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Evaporation in a three-dimensional (3D) porous medium, a sand column saturated by water,

was studied using synchrotron x-ray tomography. Three-dimensional images of the medium with

a resolution of 7 µm were obtained during the evaporation. The entire column was scanned

seven times, resulting in nearly 104 2D cross sections and illustrating the spatial distribution

of air, liquid and solid phases at the pore scale. The results were analyzed in order to gain new

insights and better understanding of the characteristics of the drying front that was formed

when the liquid-filled pores were invaded by air, as well as the structure of the liquid phase as

it was dried. The analysis indicates that the liquid phase has a self-similar fractal structure,

with its fractal dimension Df in all the cross sections being a function of the water content

or saturation. In addition, Df for the 3D liquid structure, as well as its density correlation

function, were computed using the 3D images. A crossover length scale ξ was identified that

separates the fractal regime from the compact geometry. For length scales r > ξ, the density

correlation function approaches asymptotically the water content of the porous medium. The

drying front is shown to be rough and multi-affine, rather than self-affine. Its properties were

also computed using the 3D images. The rougness characteristics agree with those for imbibition

in porous media, but not with those of fracture surfaces and crack lines.
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I. INTRODUCTION

Understanding the dynamics of drying of porous media, and in particular the structure of

the drying front in their pore space, is important to many environmental and engineering phe-

nomena and processes, such as drying of food, wood, paints, biomaterials, building materials,

and land-atmosphere interaction that is important to plant growth and microbial activities.

The drying process involves invading the pores by air, and replacing the evaporating liquid

(e.g. water) by air, which forms the drying front. A large body of literature exists that has

focused on various aspects of drying of porous media (see, for example, Refs. [1-12]). The

majority of such studies provided evidence that the early stages of evaporation from porous

media include a relatively high evaporation rate that is limited by the atmospheric conditions -

the so-called stage-1 evaporation - which is supplied by the capillarity-induced liquid flow that

hydraulically connects the wet region to the evaporating surface. At a certain characteristic

length, which may be estimated by considering the interactions among gravity and the viscous

and capillary forces [13], the continuous connection of the liquid phase with the surface breaks,

marking the end of stage-1 evaporation. This, in turn, results in lower evaporation fluxes and

the onset of stage-2 evaporation, which is dominated by vapor diffusion [14].

Several insightful experiments in two-dimensional (2D) porous media were conducted in

the past to advance the fundamental understanding of the mechanisms that govern drying of

porous media [2,15-17]. Shaw [15] was among the first who illustrated that a modified form of

invasion percolation (IP) [18] with air invading the pores with the weakest capillary forces may

be used to describe the drying of a porous medium, and found that the drying front is stable

and, locally, has a structure characteristic of the IP. In contrast with the 2D experiments, direct

studies of the liquid and air phase distributions in three-dimensional (3D) porous media during

evaporation have been very rare, largely due to the difficulties in the visualization. Thus, 3D

description of drying of porous media has been limited mainly to numerical simulations. Several

groups have developed various pore network models of drying that employ percolation concepts

[19,20] to address various aspects of evaporation from 3D porous media at the pore scale [4,21].

Recent advances in imaging techniques have made it possible to take some steps toward

direct 3D visualization of drying porous media [6,22,23], illustrating the general pore-scale

dynamics of the process. Shokri et al. [6], for example, used synchrotron x-ray tomography to
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illustrate the key role of the capillarity-induced liquid flow from large pores to the small ones

on supplying the liquid to be evaporated. Xu et al. [23] used confocal microscopy to study

drying dynamics in a 3D granular porous medium, and reported a strong flow from the menisci

in the large pores to those in the smaller ones, resulting in abrupt air invasion in parts of the

porous medium ranging in size from a single particle to hundreds of particles.

The present paper aims at an improved understanding of drying of porous media by re-

porting the results of extensive experiments and their analysis. Notwithstanding the progress

in describing the evaporation process in 3D porous media, to our knowledge there has been

no experimental work that attempted to deduce directly the structure of 3D drying fronts in

porous media and the scaling characteristics of the liquid- and air-phase distributions during

the process. For example, the fractal dimension Df of 3D fronts has been typically estimated

by the box-counting method applied to 2D images [24,25], and using the relation between Df

for 2D cuts from 3D systems. Reporting new results on these aspects is one main objective of

this paper.

Thus, in the present paper we present and interpret new experimental data, obtained by

direct visualization of water evaporation from a 3D porous medium, using synchrotron x-

ray tomography technique. We quantify the structure of the drying front and the scaling

characteristics of the liquid structure formed during the drying. We also compare our results

with the literature data on imbibition and drainage processes that may be relevant to the drying

process. The dynamics of evaporation in porous media similar to what we utilize in the present

paper was recently studied by us, with the results reported elsewhere [12].

The rest of this paper is organized as follows. The experimental procedure is described in

the next section. The data are then presented in Sec. III, and then analyzed in order to deduce

the structure of the water clusters formed during drying. Section IV studies the structure of

the drying front, and investigates the possibility that it is rough, with its width having scaling

properties. The paper is summarized in the last section.

II. EXPERIMENTAL PROCEDURE

A cylindrical column, 5 mm in diameter and 12 mm in height, was packed with coarse sand

with particle sizes that varied from 0.3 - 0.9 mm. The particle size distribution, determined by

a laser diffraction particle-size analyzer, was already given in Ref. [6] and, therefore, will not be

3



given here. The porous medium’s porosity φ was 0.38. The column was closed, except at the

top where it was exposed to air and evaporation. It was initially saturated by calcium iodide

solution (4% mass fraction) to enhance the contrast between air, water and sand. To visualize

and study the structural characteristics of the liquid-phase distribution during evaporation, we

used synchrotron x-ray tomography. The main advantages of the technique are that, (i) the

pore-scale processes can be visualized accurately; (ii) it is a nondestructive method, and (iii)

the air invasion patterns can be studied while the liquid flow is in progress, hence enabling us

to study the dynamics of the process [12]. The experiments were carried out at the TOMCAT

beamline of the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.

The column was scanned with x-rays supplied by the synchrotrons at seven different times

after the onset of evaporation. The scanning of the entire column took about 30 min, and

yielded 1380 2D gray-scale cross sections of the porous medium. The resolution of the recorded

images was 7 µm. The gray-scale images were then segmented in order to delineate the air,

water and solid phases. More details about the experiment, synchrotron x-ray measurement,

and the segmentation procedure are given by Shokri et al. [6,12] and, thus, are not repeated

here.

Figure 1 presents typical segmented images that illustrate the air, water and solid phase

distributions at a cross section that was 6 mm below the sand surface, at three different times

from the beginning of the experiment. We should point out that the wettability of the porous

medium and its interaction with fluid content are also important, and affect the evaporation

process. They were recently studied in a separate paper [12]. Hence, in this paper we study

drying in porous media that are strictly water-wet.

III. THE STRUCTURE OF THE LIQUID PHASE

As the drying process has some similarities with the IP processes in porous media, the

experimental data were analyzed in order to deduce the structural and scaling characteristics

of the front and those of the liquid phase as it underwent evaporation.

A. Fractal dimension of the liquid phase in two-dimensional cuts

The high-resolution images obtained by synchrotron x-ray tomography indicated that the

liquid phase may have a fractal structure as it underwent evaporation. Thus, the images were
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utilized for estimating the fractal dimension Df of the liquid phase. We first applied the box-

counting method [26] to the segmented images of the cross sections in order to calculate the

fractal dimension of the liquid phase. As is well-known, in the box-counting method the fractal

set is covered by boxes of side length r. The number N of such boxes required to cover the

pixels occupied with water is then counted and plotted versus r on a logarithmic scale. If

the plot is linear, then Df is estimated from the slope of the line, as one has the power law,

N(r) ∝ r−Df .

Examples, taken at two depths below the sand surface, are illustrated in Fig. 2. The box

sizes varied from one pixel to the image size. Figure 2 indicates that the fractal dimension of

the liquid phase on each 2D cut is related to the position of the cross section or, equivalently,

to the water content (saturation × porosity), and that Df increases as the image plane moves

through the bottom of the column where the water content is higher. The same procedure was

used to calculate Df on all images of the 2D cross sections, measured during each scan of the

column.

Variations of the fractal dimension and the water content as a function of depth below the

surface are shown in Fig. 3 for seven scans. The fluctuations of the water content profiles in

Fig. 3(b) are indicative of the irregular invasion of water-filled pores by air, which includes

pinning-depinning of the air-water interface induced by the pore size distribution. Figure 3

shows qualitatively the strong dependence of Df on the water content of each 2D cross section,

such that higher water contents correspond to larger fractal dimensions, as the liquid phase is

more compact at higher water saturations or content.

The computed fractal dimensions of the liquid phase in all the 2D cross sections and their

dependence on the water content are shown in Fig. 4. Each scan yielded 1380 cross sections

and a total of seven scans were used. Hence, the data shown in Fig. 4 represent the results

for 9960 cross sections. Remarkably, all the data are on a single curve described by a power

law that expresses the dependence of the fractal dimension Df of the liquid phase on the water

content θ,

Df ∝ θ0.12 . (1)

A power law with a small exponent is usually interpreted as being indicative of a logarithmic

dependence of Df on θ. Indeed, as we show shortly, Df does increase with the water content

or saturation logarithmically.
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At the lowest water content, where the water phase is barely connected, the fractal dimension

of the phase is close to 1.3. Since the results presented in Fig. 4 are for 2D cuts of a 3D porous

medium, one expects to have,

Df (2D cuts) = Df (d = 3)− 1 . (2)

The results that we obtained for 3D water clusters (see below) are consistent with Eq. (2), if

the estimated errors are taken into account. We shall come back to this point shortly. We note

that in their experiments in which a liquid metallic alloy (Wood’s metal) invaded a crushed

glass sample, Clément et al. [26] also reported a saturation-dependent fractal dimension, which

also had a low value of close to 1.3, when 2D cuts from the 3D porous medium were analyzed.

Figure 4 also includes the data reported by Chen et al. [27] who used magnetic resonance

imaging to study the immiscible displacements of oil and water in a porous medium. They

carried out drainage experiments - displacement of a wetting fluid by a nonwetting one - and

the inverse imbibition experiments, and measured the spatial distribution of the oil phase and

the corresponding fractal dimensions in 2D cross sections at various depths below the point

at which the the fluids were injected into a cylindrical column. They found that the fractal

dimension is not only a function of the water saturation, but also a function of the flow process

- drainage or imbibition.

As Fig. 4 indicates, the correlation that we report between the fractal dimension and water

content in the drying experiment is in good qualitative agreement with the data on the drainage

experiments reported by Chen et al. [27]. The similar trends between two seemingly unrelated

phenomenon is due to the fact that, in both processes the porous columns that contained a

wetting fluid (water) were invaded by a nonwetting fluid - oil in the experiments of Chen et al.

[27] and air in the present study. Hence, the essence of drying of a porous medium is similar

to the invasion of the same porous medium by a nonwetting fluid to displace a wetting one,

i.e. the IP process, although some differences between the two phenomena do exist such as, for

example, the way the displaced and evaporated fluids leave a porous medium.

B. Fractal dimension of the liquid phase in three dimensions

Direct experimental estimation of the fractal dimension of 3D liquid (or air) clusters in

porous media is rare. Typically, one uses Eq. (2) in order to estimate the fractal dimension
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of 3D self-similar fractal structures [24,25,28,29], relying on a series of assumptions that are

described by Mandelbrot [28]. Using images obtained by synchrotron x-ray tomography enabled

us, however, to estimate Df for the 3D water clusters, and to check Eq. (2) for an actual

process in porous media that gives rise to fractal structures. Similar to the 2D cuts, the fractal

dimension of the 3D water cluster may also be calculated by the box counting method. The

only difference with the 2D cuts is that in 3D, instead of using 2D boxes, one must use 3D

voxels of various sizes. Then, the number of voxels needed to cover the 3D liquid-phase cluster

is counted and plotted versus each voxel size.

Figure 5 presents the estimated fractal dimensions of the 3D water clusters, obtained directly

by applying the box-counting method to the clusters. The results do agree with Eq. (2), if

the estimated errors are taken into account, particularly for the drier condition at low water

contents, although the difference between the two is larger when the porous medium is close to

being completely saturated by water.

Note that, as Fig. 5 indicates, the fractal dimension of the liquid cluster in the latter scans,

when the medium is drier and the water content is low, is close to 2.5, which agrees with that

of 3D IP clusters [18,19]. However, as illustrated by Fig. 5, during the drying the structure

of the liquid phase varies with the water content and, thus, its fractal dimension cannot be

represented by a single number.

It is straightforward to show that the fractal dimension Df is related to the water saturation

S or water content θ of a porous medium by [30]

Df = d+ a ln(Sφ) = d+ a ln(θ) , (3)

where d is the Euclidean dimension of the system, φ is the porosity, and a = [ln(rmax/rmin)]
−1/2,

with rmax and rmin being, respectively, the maximum and minimum pore sizes. As Fig. 5

indicates, Eq. (3) provides excellent fit of the data. If we use Eq. (3) to fit the results for the

fractal dimensions of the water clusters in the 2D cross sections, we obtain the results shown in

Fig. 4, indicating excellent agreement with the data. As pointed out earlier, such a logarithmic

dependence of Df of the water content or saturation also explains the small exponent indicated

by Eq. (1).

C. Density correlation function of the liquid phase
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It is well known that the density correlation function C(r) is an accurate tool for char-

acterizing and studying the structure of a fractal cluster [24,26,31]. For a self-similar fractal

structure, C(r) follows a power law

C(r) ∼ rDf−d . (4)

Physically, C(r) represents the average water content at a distance r from a pore occupied by

water, according to

C(r) =

〈

1

N(r)

∑

i

noni(r)

〉

o

, (5)

where no = 1 (0) if site o is occupied (empty), ni(r) = 1 (0) if site i at a distance r is occupied

(empty), N(r) is the total number of available sites located at a distance r from an occupied

site 0, and 〈·〉 indicates an average over all the occupied origin sites 0 for which all the points

at a distance r remain within the field of view.

For each scan, C(r) was calculated for 15 equally-spaced cross sections, starting from the

surface of the sand column and down to 9.8 mm below the surface (with a spatial increment

of 0.7 mm). The calculated C(r) in each scan was averaged over all the scans. The results

are presented in Fig. 6(a), which illustrate two distinct regimes separated around a crossover

distance ξ. For length scales r < ξ, C(r) decreases monotonically and is represented by a power

law. The crossover length scale ξ marks the transition from a fractal structure to a constant

density regime in which the water cluster has a compact structure. For length scales r > ξ the

correlation function C(r) is nearly constant, hence Df = d.

When r > ξ, the density correlation functions in all the seven scans reach an asymptotic

value C∞ indicated in Fig. 6(a). A constant C(r) corresponds to a homogeneous liquid-phase

distribution and represents the water content of the system. Figure 6(b) presents the asymptotic

value C∞ of the density correlation function versus the average water content of the porous

column, measured by direct 3D visualization of the liquid phase. The results are represented

by a straight line at 45◦, indicating the equality of C∞ and the water content.

IV. ROUGHNESS OF THE DRYING FRONT

Similar to many surface and interfaces, ranging from fracture surfaces and crack lines [32,33]

to imbibition fronts in porous media [19] that have been shown to be rough and possess scaling

properties, the drying fronts in porous media also appear rough. In addition, the similarities
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between drying and immiscible displacements in porous media provide additional hints that

the drying fronts may be rough. If that is really the case, it is of interest to study its structure,

and to understand whether its roughness exponent falls in the range of the values that have

been reported for a wide variety of other rough surfaces and interfaces.

The scaling properties of a rough front is typically expressed by a power-law relation between

the widthW (L) of the rough surface and the size L of the window over whichW (L) is computed,

where the width is defined by,

W (L) = 〈
∑

j

[h(rj)− 〈h〉L]
2〉1/2 , (6)

where h(rj) is the height of the rough surface at point rj , and 〈h〉L its average in a window of

size L. For a rough self-affine surface, one must have

W (L) ∼ Lζ , (7)

with ζ being the roughness exponent. Equations (6) and (7) have been typically used in the

past to study rough surfaces and interfaces, and estimate the roughness exponent ζ.

It has, however, been suggested that a more accurate way of studying rough surfaces, as

well as gaining additional insights into their structure, is as follows. One first defines a height

difference ∆h by

∆h(L) ≡ h(rj + L)− h(rj)− 〈h(rj + L)− h(rj)〉j , (8)

for a window of size L. Then, according to Bouchbinder et al. [34] (see also Refs. [35-37])

one should study the probability density function (PDF) P (∆h) by plotting ln[P (∆h)σ] versus

∆h/σ, where σ is the standard deviation of the distribution. If a front (in 3D) or a curve (in

2D) is rough and self-affine, then the PDF will be Gaussian and, therefore, its semi-logarithmic

plot will be a parabola. If, however, the rough fronts or curves are multi-affine, then the tail

of the PDF deviates from a parabola. In that case, one constructs a structure function Sn(L),

defined by

Sn(L) ≡ 〈|h(rj + L)− h(rj)|
n〉j , (9)

which follows the scaling law,

Sn(λL) ∼ λζnSn(L) , (10)

such that 1

2
ζ2 = ζ . For a multi-affine structure, ζn 6= 1

2
nζ2, so that for each n the structure

function is characterized by a distinct exponent ζn(n).
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Using the 3D images that we obtained during the experiments, we constructed the PDF

P (∆h) for six box sizes L (shown in Fig. 7, where L is in the number of voxels), using all the

cross sections in scan 3 (71 min from the beginning of the experiment) in which a front (the

interface between the saturated and unsaturated zones) could be discerned clearly. The results

are presented in Fig. 7. The parabolas represent the fits of the data. As Fig. 7 indicates, in

all the cases the PDF deviates from a Guassian distribution (parabola in the semi-logarithmic

plot), indicating that the drying front is rough and multi-affine, rather than self-affine.

Thus, we computed the structure function Sn for 1 ≤ n ≤ 8 using the images, based on

which the exponent ζn(n) was estimated. The results, shown in Fig. 8, indicate that for each

n the structure function Sn is characterized by a distinct ζn, varying between 0.1 (for n = 8)

and 0.67 (n = 1). There is also a striking similarity between ζn(n) for the drying front with the

corresponding exponents for imbibition fronts in porous media [38] (the authors of Ref. [38]

used Hn, instead of ζn). Similar to the results shown in Fig. 8(b), the corresponding exponents

for the imbibition front [38] also decreased with n and were all less than 1.

On the other hand, the results shown in Fig. 8(b) are very different from what has been

computed for fracture surfaces [33-37] in that, whereas for the drying fronts ζn decreases with

n, the corresponding exponents for fracture surfaces increase with n and for n ≥ 1 are all

greater than 1. This indicates that, contrary to claims often repeated in the literature, not all

rough surfaces possess scaling properties that are described by the same value of the roughness

exponent, and that the idea of a universal roughness exponent for all rough surfaces cannot be

correct.

V. SUMMARY

Extensive experiments on drying of porous media were carried out, using synchrotron x-ray

tomography. The results were analyzed in order to delineate the structure of the clusters formed

due to the invasion of water-filled pores by air, as well as the structure and roughness of the

drying front. The structure of the water clusters turned out to be fractal. The corresponding

fractal dimension Df was estimated by using both 2D cuts of the 3D porous medium and by

direct analysis of the 3D structure. Df was shown to be dependent on the the water content

by a simple equation.

We also computed the density correlation function of the liquid phase in several 2D cross
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sections along the drying porous medium. The data indicated the existence of a crossover

length scale from fractal patterns to compact structures. The drying front was shown to be

rough and multi-affine, with its multi-affine properties being very similar to those of imbibition

in porous media, but very different from those reported for fracture fronts.
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78, 046105 (2008).

[38] A. M. Miranda, I. L. Menezes-Sobrinho, and M. S. Couto, Phys. Rev. Lett. 104,

086101 (2010).

14



Captions

FIG. 1. Two-dimensional horizontal cross sections illustrating the distribution of air (white),

water (blue) and the solid (black) phases at 6 mm below the sand surface. Numbers at the top

indicate the elapsed time from the beginning of the experiment.

FIG. 2. Typical results for estimating the fractal dimension of the liquid phase on two 2D

cross sections below the surface. The insets illustrate the cross sections at the corresponding

depths below the surface.

FIG. 3. (a) The fractal dimension of the liquid phase, and (b) the water content on each

2D cross section as functions of the depth below the surface. The legend indicates the elapsed

time from the beginning of the experiment.

FIG. 4. Dependence of the fractal dimension of the liquid phase in 2D cross sections on the

water content of corresponding cross section for the various scans. All the data (a total of 9960

data points) collapse on a single power-law curve with an exponent of 0.12. The data that are

not on the curve are from Chen et al. [24], representing drainage experiments.

FIG. 5. Estimates of fractal dimensions of the 3D liquid phase in each scan, and their

comparison with those obtained from the 2D cross sections.

FIG. 6. (a) The density correlation function C(r) of the liquid phase in each scan. (b) The

asymptotic values C∞ of C(r) versus the average water content in each scan, indicating a 45◦

line and the equality of C∞ and water content.

FIG. 7. The probability distribution function P (∆h) versus ∆h/σ for six values of the

distance ℓ from the inlet of the porous medium and various values of the box size L. The

curves represent the fits of the data to a Guassian distribution.

FIG. 8. (a) The structure function Sn, and (b) the dependence of the exponent ζn, char-

acterizing the power-law behavior of the structure function Sn, on n. Symbols correspond to

those in FIG. 7.
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