. The
point k∗ on the real axis is associated with a diverging
correlation length (whose size scales as the reciprocal of
the absolute value of the imaginary part (|KI |) of K).
Similar to Eq. (28), the correlation length exponent νc
associated with this cross-over will be given by

νc =
1

2s
(29)

with s a natural number.

D. Branch points

A general treatment of a situation in which the
crossover point is a branch point of the inverse correla-
tion function in the complex k-plane is beyond the scope
of this work. Branch points are ubiquitous in correlation
functions in both classical as well as quantum systems.
For example, in the large n rendition of a bosonic sys-

tem (with a Hamiltonian of Eq. (3) and S(x) repre-
senting bosonic fields), the momentum space correlation
function at temperature T is given by [35, 42]

G(~k) =

√

µ1

v(~k) + µ



nB





√

µ1(v(~k) + µ)

kBT



+
1

2



 ,(30)

where µ1 is a constant having dimensions of energy, µ is
the chemical potential, nB(x) = 1/(ex − 1) is the Bose
distribution function and kB is Boltzmann’s constant.
Similar forms, also including spatial modulations in

G(r), may also appear. We briefly discuss examples
where we have a branch cut in the complex k-plane.
The one-dimensional momentum space correlation

function,

G(k) =
1

√

(k − q)2 + r
+

1
√

(k + q)2 + r
, (31)

reflects a real space correlation function given by

G(x) =
2 cos(qx)K0(x

√
r)

π
, (32)

where K0(·) is a modified Bessel function. Thus, as is to
be expected, we obtain length scales associated with the
branch points, K = ±q ± i

√
r.
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Similarly, the three-dimensional real space correlation
function corresponding to

G(k) =
1

√

(k − q)2 + r
, (33)

exhibits the same correlation and modulation lengths
along with an algebraically decaying term for large sepa-
rations. Another related G−1(k) involving a function of

|~k| (i.e., not an analytic function of k2) was investigated
earlier.[43]
Throughout the bulk of our work, we consider simple

exponents associated with analytic crossovers. In con-
sidering branch points, our analysis may be extended to
critical points. As is well known, at critical points of d
dimensional systems, the correlation function for large r,
scales as

G(r) ∝ 1

rd−2+η
, (34)

with η the anomalous exponent. Such a scaling implies,
for non-integer η, the existence of a branch point of G(k)
at k = 0.
If the leading order behavior of 1/G(m)(T, k) is alge-

braic near a branch point, (T∗, k∗), then we get an alge-
braic exponent characterizing a crossover at this point [m
being the lowest order derivative of G(k) which diverges
at k = k∗ as in Eq. (12)]. That is, we have,

1

G(m)(T, k)
∼ A(T − T∗)

z1 −B(k − k∗)
z2

as (T, k) → (T∗, k∗). (35)

This implies that the branch points K deviate from k∗
as

(K − k∗) ∼
(

A

B

)1/z2

(T − T∗)
z1/z2 . (36)

We therefore observe a length scale exponent, ν = z1/z2
at this crossover. This exponent may characterize a cor-
relation length and/or a modulation length. The expo-
nent, z1/z2, may assume irrational values in many situ-
ations in which the function, G−1(T, k), is not analytic
near the crossover point. Such a situation could give rise
to phenomena exhibiting anomalous exponents, η. For
example, if we have a diverging correlation length at a
critical temperature, Tc, for a system with a correlation
function which behaves as in Eq. (34), then, we have in
Eq. (35), z2 = 2− η. Thus, we have,

|LD − LDc| ∝ |T − Tc|
z1

2−η ,

=⇒ νL =
z1

2− η
, (37)

where LDc = 2π/|Re k∗|, and more importantly,

ξ ∝ |T − Tc|−
z1

2−η ,

=⇒ νc =
z1

2− η
. (38)

Other critical exponents could also, in principle, be cal-
culated using hyper-scaling relations.
If G−1(T, k) has a Puiseux representation about the

crossover point, i.e.,

G−1(T, k) =

∞
∑

m=m0

∞
∑

p=p0

amp(k − k∗)
m/a(T − T∗)

p/b,(39)

with am0p0
= 0, where m0, p0, a and b are integers,

then, the result we derived above applies to the relevant
length scale and the crossover exponent, ν = a/b, is again
a rational number.
Generalizing, if G−1(T, k) is the ratio of two Puiseux

series, we use the numerator to obtain the leading order
asymptotic behavior and hence obtain a rational expo-
nent.

E. A corollary: Discontinuity in modulation
lengths implies a thermodynamic phase transition

Non-analyticities in the correlation function, G(k), for
a real wave-vector, k, imply the existence of a phase tran-
sition. This leads to simple corollaries as we now briefly
elaborate on. A sharp discontinuous jump in the value
of the modulation lengths (and/or correlation lengths)
implies that the zeros, {Ka}, of G−1(k) in the complex
k-plane, exhibit discontinuous (“first order-like”) jumps
as a function of some parameter (such as the tempera-
ture T . When this occurs, as seen by, e.g., differentiating
the reciprocal of the product of Eq. (19), the correlation
function will, generally, not be analytic as a function of T
at T = T∗. Putting all of the pieces together, we see that
a discontinuous change in the modulation (or correlation)
lengths impies the existence of a bona fide phase transi-
tion. Thus, all commensurate-commensurate crossovers
must correspond to phase transitions. For example, see
the ANNNI model.[44]

F. Diverging correlation length at a spinodal
transition

Our analysis is valid for both annealed and quenched
systems so long as translational symmetry is main-
tained (and thus, the correlation function is diagonal
in k-space). In particular, whenever phase transitions
are “avoided” the rational exponents of Eq. (15) will
appear.[42, 45, 46]
In diverse arenas, we may come across situations in

which there are no diverging correlation lengths even
when the inverse correlation function has zeros corre-
sponding to real values of the wave-vector. These are
signatures of a first order phase transition, e.g., transi-
tion from a liquid to a crystal. If the first order phase
transition is somehow avoided, then the system may enter
a metastable phase and may further reach a point where
the correlation length diverges, e.g., a spinodal point. If
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it is possible to reach this point and if the inverse cor-
relation function is analytic there, then our analysis will
be valid, thereby leading to rational exponents charac-
terizing the divergence of the correlation length. There
are existing works in the literature which seem to suggest
that such a point may not be reachable. For example, in
mode coupling theories of the glass transition, the sys-
tem reaches the mode coupling transition temperature,
TMCT , at which the viscosity and relaxation times di-
verge and the system does not reach the point where the
correlation length blows up.[47]

G. Conservation of total number of characteristic
length scales

In Ref. [35], it was mentioned that the total num-
ber of characteristic length scales in a large n system
remains constant in systems in which the Fourier space

interaction kernel, v(~k), is a rational function of k2 and
the real space kernel is rotationally invariant. (Simi-
lar results hold for systems with reflection point group
symmetry.[48]) In this sub-section, we generalize that ar-
gument and say that whenever the Fourier space corre-

lator, G(~k), of a general rotationally invariant system is
a rational function of k2, i.e.,

G(~k) =
P (k2)

Q(k2)
, (40)

the total number of correlation and modulation lengths
remains constant apart from isolated points as a tuning
parameter, λ, is smoothly varied. In Eq. 40, the func-
tions, P (k2) and Q(k2), are polynomial functions of k2.

Rotational invariance requires that G(~k) is real-valued
for real wavevectors k. As argued in Ref. [35], all length
scales in the such systems are associated with the poles of
G(k) in the complex k-plane and these remain constant
for a given form of the function, G(k). Each real root
of the function, Q(k2), gives rise to a term in the real
space correlation function which has one correlation or
one modulation length. Non-real roots (which necessarily
come in complex conjugate pairs) give rise to a correla-
tion and a modulation length. Thus, the total number of
characteristic length scales in the system is equal to the
order of the polynomial function Q(k2) which remains
fixed.

V. O(n) SYSTEMS

The correlation function for O(n) systems can be cal-
culated exactly at both the low and the high temperature
limits. At intermediate temperatures, various crossovers
and phase transitions may appear. In this section, we
discuss the low and high temperature behavior length
scales characterizing O(n) systems.

A. Low temperature configurations

It was earlier demonstrated [49] that for O(n ≥ 2), all
ground states of a system have to be spirals (or poly-
spirals) of characteristic wave-vectors ~qα, given by

v(~qα) = − min
~k∈Rd

v(~k), (41)

where Rd represents the set of all d-dimensional real vec-
tors. At T = 0, the modulation lengths in the system are
given by

Li,α
D (T = 0) = 2π/qi,α, (42)

where i(1 ≤ i ≤ d) labels the Cartesian directions in
d dimensions. This, together with Eq. (43) gives us
the high and low temperature forms of the correlation
function and its associated length scales.

B. High temperatures

As is well appreciated, diverse systems behave in the
same way at high temperatures.[50] For O(n) systems
[51] (any n),

G−1(T, k) = 1 + v(~k)/kBT +O(1/T 3). (43)

The high temperature series may be extended and ap-
plied at the crossover temperature, T∗, if there is no phase
transition at temperatures above T∗ and for all relevant

real k’s, |v(~k)| ≪ kBT∗. [A detailed example will be stud-
ied in Sec. VE.] Generally, Eq. (43) may be analytically
continued for complex k’s and in the vicinity of T∗,

δk ∼
[

m! kB(T∗ − T )

v(m)(k∗)

]
1
m

, (44)

where k∗ is a characteristic wave-vector at T∗. In the
above, δk denotes the change in the location of the poles
K of G−1 when the temperature is changed from T∗ to
T (i.e., δk ≡ K − k∗) and m is the order of the lowest

non-vanishing derivative of v(~k) at k∗. As in previous

analysis, v′(k∗) = 0 and m ≥ 2. For general v(~k), typi-
cally m = 2 and νL = 1/2 as before.
We now turn to examples which explicitly illustrate

how our results are realized including exceptional systems
with non-trivial exponents.

C. Large n Coulomb frustrated ferromagnet –
modulation length exponent at the crossover

temperature T∗

In the current sub-section and the two that follow, we
will discuss the large n limit in O(n) systems. The re-
sults in the previous two sections pertain to arbitrary n.
We illustrate how our result applies to the large n [51]
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Coulomb frustrated ferromagnet. As is well known [52],
in the large n limit, O(n) systems are exactly solvable
and behaves as the spherical model.[53] The correlation
function in k-space is given by

G−1(T, k) = [v(~k) + µ(T )]/kBT, (45)

where v(~k) is the Fourier space interaction kernel and
µ(T ) is a Lagrange multiplier, see e.g. Ref. [35, 46], that
enforces the spherical constraint

1

N

∑

~x

〈~S(~x) · ~S(~x)〉 = 1. (46)

The paramagnetic transition temperature TC is obtained

from the relation, µ(TC) = −mink∈R v(~k). Below TC ,
the Lagrange multiplier µ(T ) = µ(TC). Above TC ,
µ(T ) is determined by the global average constraint that

G(~x = 0) = 1
N

∑

~k G(~k) = 1. This global constraint also
implies that, above TC , small changes in temperature re-
sult in proportional changes in µ(T ) and at high tempera-
tures, µ(T ) is a monotonic increasing function of T . The

Fourier space kernel v(~k) for the “Coulomb frustrated
ferromagnet” (in which nearest neighbor ferromagnetic
interactions of strength J compete with Coulomb effects

of strength Q) is given by v(~k) = Jk2 + Q/k2, where
J and Q are positive constants. The critical tempera-
ture, TC of this system is given by µ(TC) = −2

√
JQ.

At TC , the correlation length is infinity and the modu-
lation length is LD = 2π 4

√

J/Q. As the temperature is
increased, the modulation length increases and the corre-
lation length decreases. At T∗, given by µ(T∗) = 2

√
JQ,

the modulation length diverges and the correlation length
becomes ξ = 4

√

J/Q. At temperatures above T∗, the cor-
relation function exhibits no modulations and there is one
decreasing correlation length and one increasing correla-
tion length. The term in the correlation function with
the increasing correlation length becomes irrelevant at
high temperatures because of an algebraically decaying
prefactor. The divergence of the modulation length at T∗
shows an exponent of νL = 1/2.[35]

D. An example with νL 6= 1/2

In what follows, we demonstrate, as a matter of prin-
ciple, that the exponent for the divergence of the mod-
ulation length (and also the correlation length) can be
different from 1/2 in certain special cases. As an illustra-
tive example, we consider a large n (or spherical model)
system for which in Eq. (6),

v(~k) = A(k2 + l−2
s )2 + 4B(k2 + l−2

s )

+4C/(k2 + l−2
s ) +D/(k2 + l−2

s )2, (47)

where ls is a screening length. If we set A = B =
C = D = 1 then in the resultant system νL 6= 1/2 at a
crossover temperature. It has a critical temperature, TC ,
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FIG. 4: Location of the poles of the correlation function of
the system in Eq. (47) for large ls (small screening) in the
complex k-plane.

given by µ(TC) = −10. At TC , the modulation length is

LD = 2π/
√

1− 1/l2s and the correlation length blows up
(as required by definition). At the crossover temperature,
T∗ (for which µ(T∗) = 6) the modulation length diverges

and the correlation length scales as ξ = 1/
√

1 + 1/l2s. A
temperatures just below T∗, the modulation length, LD,
diverges as LD ∝ (T∗ − T )−1/4 meaning that νL = 1/4.

This is because the first three derivatives of v(~k) vanish
at k = i, which is the characteristic wave-vector at T∗
(see Fig. 4).

E. An example in which T∗ is a high temperature

We now provide an example in which the high tem-
perature result of Sec. VB (valid for any O(n) system
with arbitrary n) can be applied at a crossover point.
Consider the large n system in Eq. (47) with A = 1,
B ≫ 1, C = 1/4, D = 0 and the screening length,
ls ≫ B. The critical temperature of this system is
given by µ(TC) ∼ −4

√
B where the modulation length

is LD ∼ 2π 4
√
4B. There is a crossover temperature T∗

such that µ(T∗) ∼ 4B2. One of the modulation lengths
diverges at T∗. The corresponding correlation length is
given by ξ ∼ 1/

√
2B. This provides an example in which

|v(~k)| ≪ kBT∗ for all real k’s satisfying |k| ≤ π. The sec-

ond derivative of v(~k) is non-zero at the crossover point,
resulting in a crossover exponent νL = 1/2.
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FIG. 5: The coupling constants in the three-dimensional
ANNNI model.

VI. CROSSOVERS IN THE ANNNI MODEL

We now comment on one of the oldest studied examples
of a system with a crossover temperature. The following
Hamiltonian represents the axial next-nearest-neighbor
Ising (ANNNI) model.[38, 39, 44]

H = −J1
∑

〈~x,~y〉
S(~x)S(~y) + J2

∑

〈〈~x,~y〉〉
S(~x)S(~y), (48)

where as throughout, {~x} is a cubic lattice, and the
(Ising) spins, S(~x) = ±1. The couplings, J1, J2 > 0. In
the summand, 〈·〉 represents nearest neighbors and 〈〈·〉〉
represents next nearest neighbors along one axis (say the
Z-axis), see Fig. 5. Depending on the relative strength,
J2/J1, the ground state may be either ferromagnetic or
in the “〈2〉 phase”. The “〈2〉 phase” is a periodic lay-
ered phase, in which there are layers of width two lattice
constants of ‘up” spins alternating with layers of “down”
spins of the same width, along the Z-axis. As the temper-
ature is increased, the correlation function exhibits jumps
in the modulation wave-vector at different temperatures.
At these temperatures, the system undergoes first order
transitions to different commensurate phases. The in-
verse correlation function, G−1(T, k), is therefore not an
analytic function of k and T at the transition points. The
phase diagram for the ANNNI model, however, also has
several crossovers where the system goes from a commen-
surate phase to an incommensurate phase with a contin-
uously varying modulation length (see Fig. 6).[54, 55]
At these crossover points, following our rigorous analy-
sis, we expect a crossover exponent, νL = 1/2. Such a
scaling of the modulation length has been estimated by
several approximate techniques near the “Lifshitz point”
PL.[44, 56–61] The Lifshitz point is the point in the phase
diagram of the ANNNI model at which the high tempera-
ture paramagnetic phase coexists with the ferromagnetic
phase as well as a phase with continuously varying modu-
lation lengths. It is marked as PL in Fig. 6(b). Although
the point PL has a first order transition, it can be thought
of as a limit in which the incommensurate and commen-
surate regions in Fig. 6(a) shrink and merge to a single

point. We would also like to point out that it is known
[62] that if the wave-vector takes all possible rational val-
ues (“complete devil’s staircase”), we have no first order
transitions. Additionally, non-analyticity of the corre-
lation function does not prohibit other quantities from
having continuous crossover behavior. For example, the
correlation of the fluctuations, i.e., the connected correla-
tion function may generally exhibit continuous variation
from a fixed to a variable modulation length phase. If the
inverse connected correlation function is analytic, our re-
sult can be applied to it resulting in a crossover exponent
of 1/2.
Aside from its theoretical appeal, the ANNNI model

has numerous applications and natural generalizations.
We note that aside from the spin only ANNNI Ising ex-
change Hamiltonian of Eq. (48), it is notable that, in-
spired by experimental results, much work has further fo-
cused on the effects of additional applied magnetic field
that augment such bare spin exchange interactions.[63,
64]

VII. PARAMETER EXTENSIONS AND
GENERALIZATIONS

It is illuminating to consider simple generalizations of
our result to other arenas. We may also replicate the
above derivation for a system in which, instead of tem-
perature, some applied other field, λ, is responsible for
the changes in the correlation function of the system.
Some examples could be pressure, applied magnetic field
and so on. The complex wave-vector, k, could also be
replaced by a frequency, ω, whose imaginary part would
then correspond to some decay constant in the time do-
main.
More generally, we look for solutions to the equation

G−1(λ, u) = 0, (49)

with the variable, u, being a variable Cartesian compo-
nent of the wave-vector, the frequency, or any other mo-
mentum space coordinate appearing in the correlation
function between two fields (u = ki, ω, and so on). Repli-
cating our steps mutatis mutandis, we find that the zeros
of Eq. (49) scale as |u − u0| ∝ |λ − λ∗|1/2 whenever the
real (or imaginary) part of some root becomes constant as
λ crosses λ∗. Thus, our predicted exponent of νL = 1/2
could be observed in a vast variety of systems in which a
crossover occurs as the applied field crosses a particular
value, in the complex wave-vector like variable.
Another generalization of our result proceeds as

follows.[65] Suppose that we have a general analytic op-
erator (including any inverse propagator) G−1(λ) that
depends on a parameter λ. Let aα be a particular eigen-
value,

G−1(λ) |aα(λ) 〉 = aα(λ) |aα(λ) 〉. (50)

The secular equation for the eigenvalues of G−1 is an
analytic function in λ. We may thus replicate our ear-
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FIG. 6: Existence of incommensurate phases between the commensurate regions in the phase diagram of the ANNNI model.
(a) Mean field phase diagram of the ANNNI model in three dimensions. The shaded regions show higher order commensurate
phases which have variable modulation length incommensurate phases in between (From Ref. [54]. Reprinted with permission
from APS.) (b) Phase diagram for the three-dimensional ANNNI model using a modified tensor product variational approach
(From Ref. [55]. Reprinted with permission from APS.) (c) Variation of wavelength along paths A1B1 and A3B3 of (b) showing
a smooth variation of the wavelength near the paramagnetic transition line (From Ref. [55]. Reprinted with permission from
APS.) (d) Cartoon of an incommensurate-commensurate crossover region from (a).

lier considerations to obtain similar results. In doing so,
we see that if aα(λ) changes from being purely real to
becoming complex as we vary the parameter, λ, beyond
a particular threshold value, λ∗, (i.e., if aα(λ > λ∗) is
real and aα(λ < λ∗) is complex, or the vice versa), then
the imaginary part of aα(λ) will scale (for λ < λ∗ in the
first case noted above and for λ > λ∗ in the second one)
as Im {aα(λ)} ∝ |λ − λ∗|1/2. A particular such realiza-
tion is associated with the spectrum of a non-Hermitian
Hamiltonian [playing the role of G−1 in Eq. (50)] which,
albeit being non-Hermitian, may have real eigenvalues
(as in PT symmetric Hamiltonians).[66] In this case, the
crossover occurs when a system becomes PT symmetric

as a parameter λ crosses a threshold λ∗.
Similarly, if aα(λ) changes from being pure imaginary

to complex at λ = λ∗, then the real part of the eigenvalue
will scale in the same way. That is, in the latter instance,
Re {aα(λ)} ∝ |λ− λ∗|1/2.
Our next brief remark pertains to some theories with

multi-component fields, e.g. n component theories with
Hamiltonians of the form,[42]

H =
1

2N

∑

~k,i,j

vij(k)si(~k)sj(~k), (51)

in which, unlike Eq. (6) (as well as standard O(n) theo-
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FIG. 7: “Jumps” in the modulation length: The figure shows
the evolution of the poles associated with two different eigen-
vectors with the parameter λ in the complex k-plane. The
solid portion of the trajectories show which pole corresponds
to the dominant term (larger correlation length) in the cor-
relation function. The ×-s denote the poles at λ = λ∗ and
the arrows denote the direction of increasing λ. It is evi-
dent, therefore, that the modulation length corresponding to
the dominant term jumps from LD1 to LD2 as λ crosses the
threshold value λ∗.

ries), the interaction kernel vij might not be diagonal in
the internal field indices i, j = 1, 2, . . . , n. An example
is afforded by a field theory in which n component fields
are coupled minimally to a spatially uniform (and thus
translationally invariant) non-Abelian gauge background
which emulates a curved space metric.[42] In this case,
the index α in Eq. (50) is a composite of an internal field

component coordinate w = 1, 2, . . . , n and ~k-space coor-
dinates. For each of the n branches w, we may determine

the associated ~k-space zero eigenvalue of Eq. (50) which
we label by Kw (i.e., aw,k=Kw

(λ) = 0). The largest corre-
lation is length is associated with the eigenvector which
exhibits the smallest value of |Im Kw|. As usual, as λ
is varied, we may track for each of the n branches, the
trajectories poles of G in the complex k-plane. Although
the location of the multiple poles may vary continuously
with the parameter λ, the dominant poles (those associ-
ated with the largest correlation length) might discontin-
uously change from one particular subset of eigenvectors
to another (see Fig. 7). As such, the correlation function
of the system may show jumps in its dominant modu-
lation length at large distances as λ crosses a thresh-
old value λ∗ even though no transitions (nor cross-overs
similar to that of Fig. (2) which form the focus of this
work) are occurring. Such jumps in the large distance
modulation lengths appear in O(n) systems defined on a
fixed, translationally invariant, non-Abelian background
or metric as in Ref. [42].

In Appendix A, we discuss exponents associated with
lock-ins of correlation and modulation lengths in Fermi

systems. When dealing with zero temperature behavior,
we use the chemical potential µ as the control parameter
λ. We discuss metal-insulator transition, exponents in
Dirac systems and topological insulators. Additionally,
we comment on crossovers related to changes in the Fermi
surface topology as well as those related to situations
with divergent effective mass.

VIII. IMPLICATIONS FOR THE TIME
DOMAIN: JOSEPHSON TIME SCALES AND

RESONANCE LIFETIMES

As we alluded to above, the results that we derived
earlier that pertained to length scales can also be ap-
plied to time scales in which case we look at a temporal
correlation function characterized by decay times (corre-
sponding to correlation lengths) and oscillation periods
(corresponding to modulation lengths). We may obtain
decay time and oscillation period exponents whenever
one of these time scales freezes to a constant value as
some parameter λ crosses a threshold value λ∗.
Many other aspects associated with length scales have

analogs in the temporal regime. Towards this end, in
what follows, we advance the notion of a “Josephson time
scale”. We first very briefly review below the concept of
a Josephson length scale. In many systems [with correla-
tion functions similar to Eq. (34)], just below the critical
temperature, the correlation function as a function of
wave-vector, k behaves as

G(k) ∝
{

k−2+η for k ≫ 1/ξJ ,
k−2 for k ≪ 1/ξJ ,

(52)

thus defining the Josephson length scale, ξJ .[67] Such an
argument may be extended to a time scale, τJ (real or
imaginary) in systems with Lorentz invariant propaga-
tors. For a given wave-vector k, τJ may be defined as,

G(k, ω) ∝
{

ω−2+ηt for ω ≫ 1/τJ ,
ω−2 for ω ≪ 1/τJ ,

(53)

where ω is the frequency conjugate to time while perform-
ing the Fourier transform and ηt(6= 0) is an anomalous
exponent for the time variable.
We next briefly allude to another possible simple ap-

plication of our result. As is well known in high energy
(see, e.g., Ref. [68] for a standard textbook treatment)
and many body theories, the Fourier transform of the two

two point correlation function G(~k, ω) generally exhibits
isolated poles corresponding to the one particle states
as well as bound states and a branch cut that reflects
a continuum of multi-particle states (i.e., two particles
or more). Such a continuum of states arises when the
squared four-momentum p2 ≡ E2/c2 − ~p2 exceeds the
threshold necessary for the production of two particles,
i.e., p2 ≥ (2m)2c2 with m the particle rest mass and c
the speed of light. Single particle (and bound) states and
continuous multi-particle states lead to the aforemen-
tioned respective single poles and branch cuts along the
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real p2 axis. We may consider an application of our ideas
in the vicinity of zero energy bound states (as in, e.g., the
Feshbach resonance of the BCS to BEC crossover,[69–72]
in dilute gases where the crossover is driven by vary-
ing an attractive contact interaction of strength g) when
poles on the real axis are just about to splinter into poles
with a infinitesimal imaginary part. Generally, when, by
virtue of self-energy corrections, the poles attain a finite
imaginary part in the p2 plane, the corresponding states
attain a finite lifetime (with the lifetime being the analog
of the correlation length/time in the two-point correla-
tion functions that we discussed hitherto). The relations
(and exponents) that we derived thus far may be applied,
mutatis mutandis, for the description of processes asso-
ciated with the depinning of the poles off the real axis,
due to the imaginary part of the self energy Σ, leading
to resonances with a finite life-time. This relates to the
scaling of the lifetime τ of resonances in cold atomic gases
as a function of (g0 − g) where g0 is the strength of the
contact interaction at the BCS to BEC crossover point.

IX. CHAOS AND GLASSINESS

Thus far, we have considered phases in which the mod-
ulation length is well defined. For completeness, in this
section, we mention situations in which aperiodic phases
may be observed. The general possibility of such phe-
nomena in diverse arenas is well known.[62, 73] We focus
here on translationally invariant systems of the form of
Eqs. (3,4) with competing interactions on different scales
that lead to kernels such as

v(~k) = k4 − c1k
2 + c2, (54)

where c1 and c2 are positive constants may give rise to
glassy structures for non zero u. Such a dispersion may
arise in the continuum (or small k) limit of hyper-cubic
lattice systems with next nearest neighbor interactions
(giving rise to the k4 term) and nearest neighbor in-
teractions (giving rise to the k2 term). Within replica
type approximations, such kernels that have a finite k
minimum (i.e., ones with c1 > 0) may lead to extensive
configurational entropy that might enable extremely slow
dynamics.[42, 74]
The simple key idea regarding “spatial chaos” is as fol-

lows. It is well known that nonlinear dynamical systems
may have solutions that exhibit chaos. This has been
extensively applied in the time domain yet, formally, the
differential equations governing the system may deter-
mine not how the system evolves as a function of the time
t but rather how fields change as a spatial coordinate (x)
[replacing the time (t)]. Under such a simple swap of
t ↔ x, we may observe spatial chaos as a function of the
spatial coordinate x. In general, of course, more than one
coordinate may be involved. The resultant spatial con-
figurations may naturally correspond to amorphous sys-
tems and realize models of structural glasses. A related
correspondence in disordered systems has been found in

random Potts systems wherein spin glass transitions co-
incide with transitions from regular to chaotic phases in
derived dynamical analogs.[75]
In the translationally invariant systems that form the

focus of our study, an effective free energy of the form

F [s] =
1

2

∫

ddk

(2π)d
(v(~k) + µ)|s(~k)|2 +

u

4

∫

ddx(S2(~x)− 1)2 (55)

is generally associated with single component (n = 1)
systems of the form of Eqs. ( 4). In Eq. (55), µ rep-
resents the deviation from the transition temperature in
Ginzburg-Landau theories (or equivalently related to Eq.
(45)).
Euler-Lagrange equations for the spins S(~x) are ob-

tained by extremizing the free energy of Eq. (55). These
equations are, generally, nonlinear differential equations
(as discussed in Appendix B). As is well appreci-
ated, however, nonlinear dynamical systems may exhibit
chaotic behavior. In general, a dynamical system may, in
the long time limit, either veer towards a fixed point, a
limit cycle, or exhibit chaotic behavior. We should there-
fore expect to see such behavior in the spatial variables in
systems which are governed by Euler-Lagrange equations
with forms similar to nonlinear dynamical systems. Upon
formally replacing the temporal coordinate by a spatial
coordinate, chaotic dynamics in the temporal regime map
onto to a spatial amorphous (glassy) structure.
In Fig. 8(a), we illustrate the spatial amorphous glass-

like chaotic behavior that a one-dimensional rendition of
the system of Eq. (54) exhibits. In Figs. 8(b)–8(g), we
provide plots of the spatial derivatives of different order
vs each other (and S(x) itself).
Another example comes from the spatial analog of dy-

namical systems with nonlinear “jerks”. It is well known
that systems with nonlinear “jerks” often give rise to
chaos[76] “Jerk” here refers to the time derivative of a
force, or, something which results in a change in the
acceleration of a body. Translating this idea from the
temporal regime to the spatial regime, one can expect to
obtain a aperiodic/glassy structure in a system for which
the Euler Lagrange equation, Eq. (B1) may seem simple.
For example, if we have the following, Euler Lagrange
equation for a particular one-dimensional system,

S′′′(x) = J(S(x), S′(x), S′′(x)), (56)

with a non-linear function J(S(x), S′(x), S′′(x)) then the
system may have aperiodic structure. An example is de-
picted in Fig. (9).
We now discuss O(n) systems and illustrate the exis-

tence of periodic solutions (and absence of chaos) in a
broad class of systems.
The Euler-Lagrange equations for the system in Eq.

(55) [written longhand in Eqs. (B1, B7)] become linear
in case of “hard” spins, i.e., when the O(n) condition is
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FIG. 8: Glassiness in system with v(~k) as in Eq. (54) with
c1 = 5, c2 = 4 and u = 1 and µ = 1 in Eq. (55).

strictly enforced, i.e., u → ∞. In this limit, all configu-
rations in the system can be described by a finite set of
modulation wave-vectors (as was the case for the ground
states in Sec. VA).

There are several ways to discern this result. First,
it may be simply argued that since the Euler-Lagrange
equations represent a finite set of coupled linear ordinary
differential equations, chaotic solutions are not present.
The configurations, therefore must be characterized by a
finite number of modulation wave-vectors.

A second approach is more quantitative. The idea used
here is the same as the one used in Ref. [49]. An identical
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FIG. 9: Example of aperiodic structure inspired by system
with nonlinear jerks. Here J(S(x), S′(x), S′′(x)) = −2S′(x)+
(|S(x)|−1) and initial conditions are S(0) = −1, S′(0) = −1,
S′′(0) = 1 (chosen from Ref. [76]).

construct can be applied to illustrate that spiral/poly-
spiral states are the only possible states that satisfy the
Euler-Lagrange equation if n > 1. With v being a func-
tional of the lattice Laplacian of Eq. (7), the lattice ren-
dition of the Euler-Lagrange equations in Fourier space
reads

D(∆~k)s(
~k) = 0. (57)

In what follows we consider what transpires when the
Euler-Lagrange equations have real wave-vectors K =
{~qm}vas solutions.

D(∆~k)s(
~k)
∣

∣

∣

~k=~qm
= 0. (58)

To obtain a bound on the number of wave-vectors that
can be used to describe a general configuration satisfying
the Euler-Lagrange equations, we consider general situa-

tions wherein (i) 2(~qm±~qm′) 6= ~krec for any ~qm, ~qm′ ∈ K,

where ~krec represents a reciprocal lattice vector; and, (ii)
~qm ± ~qm′ 6= ~qp ± ~qp′ for any ~qm, ~qm′ , ~qp, ~qp′ ∈ K. Let a
particular state be described as

~S0(~x) =
∑

m

~ame−i~qm·~x, (59)

where the vectors ~am have n components for O(n) sys-
tems. As the states must have real components, the
above equation must take the form,

~S0(~x) =

Nq
∑

m=1

(

~ame−i~qm·~x + ~a∗mei~qm·~x) . (60)
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In the above, ~a∗m denotes the vector whose components
are complex conjugate those of the vector ~am. In Eq.
(60), we do not count terms involving the wave-vectors
~qm and −~qm separately as such terms has been explicitly
written in the sum.
We next define the complex vectors {~Um} and {~Vm}

as

~Um = ~ame−i~qm·~x,

~Vm = ~amei~qm·~x. (61)

The O(n) normalization condition can then be expressed
as,

∑

m

|~Um|2 = n,

∑

m

|~Vm|2 = n,

∑

~qm−~qm′= ~A

(

~U∗
m · ~Um′ + ~V ∗

m′ · ~Vm

)

+

∑

~qm+~qm′= ~A

(

~U∗
m · ~Vm′ + ~U∗

m′ · ~Vm

)

= 0. (62)

Solutions to Eq. (62) are spanned by the set of mutu-

ally orthonormal basis vectors {~Um} ∪ {~Vm}. As these
2Nq basis vectors are described by n-components each,
it follows that

Nq ≤ n/2. (63)

Therefore, such states satisfying the Euler-Lagrange
equations for an O(n ≥ 2) system can at most be charac-
terized by n/2 pairs of wave-vectors. These states can be
described by Nq spirals (or “poly-spirals”) each of which
is described in a different orthogonal plane.
A few remarks are in order.

• When u in Eq. (55) is finite, i.e., in the soft spin
regime, poly-spiral solutions could be present even
though aperiodic solutions are also allowed.

• Continuum limit: In the hard-spin limit, i.e., u →
∞ in Eq. (55), if the Fourier space Euler-Lagrange
equation is satisfied by non-zero real wave-vectors,
we have poly-spiral solutions as in the lattice case.
When u is finite, aperiodic solutions may also be
present.

• If the Fourier space Euler-Lagrange equation does
not have any real wave-vector solution, poly-spiral
states are not observed.

In nonlinear dynamical systems, chaos is often ob-
served via intermittent phases. As a tuning parameter
λ is varied, the system enters a phase in which it jumps
between periodic and aperiodic phases until the length
of the aperiodic phase diverges. This divergence is char-
acterized by an exponent ν = 1/2 similar to ours.[77]

X. CONCLUSIONS

Most of the work concerning properties of the correla-
tion functions in diverse arenas, has to date focused on
the correlation lengths and their behavior. In this work,
we examined the oscillatory character of the correlation
functions when they appear.
We furthermore discussed when viable non-oscillatory

spatially chaotic patterns may (or may not appear); in
these, neither uniform nor oscillatory behavior is found.
Our results are universal and may have many realiza-
tions. Below, we provide a brief synopsis of our central
results.

1. We have shown the existence of a universal modu-
lation length exponent νL = 1/2 [Eq. (17)]. Here
the scaling could be as a function of some gen-
eral parameter λ such as temperature. This is ob-
served in systems with analytic crossovers includ-
ing the commensurate-incommensurate crossover
in the ANNNI model.

2. In certain situations the above exponent could take
other rational values [Eq. 15].

3. This result also applies to situations where a cor-
relation length may lock in to a constant value as
the parameter λ is varied across a threshold value
[as in Eq. (24)].

4. We extended our result to include situations in
which the crossover might take place at a branch
point. In this case irrational exponents could also
be present. In Eqs. (37, 38), we provide univer-
sal scaling relations for correlation and modulation
lengths.

5. We illustrate that discontinuous jumps in the mod-
ulation/correlation lengths mandate a thermody-
namic phase transition.

6. We showed that in translationally invariant systems
(with rotational and/or reflection symmetry), the
total number of correlation and modulation lengths
is generally conserved as the general parameter λ
is varied.

7. Our results apply to both length scales as well as
time scales. We further introduce the notion of a
Josephson time scale.

8. We comment on the presence of aperiodic modu-
lations/amorphous states in systems governed by
nonlinear Euler-Lagrange equations. We illustrate
that in a broad class of multi-component systems
chaotic phases do not arise. Spiral/poly-spiral so-
lutions appear instead.

9. Our results have numerous applications. We dis-
cussed several non-trivial consequences for classi-
cal system in the text. For completeness, in Ap-
pendix A, we discuss, rather simple applications
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of our results to non-interacting Fermi systems.
We mention situations in which the Fermi surface
changes topology, situations with divergent effec-
tive masses and the metal-insulator transition. We
further discuss applications to many other systems
including Dirac systems and topological insulators.
Aside from uniform and regular modulated peri-
odic states of various strongly correlated electronic
systems,[2–10] there are numerous suggestions and
indications of glassy (and spatially non-uniform or
chaotic) behavior that naturally lead to high en-
tropy in these systems, e.g., see, e.g., Refs. [74, 78–
81]. When spatial modulations are present in the
ground states of rotationally invariant (and other)
systems, they may lead to “holographic”-like en-
tropy (as in large n renditions), [42]. In future
work, we will elaborate on non-trivial consequences
of our results for interacting Fermi systems.

Our general analysis regarding the expansion of the in-
verse correlator G−1 as a function of k about points k∗
and the myriad conclusions that we draw from it (includ-
ing exponents) may, in some cases, be viewed as a formal
analog of Ginzburg-Landau method of expanding an ef-
fective free energy F in an order parameter field φ (i.e.,
δk ↔ φ and G−1 ↔ F).

Finally, we make a brief parenthetic remark concern-
ing the “fractal dimension” in glasses and other systems.
The notion of fractal dimensionality was recently applied
in Ref. [82] based on a comparison between the atomic
volume and the reciprocal of the dominant peak KR in
the structure factor in metallic glasses. Specifically, the

volume V ∼ K
−Df

R with Df being the fractal dimension.
This definition is very intuitive and such a relation be-
tween volume and structure factor peaks is to be expected
for a system of dimension Df if all natural scales in the
parameter expand or contract with temperature (or other
parameters) in unison. However, as we elaborated on at
length, aside from global changes in the lattice constant,
KR can change non-trivially with temperature and other
paramters in some regular lattice and other systems. For-
mally, this may give rise to an effective non-trivial fractal
dimension in various systems.
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Appendix A: Fermi systems

In this appendix, we discuss several examples of non-
interacting fermionic systems where we observe a corre-
lation or modulation length exponent. We will, in what
follows, ignore spin degrees of freedom which lead to sim-
ple degeneracy factors for the systems that we analyze.
In non-interacting Fermi systems, the mode occupancies
are given by the Fermi function. That is,

〈n(~k)〉 = 〈c†(~k)c(~k)〉 = 1

eβ(ǫ(~k)−µ) + 1
, (A1)

where c(~k) and c†(~k) are the annihilation and creation

operators at momentum ~k and β = 1/(kBT ) with T the
temperature. The correlation function associated with
the amplitude for hopping from the origin to lattice site
~x is given by

G(~x) = 〈C†(0)C(~x)〉 =
∑

~k

〈n(~k)〉e−i~k·~x. (A2)

Thus far, in most explicit examples that we considered
we discussed scaling with respect to a crossover temper-
ature. In what follows, we will, on several occasions,
further consider the scaling of correlation and modula-
tion lengths with the chemical potential µ. We will use
the letter υ to represent exponents corresponding to scal-
ing with respect to µ and continue to use ν to represent
scaling with respect to the temperature T .
The existence of modulated electronic phases is well

known.[2–13, 22, 23, 83, 84] In particular, the Fermi
wave-vector dominated response of diverse modulated
systems as evident in Lindhard functions, particular
features of charge and spin density waves dominated
by Fermi surface considerations in quasi- one dimen-
sional and other systems have long been discussed
and have numerous experimental realizations in diverse
compounds.[83, 84] The exponents that we derived in this
work appear for all electronic and other systems in which
a crossover occurs in the form of the modulations seen in
charge, spin, or other degrees of freedom. Our derived
results concerning scaling apply to general interacting
systems. To highlight essential physics as it pertains to
the change of modulations in systems of practical impor-
tance, we briefly review and further discuss free electron
systems.

1. Zero temperature length scales – Scaling as a
function of the chemical potential µ

We first consider a non-interacting fermionic system

with a dispersion ǫ(~k). At zero temperature, the number

of particles occupying the Fourier mode ~k is given by

〈n(~k)〉 =
{

1 for ǫ(~k) < µ

0 for ǫ(~k) > µ.
(A3)
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FIG. 10: Transition from a metal to a band insulator. This
figure is for illustration only.

All correlation functions as all other zero temperature
thermodynamic properties, are determined by the Fermi
surface geometry. We now consider the correlation func-
tion of Eq. (A2). This correlation function will generally
exhibit both correlation and modulation lengths. To ob-
tain the modulation lengths along a chosen direction (the
direction of the displacement ~x), a ray along that direc-
tion may be drawn. The intercept of this ray with the
Fermi surface provides the pertinent modulation wave-
vectors. As we vary µ we alter the density, ρ via

ρ = gs

∫

ǫ(~k)<µ

ddk

(2π)d
, (A4)

gs being the spin degeneracy (gs = 2 for non-interacting
spin-half particles such as electrons). As the Fermi sur-

face topology is varied, the following effects may be ob-
served.

1. If two branches of the Fermi surface touch each
other at µ = µ0 and are disjoint for all other
values of µ, then a smooth crossover will appear
from one set of modulation lengths to another with
|LD−LD0| ∝ |µ−µ0| on both sides of the crossover.
This crossover will be associated with an exponent
υL = 1 characterizing the scaling of the modulation
lengths with deviations in the chemical potential.
An example where a crossover of this kind is real-
ized is the ǫg = 0 case of the schematic shown in
Fig. 10 in which the crossover occurs at µ = µ0.
Other examples of this occur at half filling of the
square lattice tight binding model and at three-
quarters filling of the triangular lattice tight bind-
ing model. These will be discussed later.

2. If on the other hand, one branch of the Fermi sur-
face vanishes as we go past µ = µ0, the crossover

is not so smooth and we get some rational frac-
tion υL (usually υL = 1/2) as the crossover expo-
nent: |LD − LD0| ∝ |µ − µ0|υL , on one side of the
crossover. An example of this is shown in Fig. 11.
Here,

|LD − LD0| =
L2
D0

2π

√

2|µ− µ0|
|ǫ′′(2π/LD0)|

, (A5)

where LD0 is the modulation length at the point
where the µ = µ0 line touches the ǫ(k) curve, such
that ǫ′(2π/LD0) = 0 The hopping correlation func-
tion takes the form,

G(x) =
(ax)d/2Jd/2(ax)

(2π)d/2xd
− (bx)d/2Jd/2(bx)

(2π)d/2xd

+
(cx)d/2Jd/2(cx)

(2π)d/2xd
, (A6)

where µ′
0 < µ < µ0 and a, b and c in Eq. (A6)

(corresponding to modulation lengths of 2π/a, 2π/b
and 2π/c) are the values of k for which ǫ(k) = µ
(as shown in Fig. 11).

At arbitrarily small but finite temperatures, the corre-
lation function exhibits modulations of all possible wave-
lengths. The prefactor multiplying a term with spa-

tial modulations at wave-vector ~k is the exponential of

(−|ǫ(~k) − µ|). An illustrative example is provided in
Fig. 12. Apart from the dominant zero temperature
modulations, associated with the wave-vector k2 in Fig.
12, at finite temperature, there are additional contribu-
tions from wave-vectors for which |ǫ(k)− µ| is small rel-
ative to kBT . Near k2, we can assume ǫ(k) is linear
such that ǫ(k) ≈ µ + (k − k2)ǫ

′(k2). Similarly, near k1,
ǫ(k)−µ ≈ −∆−(k−k1)

2ǫ′′(k1)/2, where ∆ = µ−µ0 (see
Fig. 12). For large β, both these contributions are highly
localized around k2 and k1 respectively making the above
approximations very good and the Fourier transforming

integrals easy to evaluate (〈n(~k)〉 taking exponential and
Gaussian forms). We have,

G(x) =
(k2x)

d/2Jd/2(k2x)

(2π)d/2xd
− 2(k2x)

d/2Jd/2−1(k2x)

(2π)d/2βǫ′(k2)xd−1

+
e−β∆(k1x)

d/2Jd/2−1(k1x)

(2π)
d−1

2

√

βǫ′′(k1)xd−1
, (A7)

where β → ∞ and ∆ → 0, such that β∆ → ∞.
Next, we will discuss scaling of the modulation length

in with the chemical potential, µ in the familiar tight
binding models on the square and triangular lattices at
zero temperature.

a. Tight binding model on the square lattice

We consider a two-dimensional tight binding model of
the square lattice. The dispersion in this model is given
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FIG. 11: Example of a Fermi system where the modulation length exponent is 1/2. The gray region shows the filled states.
When µ > µ0, modulations corresponding to wave-vectors k = a and k = b cease to exist and we get an exponent of 1/2 at
this crossover. Similarly, when µ < µ′

0, modulations corresponding to wave-vectors k = b and k = c die down.

FIG. 12: The same Fermi system as in Fig. 11, but now with
a chemical potential µ = µ0+∆, slightly higher than µ0. The
temperature is small but finite.

by

ǫ(~k) = −2t (cos kx + cos ky) . (A8)

The constant energy contours corresponding to Eq. (A8)
are drawn in Fig. 13. As is clear from Fig. 13, there are
certain directions (e.g., along the X-axis) along which

there is no ~k for ǫ(~k) > 0. If we consider the same system
at zero temperature, the following three crossovers are
observed.
(i) Half filling: The chemical potential µ is zero at the
half filling state. The Fermi surface is given by±kx±ky =
π. For small µ, we have,

±kx ± ky = π +
µ

2t sinkx
, (A9)

thus giving us an uninteresting modulation exponent,
υL = 1.
(ii) Empty band: When µ = −4t, none of the states
are occupied. As we increase µ by a tiny amount δµ
above this value, we observe a non-zero modulation wave-
vector, k =

√

δµ/t, thus showing a modulation exponent
υL = 1/2.
(iii) Full inert bands: When µ = +4t, all the states are
occupied. As we lower µ by a tiny amount δµ below this

-3 -2 -1 0 1 2 3
k

x

-3

-2

-1

0

1

2

3

k y

FIG. 13: (Color online) Constant energy contours for two-
dimensional tight binding model on the square lattice in Eq.
(A8). The red dashed square corresponds to the particle hole

symmetric contour where ǫ(~k) = 0. The contours inside it are

for negative ǫ(~k) and those outside are for positive ǫ(~k).
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value, we observe a difference δk of the modulation vector
from ±êxπ ± êyπ. We have, δk =

√

δµ/t, thus showing
a modulation exponent υL = 1/2 again.

b. Tight binding model on the triangular lattice

The analysis of the triangular lattice within the tight
binding approximation, is very similar to the square lat-

tice discussed above. The dispersion ǫ(~k) is given by

ǫ(k) = −2t coskx − 4t cos
kx
2

cos
ky
√
3

2
. (A10)

We have exponents similar to the square lattice.
(i) Three-quarters filling: The chemical potential µ =
2t corresponds to the three-quarters filling state. If we
concentrate on the {kx = π, ky : −π/

√
3 → π/

√
3}

segment (same phenomenon is present at all the other
segments of the quarter filling Fermi surface), we get,

δkx ∼ δµ

2 cos
(

ky

√
3

2

) , (A11)

where kx = π + δkx is obtained when µ = 2t+ δµ. This
leads to a modulation exponent of υL = 1. The Fermi
surfaces for chemical potentials µ close to three-quarters
filling are schematically shown in Fig. 14.
(ii) Empty band: When µ = −6t, none of the states
is occupied. As we increase µ by a tiny amount δµ
above this value, we observe a non-zero modulation wave-
vector, k =

√

2δµ/3, thus showing a modulation expo-
nent υL = 1/2.
(iii) Full inert bands: When µ = 3t, all of the states
are occupied and close to this value the Fermi surface is

composed of six small circles around ~k = x̂ cos(nπ/3) +
ŷ sin(nπ/3), n = {0, 1, 2, 3, 4, 5}. If µ = 3t− δµ, we get,

| ~δk| = 2
√

δµ/3, again giving us a modulation length ex-
ponent, υL = 1/2.

c. Metal-Insulator transition

We discuss here the metal to band insulator transition
at zero temperature. In a non-interacting system, this
occurs when the Fermi energy is changed such that all
occupied bands become completely full, as shown in Fig.
10. In the insulator, the Fermi energy lies in between
two bands and thus the filled states are separated from
the empty states by a finite energy gap. As the Fermi
energy is tuned, the Fermi energy might touch one of the
bands thereby rendering the system metallic. Close to
this transition, the energy is quadratic in the momentum
k, i.e., |k| ∝ |δµ|1/2. This implies that,

|δk| ∝ |δµ|1/2. (A12)

Following the scaling convention in Eq. (17), we adduce
a similar exponent

υL = 1/2 (A13)

that governs the scaling of the modulation lengths with
the shift δµ of the chemical potential (instead of temper-
ature variations).

d. Dirac systems

The low energy physics of graphene and Dirac systems
is characterized by the existence of Dirac points in mo-
mentum space where the density of states vanishes and
the energy, ǫ(k) is proportional to the momentum k for
small k. When we invoke and repeat our earlier analysis
to these systems, we discern a trivial exponent

|δk| ∝ |δµ|
=⇒ υDirac = 1. (A14)

This exponent may be contrasted with that derived from
Eq. (A13).

e. Topological Insulators – Multiple length scale exponents

as a function of the chemical potential µ

The quintessential low energy physics of three-
dimensional topological insulators can be gleaned from
the following effective Hamiltonian[85] in momentum
space,

H(~k) = ǫ0(~k)I4×4 +








M(~k) A1kz 0 A2k−
A1kz −M(~k) A2k− 0

0 A2k+ M(~k) −A1kz
A2k+ 0 −A1kz −M(~k)









(A15)

where ǫ0(~k) = C +D1k
2
z +D2k

2
⊥, M(~k) = M − B1k

2
z −

B2k
2
⊥ , with k± = kx + iky, k⊥ =

√

k2x + k2y and A1, A2,

B1, B2, C, D1 and D2 constants for a given system. The
energy bands are given by

ǫ(~k) = ǫ0(~k)±
√

M(~k)2 +A1k2z +A2k2⊥. (A16)

These bands are plotted in Figs. 15(a) and 15(b). The
finite gap between the two bands leads to an exponen-
tially damped hopping amplitude, characterized by a fi-
nite correlation length when the Fermi energy lies within
this gap. These energy bands disperse quadratically for
small k thus yielding

|δk| ∝
√

|δµ|
=⇒ υbulk = 1/2 (A17)

whenever the correlation length diverges and a insulator
to metal transition takes place in the bulk, thus allowing
long range hopping. The same exponent is also expected
whenever the modulation length becomes constant as µ
crosses some threshold value.
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FIG. 14: Fermi surface for a triangular lattice with tight binding. The dashed lines are the Brillouin zone boundaries. This
demonstrates a smooth crossover from one set of Fermi surface branches to another as µ is changed across µ = 2. The points
where the crossovers take place are (0,±2π/

√
3), (±π,±π/

√
3). The modulation length exponent for this crossover is υL = 1.

0 0.02 0.04 0.06 0.08 0.1
k⊥  (in 1/Å)

-0.4

-0.2

0

0.2

0.4

0.6

ε 
(in

 e
V

)

(a)

0 0.02 0.04 0.06 0.08 0.1
k

z
 (in 1/Å)

-0.4

-0.2

0

0.2

0.4

ε 
(in

 e
V

)

(b)

k
y

k
x

ε
surf

(k
x
,k

y
)

(c)

FIG. 15: Energy levels of Bi2Se3 topological insulator.

15(a): ǫ(~k) versus k⊥ at kz = 0; 15(b): ǫ(~k) versus kz at k⊥ = 0; 15(c): ǫsurf (kx, ky) versus ~k⊥ ≡ (kx, ky).

The effective Hamiltonian for the surface states is given
by

Hsurf =

(

0 A2k−
A2k+ 0

)

, (A18)

leading trivially to surface energies

ǫsurf (kx, ky) = ±A2k⊥. (A19)

Similar to the Dirac points in graphene (see Fig. 15(c)),
we trivially find an exponent of

υsurf = 1. (A20)

f. An example of a zero temperature Fermi system in which

υL is not half or one

Very large (or divergent) effective electronic masses
meff can be found in heavy fermion systems (and at pu-
tative quantum critical points).[86, 87] If the electronic

dispersion ǫ(~k) has a minimum at ~k0 then a Taylor ex-
pansion about that minimum trivially reads

ǫ(~k) = ǫ(~k0) +
~
2

2

∑

ij

(

m−1
eff

)

ij
(ki − k0i)(kj − k0j) +

∑

ijl

Aijl(ki − k0i)(kj − k0j)(kl − k0l) + . . . .(A21)

When present, parity relative to ~k0 or other considera-
tions may limit this expansion to contain only even terms.
As an example, we consider the dispersion

ǫ(k) = c1 − c2(k
2 − k20)

4, (A22)

where c2 > 0. The hopping correlation function of such a
system has a term which exhibits modulations at wave-
vector k = k0 at µ = µ∗ = c1. At higher values of the
chemical potential, such a term ceases to exist. At lower
values (µ = µ∗ − δµ), this term breaks up into two terms
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whose modulation wave-vectors are different from k0 by,

k − k0 ∼ ± δµ1/4

2k0c
1/4
2

,

=⇒ υL = 1/4. (A23)

g. Other systems

Numerous realizations in other systems. Similar
quadratic, Dirac type (linear), or other dispersions were,
e.g., found in Hubbard chains.[88] If, in the vicinity of its
extrema at k = q, the dispersion is generally of the form

|ǫ(k)− ǫ(q)| ∼ |k − q|z. (A24)

then the analysis that we invoked above may be repli-
cated anew. In the general case, we will trivially obtain
that

υL = 1/z. (A25)

Equations (A13,A14) are particular realizations of this
general relation.

2. Finite temperature length scales – Scaling as a
function of temperature

At finite temperatures, apart from the modulation
lengths, there generally is a set of characteristic correla-
tion lengths. From Eq. (A2), these are obtained by find-
ing the poles (or other singularities) of the Fermi func-

tion. Along some direction ê0, the wave-vector ~k0 = ê0k0
is associated with a pole k0 = ±2π/L0 ± i/ξ0. At this
wave-vector,

ǫ( ~k0) = µ+
2n+ 1

β
i, (A26)

where n is an integer. For a given µ, let us suppose that as
we change the temperature, at T = T0, we reach a saddle

point of ǫ(~k) in the complex plane of one of the Carte-

sian components of ~k. Then, near this saddle point, the
corresponding correlation and modulation lengths scale
as,

|LD − LD0| ∝ |T − T0|νL ,
|ξ − ξ0| ∝ |T − T0|νc , (A27)

where νL = νc = 1/2 in most cases (when the second
derivative is not zero).

Appendix B: Euler-Lagrange equations for scalar
spin systems

We elaborate on the Euler-Lagrange equations associ-
ated with the free energy of Eq. (55) in Sec. IX. These
assume the form,

∫

ddyṼ (~x− ~y)S(~y) + µS(~x)

+u(S2(~x)− 1)S(~x) = 0, (B1)

where Ṽ (~x) = [V (~x) + V (−~x)]/2. For example, if we
consider the finite ranged system for which,

∫

ddyṼ (~x− ~y)S(~y) = a∇2S(~x)

+ b∇4S(~x) + . . . , (B2)

then, we have,

a∇2S(~x) + b∇4S(~x) + . . .+ µS(~x)

+ u(S2(~x)− 1)S(~x) = 0. (B3)

For lattice systems, the Euler Lagrange equation (B1)
reads

∑

~y

Ṽ (~x− ~y)S(~y) + µS(~x)

+ u(S2(~x)− 1)S(~x) = 0. (B4)

In general, it may be convenient to express the linear
terms in the above equation in terms of the lattice Lapla-
cian ∆. We write

D(∆)S(~x) ≡
∑

~y

Ṽ (~x − ~y)S(~y) + µS(~x), (B5)

D being some operator which is a function of the lattice
Laplacian ∆. The real-space lattice Laplacian ∆, given
by the Fourier transform of Eq. (7), acts on a general
field f as

∆f(~x) ≡ −
d
∑

i=1

[f(~x+ êi) + f(~x− êi)− 2f(~x)]. (B6)

Here, {êi} denote unit vectors along the Cartesian di-
rections. (In the continuum limit, ∆ can be replaced
by −∇2.) The Euler-Lagrange equation then, takes the
form,

D(∆)S(~x) + u(S2(~x)− 1)S(~x) = 0. (B7)

Equation B2 corresponds, on the lattice, to

∑

~y

Ṽ (~x− ~y)S(~y) =

−a∆S(~x) + b∆2S(~x) + . . . .(B8)

The Euler Lagrange equation for this finite ranged system
reads

−a∆S(~x) + b∆2S(~x) + . . .+ µS(~x)

+ u(S2(~x)− 1)S(~x) = 0. (B9)
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