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Here we present a range-limited approach to centrality measures in both non-weighted and
weighted directed complex networks. We introduce an efficient method that generates for ev-
ery node and every edge its betweenness centrality based on shortest paths of lengths not longer
than ` = 1, . . . , L in case of non-weighted networks, and for weighted networks the correspond-
ing quantities based on minimum weight paths with path weights not larger than w` = `∆,
` = 1, 2 . . . , L = R/∆. These measures provide a systematic description on the positioning im-
portance of a node (edge) with respect to its network neighborhoods 1-step out, 2-steps out, etc. up
to including the whole network. They are more informative than traditional centrality measures, as
network transport typically happens on all length-scales, from transport to nearest neighbors to the
farthest reaches of the network. We show that range-limited centralities obey universal scaling laws
for large non-weighted networks. As the computation of traditional centrality measures is costly,
this scaling behavior can be exploited to efficiently estimate centralities of nodes and edges for all
ranges, including the traditional ones. The scaling behavior can also be exploited to show that the
ranking top-list of nodes (edges) based on their range-limited centralities quickly freezes as function
of the range, and hence the diameter-range top-list can be efficiently predicted. We also show how
to estimate the typical largest node-to-node distance for a network of N nodes, exploiting the afore-
mentioned scaling behavior. These observations on model networks and on a large social network
inferred from cell-phone trace logs (∼ 5.5 × 106 nodes and ∼ 2.7 × 107 edges). Finally, we apply
these concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest
percolating cluster of the highest betweenness nodes and edges) and illustrate the importance of
weight-based centrality measures in weighted networks in detecting such backbones.

PACS numbers: 89.75.Hc, 89.65.-s, 02.10.Ox

I. INTRODUCTION

Network research [1–5] has experienced an explosive
growth in the last two decades, as it has proven itself
to be an informative and useful methodology to study
complex systems, ranging from social sciences through
biology to communication infrastructures. Both the nat-
ural and man made world is abundant with networked
structures that transport various entities, such as infor-
mation, forces, energy, material goods, etc. As many of
these networks are the result of evolutionary processes,
it is important to understand how the graph structure of
these systems determines their transport performance,
structural stability and behavior as a whole. A rather
useful concept in addressing such questions is the no-
tion of centrality, which describes the positioning “im-
portance” of a structure of interest such as a node, edge
or subgraph with respect to the whole network. Although
the notion of centrality in graph theory dates back to the
mathematician Camille Jordan (1869), centrality mea-
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sures were expanded, refined and applied to a great ex-
tent for the first time in social sciences [6–10], and today
they play a fundamental role in studies involving a large
variety of complex networks across many fields. Probably
the most frequently used centrality measure is between-
ness centrality (BC) [10–16], introduced by Anthonisse
[11] and Freeman [12] defined as the fraction of all net-
work geodesics (shortest paths) passing through a node
(edge or subgraph). Since transport tends to minimize
the cost/time of the route from source to destination, it
expectedly happens along geodesics, and therefore cen-
trality measures are typically defined as a function of
these, however generalizations to arbitrary distributions
of transport paths have also been introduced and studied
[17, 18]. Geodesics are important for structural connec-
tivity as well: removing nodes (edges) with high BC, one
obtains a rapid increase in diameter, and eventually the
structural breakup of the graph.

In general, centrality measures are defined in the con-
text of the assumptions (sometimes made implicitly) re-
garding the type of network flow [16]. These are as-
sumptions regarding the nature of the paths such as be-
ing shortest, or arbitrary length paths, weighted/valued
paths, walks (repeated nodes and edges) [19] etc.; and
the nature of the flow, such as transport of indivisible
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units (packets), or spreading/broadcasting processes (in-
fection, information). Besides betweenness centrality,
many other centrality measures have been introduced
[10], depending on the context in which network flows
are considered; for a partial compilation see the paper
by Brandes [14], here we only review a limited list. In
particular, stress centrality [20–22], simply counts the
number of all-pair shortest paths passing through a node
(edge) without taking into account the degeneracy of the
geodesics (there can be several geodesics running between
the same pair of nodes). Closeness centrality [8, 13, 23]
and its variants are simple functions of the mean geodesic
distance (hop-count) of a node from all other nodes. Load
centrality [14, 24, 25] is generated by the total amount of
load passing through a node when unit commodities are
passed between all source-destination pairs using an algo-
rithm in which the commodity packet is equally divided
amongst the neighbors of a node that are at the same
geodesic distance from the destination. Group betwee-
ness centrality [26, 27] computes the betweenness associ-
ated with a set of nodes restricted to all-pair geodesics
that traverse at least one of the nodes in the group. Ego
network betweenness [28] is a local betweenness measure
computed only from the immediate neighborhood of a
node (ego). Eigenvector centrality [29, 30] represents a
positive score associated to a node, proportional to the
sum of the scores of the node’s neighbors, solved consis-
tently across the graph. The corresponding score vector
is the eigenvector associated with the largest eigenvalue
of the adjacency matrix. Random walk centrality [31, 32]
is a measure of the accessibility of a node via random
walks in the network. Other centrality-type measures
include information centrality of Stephenson and Zelen
[33], the induced endogenous and exogenous centrality by
Everett and Borgatti [34] and the notion of accessibility
pioneered by Costa et.al. [35–37].

Bounded-distance betweenness was introduced by Bor-
gatti and Everett [10] as betweenness centrality result-
ing from all-pair shortest paths not longer than a given
length (hop-count). It is this measure that we expand
and investigate in detail in the present paper. A con-
densed version for unweighted networks has been pre-
sented in Ref. [38]. Since we are also generalizing the
measure and the corresponding algorithm to weighted
(valued) networks, we are referring to it as range-limited
centrality. Note that range-limitation can be imposed on
all centrality measures that depend on paths, and there-
fore the analysis and algorithm presented here can be
extended to all these centrality measures.

Centrality measures have received numerous applica-
tions in several areas. In social sciences they have been
extensively used to quantify the position of individuals
with respect to the rest of the network in various so-
cial network data sets [6, 16]. In physics and computer
science they have seen widespread applications related
to routing algorithms in packet switched communication
networks and transport problems in general [17, 24, 39–
44]. The connection of generalized betweenness central-

ity based on arbitrary path distributions (not just short-
est) to routing that minimizes congestion has been in-
vestigated by Sreenivasan et al [17] using minimum spar-
sity vertex separators. This makes a direct connection
to max-flow min-cut theorems of multicommodity flows,
extensively studied in the computer science literature
[45, 46]. Other works that use essentially edge between-
ness type quantities to quantify congestion in Internet-
like graphs include Refs [47, 48]. Dall’Asta et.al. connect
node and edge detection probabilities in traceroute-based
sampling of networks to their betweenness centrality val-
ues [49, 50]. Other applications include detection of net-
work vulnerabilities in face of attacks [51], cascading fail-
ures [52–54] or epidemics [55], all involving betweenness-
related calculations.

An important extension of centrality is to weighted,
or valued networks [25, 56–60]. In this case the edges
(and also the nodes) carry an associated weight, which
may represent a measure of social relationship in social
networks [61], channel capacity in the case of communi-
cation networks, transport capacity (e.g., nr of lanes) in
roadway networks or seats on flights [62].

From a theory point of view, there have been fewer
results, as producing analytic expressions for centralities
in networks is difficult in general. However, for scale-free
trees, Szabó et.al. [63] developed a mean-field approach
for computing node betweenness, which later was made
rigorous by Bollobás and Riordan [64]. Fekete et.al. pro-
vide a calculation of the distribution of edge betweeness
on scale-free trees conditional on node in-degrees [65],
and Kitsak et.al. [66] have derived scaling results on be-
tweenness centrality for fractal and non-fractal scale-free
networks.

Unfortunately, computation of betweenness can be
costly (O(NM), where N is the number of nodes and
M is the number of edges, thus O(N3) worst case)
[14, 25, 57, 67–69], especially for large networks with mil-
lions of nodes, hence approximation methods are needed.
Existing approximations [32, 70, 71], however, are sam-
pling based, and not well controlled. Additionally, trans-
port in real networks does not occur with uniform prob-
ability between arbitrary pairs of nodes, as transport in-
curs a cost, and therefore shorter-range transport is ex-
pectedly more frequent than long-range. Accordingly,
the usage of network paths is non-uniform, which should
be taken into account if we want to connect centrality
properties with real transport. In order to address some
of the limitations of existing centrality measures, we re-
cently focused on range-limited centrality [38]. We have
shown that when geodesics are restricted to a maximum
length L, the corresponding range-limited L-betweenness
for large graphs assumes a characteristic scaling form as
function of L. This scaling can then be used to pre-
dict the betweenness distribution in the (difficult to at-
tain) diameter limit, and with good approximation, to
predict the ranking of nodes/edges by betweenness, sav-
ing considerable computational costs. Additionally, the
range-limited method generates l-betweenness values for
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FIG. 1: (Color) a) Consecutive shells of the C3 subgraph of node i (black) are colored red, blue, green. Grey elements are not
part of the subgraph. b) The (x, y, z) near a node j are the b`(i|j) values for ` = 1, ` = 2 and ` = 3. The [x, y, z] on an edge
(j, k) give the b`(i|j, k) values for ` = 1, ` = 2 and ` = 3 . Given a node j, the number inside its circle is the total number of
shortest paths σij to j from i. Colors indicate quantities based on ` = 1 (red), ` = 2 (blue), and ` = 3 (green).

all nodes and edges and for all 1 ≤ l ≤ L, providing
systematic information on geodesics on all length-scales.

In this paper we give a detailed derivation of the al-
gorithm and the analytical approximations presented in
[38] and we demonstrate the efficiency of the method on
a social network (SocNet) inferred from mobile phone
trace-logs [72]. This network has a giant cluster with
N = 5 568 785 nodes and M = 26 822 764 directed edges.
The diameter of the underlying undirected network is ap-
proximately D ' 26 and the calculation of the traditional
(diameter-range based) BC values (using Brandes’ algo-
rithm) on this network took 5 days on 562 computers.

In addition, we present the derivations for an algo-
rithm that efficiently computes range-limited centralities
on weighted networks. We then apply these concepts and
algorithms to the network vulnerability backbone detec-
tion problem, and show the differences between the back-
bones obtained with both hop-count based centralities
and weighted centralities.

The paper is organized as follows. Section II intro-
duces the notations and provides the algorithm for un-
weighted graphs; section III gives an analytical treatment
that derives the existence of a scaling behavior for cen-
trality measures in large graphs; it gives a method on how
to estimate the largest typical node-to-node distance (a
lower-bound to the diameter); discusses the complexity
of the algorithm and the fast freezing phenomenon of
ranking by betweenness of nodes and edges. Section IV
illustrates the power of the range-limited approach (by
showing how well can one predict betwenness centrali-
ties and ranking of individual nodes and edges) using the

social-network data described above. Section V describes
the algorithm for weighted graphs and section VI uses the
range-limited betwenness measure to define a vulnerabil-
ity backbone for networks and illustrates the differences
in identification of the backbone obtained with and with-
out weights on the links.

II. RANGE-LIMITED CENTRALITY FOR
NON-WEIGHTED GRAPHS

A. Definitions and notations

Let us consider a directed simple graph G(V,E), which
consists of a set V of vertices (or nodes) and a set
E ⊆ V ×V of directed edges (or links). We will denote by
(vi, vj) ∈ E an edge directed from node vi ∈ V to node
vj ∈ V . The graph has N nodes and M ≤ N(N − 1)
edges. The algorithm below can easily be modified for
undirected graphs, we will not treat that case separately.
A directed path ωmn from some node m to a node n
is defined as an ordered sequence of nodes and links
ωmn = {m, (m, v1), v1, (v1, v2), v2, ....vl, (vl, n), n} with-
out repeated nodes. The “distance” d(m,n) is the length
of the shortest directed path going from node m to node
n. We give a definition of distance (path weight) for
weighted networks in Section V. In non-weighted net-
works the directed path length is simply the number of
edges (“hop-count”) along the directed path from m to
n. There can be multiple shortest paths (same length),
and we will denote by σmn the total number of shortest
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directed paths from node m to n. σmn(i) will represent
the number of shortest paths from node m to node n
going through node i. As convention we set

σmn(m) = σmn(n) = σmn, σmm(i) = δi,m . (1)

The total number of all-pair shortest paths running
through a node i is called the stress centrality (SC) of
node i, S(i) =

∑
m,n∈V σmn(i). Betweenness central-

ity (BC) [10–12, 14, 57] normalizes the number of paths
through a node by the total number of paths (σmn) for
a given source-destination pair (m,n):

B(i) =
∑

m,n∈V

σmn(i)

σmn
. (2)

Similar quantities can be defined for an edge (j, k) ∈ E:

B(j, k) =
∑

m,n∈V

σmn(j, k)

σmn
. (3)

In order to define range-limited betweenness centrali-
ties, let bl(j) denote the BC of a node j for all-pair short-
est directed paths of fixed, exact length l. Then

BL(j) =

L∑
l=1

bl(j) (4)

represents the betweenness centrality obtained from
paths not longer than L. For edges, we introduce bl(j, k)
and BL(j, k) using the same definitions. For simplicity,
here we include the start- and end-points of the paths
in the centrality measures, however, our algorithm can
easily be changed to exclude them, as described later.

Similar to other algorithms, our method first calculates
these BCs for a node j (or edge (j, k)) from shortest di-
rected paths all emanating from a “root” node i, then it
sums the obtained values for all i ∈ V to get the final
centralities for node j (or edge (j, k)). This can be done
because the set of all shortest paths can be uniquely de-
composed into subsets of shortest paths distinguished by
their starting node. Thus it makes sense to perform a
shell decomposition of the graph around a root node i
[73–77]. Let us denote by CL(i) the L-range subgraph of
node i containing all nodes which can be reached in at
most L steps from i (Fig. 1a). Only links which are part
of the shortest paths starting from the root i to these
nodes are included in CL. We decompose CL into shells
Gl(i) containing all the nodes at shortest path distance
l from the root, and all incoming edges from shell l − 1,
Fig. 1b). The root i itself is considered to be shell 0
(G0(i) = {i}). Let

brl (i|k) =
∑

n∈Gl(i)

σin(k)

σin
, brl (i|j, k) =

∑
n∈Gl(i)

σin(j, k)

σin
(5)

denote the fixed-l betweenness centrality of node k, and
edge (j, k), respectively, based only on shortest paths

all starting from the root i. Here r is not an indepen-
dent variable: given i and k (or (j, k)), r is the radius of
shell Gr(i) containing k (or (j, k)), that is k ∈ Gr(i) and
(j, k) ∈ Gr(i). Note that σin(k) = 0 (or σin(j, k) = 0) if
k (or (j, k)) do not belong to at least one shortest path
from i to n, and thus there is no contribution from those
points n from the l-th shell. The condition for k (or (j, k))
to belong to at least one shortest path from i to n can al-
ternatively be written in the case of (5) as d(k, n) = l− r
a notation, which we will use later.

For simplicity of writing, we refer to the fixed-l be-
tweenness centralities (the bl-s) as “l-BCs” and to the
cumulative betweenness centralities (the BL-s obtained
from summing the l-BCs, see (4)) as [L]-BCs.

B. The range-limited betweenness centrality
algorithm

While the basics of our algorithm are similar to Bran-
des’ [14, 57], we derive recursions that simultaneously
compute the [l]-BCs for all nodes and all edges and for
all values l = 1, . . . , L. The algorithm thus generates de-
tailed and systematic information (an L-component vec-
tor for every node and every edge) about shortest paths
on all length-scales and thus, providing a tool for multi-
scale network analysis.

First we give the algorithm, then we derive the specific
recursions used in it. For the root node i we set the
initial condition: σii = 1. For other nodes, k 6= i, we
set σik = 0. The following steps are repeated for every
l = 1, . . . , L:

1. Build Gl(i), using breadth-first search.

2. Calculate σik for all nodes k ∈ Gl(i), using:

σik =
∑

j∈Gl−1(i)

(j,k)∈Gl(i)

σij , (6)

and set

bll(i|k) = 1. (7)

3. Proceeding backwards, through r = l − 1, . . . , 1, 0:

a) Calculate the l-BCs of links (j, k) ∈ Gr+1(i)
(thus j ∈ Gr(i), k ∈ Gr+1(i)) recursively:

br+1
l (i|j, k) = br+1

l (i|k)
σij
σik

, (8)

b) and of nodes j ∈ Gr(i) using (8) and:

brl (i|j) =
∑

k∈Gr+1(i)

(j,k)∈Gr+1(i)

br+1
l (i|j, k) . (9)

4. Finally, return to step 1) until the last shell GL(i)
is reached.
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In the end, the cumulative [l]-BCs, that is the Bl-s can
be calculated using (4). Fig. 1 shows a concrete exam-
ple. The subgraph of node i has three layers. Each layer
Gl(i) and the corresponding l-BCs are marked with dif-
ferent colors: l = 1 (red), l = 2 (blue), and l = 3 (green).
As described above, the first step creates the next layer
Gl(i), then in step 2., for every node k ∈ Gl(i) we cal-
culate the total number of shortest paths σik from the
root to node k. These are indicated by numbers within
the circles representing the nodes in Fig. 1 (e.g., σij = 1,
σik = 2, σin = 5). As given by (6), σik is calculated by
summing the number of shortest paths that end in the
predecessors of node k located in Gl−1(i). For example
node p ∈ G3(i) in Fig. 1 is connected to nodes k and m
in shell G2(i), and thus: σip = σik + σim = 2 + 1 = 3.

Eq. (7) states that the l-BC of nodes located in Gl(i)
is always 1. This follows from Eq. (5) for r = l and using
the convention σik(k) = σik. Knowing these values, we
proceed backwards (step 3.) and calculate the l-BCs of
all edges and nodes in all the previous layers. Recursion
(8) is obtained from a well known recursion for shortest
paths. If k (or (j, k)) belongs to at least one shortest path
going from i to n, then σin(k) = σikσkn and σin(j, k) =
σijσkn. Inserting these in Eq. (5) for r 7→ r+1 we obtain:

br+1
l (i|k) = σik

∑
n∈Gl(i)

d(k,n)=l−r−1

σkn
σin

(10)

br+1
l (i|j, k) = σij

∑
n∈Gl(i)

d(k,n)=l−r−1

σkn
σin

(11)

where d(k, n) = l − r − 1 expresses the condition that
the sum is restricted to those n from Gl(i), which have
at least one shortest path (from i), going through k or
(j, k). Dividing these equations we obtain (8). For e.g.,
in Fig 1: b33(i|k, n) = b33(i|n)σik/σin = 1× (2/5) = 2/5.

Having determined the l-BCs of all edges in layer
Gr+1(i), we can now compute the l-BC of a given node in
Gr(i) by summing the l-BCs of its outgoing links, that is
using (9) (e.g., on Fig 1: b23(i|k) = b33(i|k, p)+b33(i|k, n) =
(2/3) + (2/5) = 16/15).

This algorithm can be easily modified to compute other
centrality measures. For example, to compute all the
range-limited stress centralities, we have to replace Eq.
(7) with: sll(i|j) = σij . All other recursions will have
exactly the same form, we just need to replace the l-BCs
(brl (i|j), brl (i|j, k)) with the l-SCs (srl (i|j), srl (i|j, k)).

If we want to exclude start- and end-points when com-
puting BCs or SCs, we first let the above algorithm finish,
then we do the following steps: a) set the l-BC of the root
node i to 0, b0l (i|i) = 0 for all l = 1, . . . , L, and b) for ev-
ery node k ∈ Gl(i) reset bll(i|k) = 0, for all l = 1, . . . , L,
(for e.g., on Fig 1 k is in the second shell, G2(i), so its 2-
BC will become 0 instead of 1). Then via (4), the [l]-BCs
and the corresponding [l]-SCs are easily obtained.

III. CENTRALITY SCALING - ANALYTICAL
APPROXIMATIONS

In [38] we have shown that the [l]-BC obeys a scal-
ing behavior as function of l. This was found to hold
for all sufficiently large random networks that we stud-
ied (Erdős-Rényi (ER), Barabási-Albert (BA) scale-free,
Random Geometric Graphs (RGG), etc.) including the
social network inferred from mobile phone trace-log data
(SocNet) [78]. Here we detail the analytical arguments
that indeed show that the existence of this scaling be-
havior for large networks is a general property, by ex-
ploiting the scaling of shell sizes. The scaling of shell
sizes was already studied previously, for e.g., in random
graphs with arbitrary degree distributions [79, 80]. For
simplicity of the notations, we only show the derivations
for undirected graphs.

A. Betweenness of individual nodes

Let us define 〈·〉 as an average over all root nodes i in
the graph, and denote by zl(i) the number of nodes on
shell Gl(i). We define the branching factor as:

αl = 〈zl+1〉/〈zl〉 , (12)

and model the growth of shell sizes as a branching process
[79, 81]

zl+1(i) = zl(i)αl
[
1 + εl(i)

]
. (13)

Here εl(i) is a per-node, shell occupancy noise term, en-
coding the relative deviations, or fluctuations from the (i-
independent) functional form of αl. Typically, |εl| � 1,
it obeys 〈εl(i)〉 = 0 and 〈εl(i)εm(j)〉 = 2Alδl,mδi,j , with
Al decreasing with l. In undirected graphs if i ∈ Gm(j)
then it implies that j ∈ Gm(i), and vice-versa. Hence, in
this case:

bl+1(j) =
1

2

∑
i∈V

bl+1(i|j) =
1

2

l+1∑
m=0

∑
i∈Gm(j)

bml+1(i|j) (14)

The 1/2 factor comes from the fact that any given path
will be included twice in the sum (once in both direc-
tions). In case of m = 0 the only node in G0(j) is j
itself, and the inner sum is equal with b0l+1(j|j). Due
to convention (1) σjn(j) = σjn and hence from (5) we
obtain b0l+1(j|j) =

∑
n∈Gl+1(j)

σjn(j)/σjn = zl+1(j). For

m = l + 1, bl+1
l+1(i|j) = 1 (see Eq. (7)) and the inner sum

is again zl+1(j). Thus we can write:

bl+1(j) = zl+1(j) +
1

2

l∑
m=1

∑
i∈Gm(j)

bml+1(i|j) ≡

≡ zl+1(j) +
1

2
ul+1(j), (15)

Note that the number of terms in the inner sum∑
i∈Gm(j) b

m
l+1(i|j) is zm(j), which is rapidly increasing
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with m, and thus is expected to have a weak dependence
on j. Accordingly, we make the approximation:

ul+1(j) '
l∑

m=1

∑
i∈Gm(j)

vml+1(i), (16)

where we replaced bml+1(i|j) by vml+1(i), which is an av-
erage (l + 1)-BC computed over the shell of radius m,
centered on node i :

vml+1(i) =

∑
k∈Gm(i) b

m
l+1(i|k)

zm(i)
. (17)

However, the sum of (l + 1)-BCs in any m ≤ l + 1
layer is equal with the number of nodes in shell Gl+1:∑
k∈Gm(i) b

m
l+1(i|k) = zl+1(i). We can convince ourselves

about this last statement by using (5) and observing
that

∑
k∈Gm(i) σin(k) = σin as all paths from i to n

(n ∈ Gl+1(i)) must “pierce” every shell m ≤ l + 1 in
between. Fig. 1 shows an example: there are 3 nodes in
G3 and the sum of 3-betweenness values (green) in layer
G2 is (7/5) + (16/15) + (8/15) = 3. Therefore, we may
write:

vml+1(i) ' zl+1(i)

zm(i)
=
zl(i)αl

[
1 + εl(i)

]
zm(i)

, (18)

where we used the recursion defined above for zl+1(i) as a
branching process (13). Inserting this in (16) we obtain:

ul+1(j) ' αl
l∑

m=1

∑
i∈Gm(j)

zl(i)
[
1 + εl(i)

]
zm(i)

'

' αl

l∑
m=1

∑
i∈Gm(j)

zl(i)

zm(i)
'

' αl

zl(j) +

l−1∑
m=1

∑
i∈Gm(j)

zl(i)

zm(i)

 (19)

where we neglected the small noise term due to the large
number of terms in the inner sum, and we used the fact
that for m = l the leading term of the inner sum is just
zl(j). From Eqs. (16) and (18), however, the double sum
in (19) equals ul(j) and we obtain the following recursion:

ul+1(j) ' αl
[
zl(j) + ul(j)

]
. (20)

Eqs (13), (15) and (20) lead to a recursion for bl+1(j):

bl+1(j) ' αl[bl(j) + zl(j)/2 + zl(j)εl(j)], (21)

which can be iterated down to l = 1, where b1(j) =
z1(j) = kj is the degree of j:

bl(j) ' βl kj eξl(j) , (22)

with

βl =
l + 1

2

l−1∏
m=1

αm =
l + 1

2

〈zl〉
〈k〉 , (23)

ξl(j) =

l−1∑
n=1

l + 1− n
l + 1

εn(j) . (24)

In many networks, the average shell-size 〈zl〉 grows ex-
ponentially with the shell-‘radius’ l (for e.g., ER, BA,
SocNet), implying a constant average branching factor
larger than one:

αl ' α =
〈z2〉
〈k〉 > 1 . (25)

The exponential growth holds until l reaches the typical
largest shortest path distance L∗, beyond which finite-
size effects appear. Accordingly, βl ∼ αl and bl grows
exponentially with l. In this case, since bl is rapidly in-

creasing with l, the cumulative BL(j) =
∑L
l=1 bl(j) will

be dominated by bL, and thus BL obeys the same expo-
nential scaling as bl, confirmed by numerical simulations
(Fig. 3c in [38] shows this scaling for SocNet).

However, not all large networks have exponentially
growing shell-sizes. For example, in spatially embed-
ded networks without shortcuts such as random geomet-
ric graphs, roadways, etc., average shell-size grows as a
power law 〈zl〉 ∼ ld−1, where d is the embedding di-
mension of the metric space. In this case βl ∼ ld and
bl(j) ∼ ld and BL ∼ Ld+1. Fig 3d in [38] shows this
scaling for RGG graphs embedded in d = 2 dimensions.

B. Distribution of l-betweenness centrality

Eq (22) allows to relate the statistics of fixed-l be-
tweenness to the statistics of shell occupancies for net-
works that are uncorrelated, or short-range correlated.
Since the noise term (obtained from per-node occupancy
deviations on a shell) is independent on the root’s degree
in this case, the distribution of fixed-l betweenness can
be expressed as:

ρl(b) = 〈δ (bl(j)− b)〉 =

=

∫ ∞
−∞
dξ

∫ N−1

1

dk δ
(
βlke

ξ − b
)
P (k)Φl(ξ) . (26)

where δ(x) is the Dirac-delta function, P (k) is the de-
gree distribution and Φl(ξ) is the distribution for the
noise ξl(j), peaked at ξ = 0, with fast decaying tails
and Φ1(x) = δ(x). Performing the integral over the noise
ξ, one obtains the distribution for l-BC, in form of a con-
volution:

ρl(b) =
1

b

∫ N−1

1

dk P (k)Φl(ln b− lnβl − ln k) . (27)

From (27) follows that the natural scaling variable for
betweenness distribution is u = ln b − lnβl. The noise
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distribution Φl (for l > 1) may introduce an extra l-
dependence through its width σl, which can be accounted
for via the rescaling u 7→ u/σl, ρl 7→ ρlσl, thus col-
lapsing the distributions for different l-values onto the
same functional form, directly supporting our numerical
observations presented in Ref [38]. As Φl is typically
sharply peaked around 0, the most significant contribu-
tion to the integral (27) for a given b comes from degrees
k ' b/βl. Since k ≥ 1, we have a rapid decay of ρl(b) in
the range b < βl, a maximum at b = βlk where k is the
degree at which P (k) is maximum, and a sharp decay for
b > (N − 1)βl.

C. Estimating the average node-to-node distance
in large networks.

The scaling law on its own does not provide infor-
mation about the typical largest node-to-node distance,
which is always a manifestation of the finiteness of the
graph. However, knowing the size of the network in terms
of the number of nodes N , one can exploit our formulas
to find the average largest node-to-node distance as the
radius L∗ of the typical largest shell beyond which finite-
size effects become strong, that is where network edge
effects appear. This can be estimated as the point where
the sum of the average shell sizes reaches N . Hence:

ZL∗ =

L∗∑
l=1

〈zl〉 =

L∗∑
l=1

2

l + 1
〈k〉βl = N , (28)

providing an implicit equation for L∗. The βl-s are de-
termined numerically for l = 1, 2, 3, . . . and a correspond-
ing functional form fitting its scaling with l can be ex-
trapolated for larger l values up to L∗, when the sum
in (28) hits N . For our social network data one obtains
L∗ ' 9.35 (see Fig. 2a)). Here L∗ is not necessarily an in-
teger, because it is obtained from the scaling behavior of
the average shell sizes, and represents the typical radius
of the largest shell. Expression (28) can be easily spe-
cialized for the two classes of networks discussed above
namely, for those having exponential average shell-size
growth 〈zl〉 ∼ 〈k〉αl−1 (such as for the ER and BA mod-
els, Fig 2b-c)) and for those having a power-law average
shell-size growth as 〈zl〉 ∼ 〈k〉ld−1. For the exponential
growth case we obtain:

L∗ =
1

lnα
ln

(
1 +

α− 1

〈k〉 N
)
, (29)

resulting in the L∗ ∼ lnN behavior for large N .
For the power-law growth case there is no easily invert-

ible expression for the sum, however, if we replace the
summation with an integral, we find the approximate

L∗ '
(

1 +
d

〈k〉N
)1/d

(30)

expression, with the expected asymptotic behavior L∗ ∼
N1/d as N →∞.
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FIG. 2: (Color online) Volume Z` growth with radius `. a)
Extrapolating the growth for SocNet one can estimate that
it reaches the N = 5 568 785 mark at L∗ ' 9.35. Similarly,
there is exponential growth for both ER, b) and BA models,
c).

D. Algorithm complexity

We are now in position to estimate the average-case
complexity of the range-limited centrality algorithm. For
every root i, we sequentially build its l = 1, 2, ..., L shells.
When going from shell Gl−1(i) to building shell Gl(i), we
consider all the zl−1 nodes on Gl−1(i). For every such
node j we add all its links that do not connect to already
tagged nodes (a tag labels a node that belongs to Gl−1(i)
or Gl−2(i)) to Gl(i), and add the corresponding nodes as
well. This requires on the order of 〈k〉 operations for
every node j, hence on the order of 〈k〉〈zl−1〉 operations
for creating shell Gl(i). Next is Eq (6), which involves
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〈el〉 steps, where el is the number of edges connecting
nodes in shell Gl−1(i) to nodes in shell Gl(i). Eq (7)
involves 〈zl〉 steps. Eqs (8) and (9) generate a total of

2
∑l
m=1〈em〉 operations. Hence, for a given l there are a

total of 〈k〉〈zl−1〉+〈el〉+〈zl〉+2
∑l
m=1〈em〉 operations on

average. Thus the average complexity of the algorithm C
can be estimated as:

C ∼ N
L∑
l=1

(
〈k〉〈zl−1〉+ 〈el〉+ 〈zl〉+ 2

l∑
m=1

〈em〉
)

(31)

Note that the set of edges in the shells Gm−1(i) and
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FIG. 3: (Color online) Scaling of range-limited betweenness
computation times (in seconds) as function of NM for ER
and BA models, where N is the number of nodes and M is
the number of edges of the graphs. For ER the average degree
was 5 and the BA model’s parameter was m = 3. The sym-
bols are actual running times (not averages) for 100 networks,
measured on an Apple quad core Mac Pro workstation.

Gm(i) are all fanning out from nodes in Gm−1(i), and
thus we can approximate 〈em−1〉+ 〈em〉 with 〈k〉〈zm−1〉.
Thus, the estimate becomes:

C ∼ N〈k〉
L∑
l=1

l∑
m=1

〈zm〉 = N〈k〉
L∑
l=1

(L− l + 1)〈zl〉 . (32)

From (32) it follows that

N〈k〉
L∑
l=1

〈zl〉 < C < LN〈k〉
L∑
l=1

〈zl〉 . (33)

For fixed L, the complexity grows linearly with N as N →
∞. For L = L∗ we can use (28) to conclude that

O(NM) < C < O(L∗NM) (34)

where M = N〈k〉/2 denotes the total number of edges
in the network. Recall that the Brandes or Newman al-
gorithm has a complexity of O(NM) for obtaining the
traditional betweenness centralities. Specializing the ex-
pression (32) to networks with exponentially growing
shells one finds the same O(NM) complexity (that is
the upper bound O(NM lnM) in (34) is not realized),
see Fig 3; for networks with power-law growth shells,
however, we find O(N1+1/dM), as in the upper bound of
(34). The extra computational cost is due to the fact that
instead of a single value, our algorithm produces a set of
L numbers (the l-BCs), providing multiscale information
on betweenness centrality for all nodes and all edges in
the network.

E. Freezing of ranking by range-limited
betweenness

In Ref [38] we have provided numerical evidence that
the ranking of the nodes (same holds for edges) by their
[L]-BC values freezes at relatively small values of L. Here
we show how this freezing phenomenon emerges. Con-
sider two arbitrary nodes i and j, with degrees ki and kj .
Using Eq (22) we can write

ln
bl(j)

bl(i)
= ln

kj
ki

+ ξl(j)− ξl(i) = ln
kj
ki

+ ∆l . (35)

Based on (24):

∆l = ξl(j)− ξl(i) =

l−1∑
n=1

l + 1− n
l + 1

Xn (36)

where Xn = εn(j) − εn(i). By definition, εn(j) is
the per node variation of shell-occupancy from its root-
independent value, for the n-th shell centered on root
node j. Expectedly, for larger shells (larger n), the size
of the shells becomes less dependent on the local graph
structure surrounding the root node, and for this reason
this noise term has a decaying magnitude |εn(j)| with
n. Thus, the Xn can be considered as random variables
centered around zero, with a magnitude that is decay-
ing with increasing n. The contributions of the noise
terms coming from larger radius shells in the sum (36)
is decreasing not only because the corresponding Xn-s
are decreasing in absolute value, but also because their
weight in the sum is decreasing (as 1/(l+ 1)), and there-
fore when moving from l to l+ 1 in (36) the change (the
fluctuation) in ∆l decreases for larger l. This effectively
means that the rhs of (35) saturates, and thus, accord-
ingly, the lhs saturates as well, freezing the ordering of
betweenness values. If the two nodes have largely differ-
ent degrees (ln kj/ki is relatively large), the noise term
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∆l will not be able to change the sign on the rhs of (35),
even for small l values, and thus, the ordering between
nodes with very different degrees will freeze the fastest,
followed by nodes with degrees that are close to each
other. Clearly, the freezing of ordering between nodes
with identical degrees (kj = ki) will happen last. The
probability for the ordering to flip when increasing the
range from l to l+1 can be calculated for specific network
models, however, it will not be discussed here.

IV. RANGE-LIMITED CENTRALITIES IN A
LARGE-SCALE SOCIAL NETWORK

In this section we illustrate the power of the range-
limited approach on a real-world social network inferred
from cell-phone call-logs (SocNet). We show that com-
puting the [L]-BCs up to a relatively small limit length
can already be used to predict the full, diameter-based
betweenness centralities of individual nodes (and edges),
their distribution and the top list of nodes with highest
centralities.

This social network was constructed from 708 million
anonymized phone-calls between 7.2 million callers gen-
erated in a period of 65 days. Restricting ourselves to
pairs of individuals between which phone-calls have been
observed in both directions in this period as a definition
of an edge, we found that the giant component of this net-
work has about 5.5 million nodes and 27 million edges.
The 65 days is long enough to guarantee that individuals
with strong social bonds have called each other at least
once during this interval, and therefore will be linked by
an edge in our graph.

To test and validate our predictions using the range-
limited method, we actually performed the computation
of the full, diameter-based betweenness centralities of all
the nodes in SocNet. To deploy the computation, we
used a distributed computing utility called Work Queue,
developed in the Cooperative Computing Lab at Notre
Dame. The utility consists of a single management server
that sends tasks out to a collection of heterogeneous
workers/processors. Specifically, our workers consisted
of 250 Sun Grid Engine cores, 300 Condor cores, and 12
local workstation cores, for a total of 562 cores. This al-
lowed us to finish thousands of days of computation in
the course of 5 days. Each worker received a request to
compute the contribution of shortest paths starting from
50 vertices to the betweenness centrality of every vertex
in the network, summed the 50 results, and sent them
back to the management server. Each time the man-
agement server received a contribution, it summed the
contribution with all the others and provided another 50
vertices for the worker.

We also determined the network diameter from the
data using a similar distributed computing method, ob-
taining D = 26. At first sight this value seems to be
at odds with the famous six-degrees of separation phe-
nomenon, which implies a much smaller diameter. How-

ever, there are two observations that one can make here.
1) The social network has a dense core with protruding
branches (“tentacles”), which mathematically speaking,
can generate a large diameter. However, the experimen-
tally determined six degrees of separation does not probe
all the branches, it actually relies on the denser core for
information flow. Hence it should be rather similar to
the average node-to-node distance, rather than the rig-
orously defined network diameter. Indeed, the value of
L∗ = 9.35 that we obtained is rather close to the six-
degrees observation. 2) The social network constructed
based on cell-phone communications gives only a sam-
ple subgraph of the true social network, where commu-
nications happen also face-to-face and through land-line
phone calls. Hence, one would likely measure an even
smaller L∗ would such data be available.
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FIG. 4: (Color online) The [l]-BC values, Bl, of 4 individual
nodes in the SocNet data a), in the ER b) and BA models
as function of l. The exact/full BC value of each node is
indicated by a horizontal dashed line, and denoted by B(i),
B(j), etc. Extrapolating the range-limited values for larger l,
the exact BC values are reached at around L∗ in all cases.
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A. Predicting betweenness centralities of
individual nodes

In large networks, where measuring the full between-
ness centralities (i.e., based on all-pair shortest paths)
is too costly, we can use the scaling behavior of range-
limited BC values to obtain an estimate for the full BC
value of a given node. Plotting the [l]-BC values mea-
sured up to a limit L as function of l, we can extrapo-
late to ranges beyond L. In any finite network the [l]-
BC values will saturate, and thus we expect the appear-
ance of finite size effects for large enough l, that is in
the range L∗ < l ≤ D, where L∗ is the typical radius
of the largest shell and can be estimated as described
in subsection III C. In Fig. 4 we plot the [l]-BC values
(Bl(i)) for l ≤ L = 5 for four nodes of SocNet. The
four nodes were chosen to have very different Bl values.
Ranking the nodes by their [l = 5]-BC values, node i
ranked the highest, and nodes j, k and m ranked 100,
1000 and 10000, respectively. The horizontal dashed lines
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FIG. 5: (Color online) a) Distribution Ql of the ln(Bl) val-
ues in the SocNet for l = 1, 2, 3, 4, 5, D, where D = 26 is the
diameter, and the predicted distribution for L∗. The distri-
butions can be fitted with a Gaussian. b)The average µ and
c) standard deviation σ as function of l. Extrapolating to
L∗ = 9.35 we obtain µ∗ = 17.28 and σ∗ = 2.25.

represent the full BC values of the nodes obtained from
the exact, diameter-length based measurements (as de-
scribed above). Fitting the five values and extrapolating
the range-limited BCs, we can see that for nodes i, j, and
k, the curves reach their corresponding full BC at around
l ' 9.5 agreeing well with the typical length L∗ ' 9.35 es-
timated in subsection III C. For low ranking nodes (small
full BC) finite size effects should appear at lengths larger

than L∗, because they are situated towards the periphery
of the graph. Indeed, one can see from Fig. 4 that node
m reaches its full BC at l ' 10.3, still fairly close to the
estimated L∗. Figs 4b-c) show the same procedure for
ER and BA models.

Thus, once we determined L∗ as described in III C,
then by simply extrapolating the fitting curve to the [l]-
BCs of a given node up to l = L∗, we obtain an esti-
mate/lower bound for its full betweenness centrality.

B. Predicting BC distributions

In SocNet the Bl values have a lognormal distribution
[38], thus Ql(ln(Bl)) can be well fitted by a Gaussian
(Fig. 5a). The parameters of the distribution also show
a scaling behavior, and extrapolating up to L∗ = 9.35
we obtain µ∗ = 17.28 for the average (Fig. 5b) and σ∗ =
2.25 (Fig. 5c) for the standard deviation of the Gaussian.
This predicted distribution is shown as a dashed line on
Fig. 5a. Comparing it with the distribution of the full
BC values (l = D) we can see that while the averages
agree, the width of the distribution is, however, smaller
than the predicted value. This is caused by the fact,
that the [l]-BCs do not saturate at the same l value: for
low centrality nodes saturation occurs at larger l, as also
shown in Fig. 4.

C. Predicting BC ranking

Efficiently identifying high betweenness centrality
nodes and edges is rather important in many appli-
cations, as these nodes and edges both handle large-
amounts of traffic (thus they can be bottlenecks or con-
gestion hotspots), and form high-vulnerability subsets
(their removal may lead to major failures). Fortunately,
due to the freezing phenomenon described in subsection
III E, one does not need to compute accurately the full
BC-s in order to identify the top ranking nodes and edges.
At already modest l values we obtain top-lists that have
a strong overlap with the ultimate, [l = D]-BC top-list.
Here we illustrate this for the case of SocNet. Table I
lists the [l]-BC (for l = 1, 2, 3, 4, 5 and l = D = 26) of the
top 10 nodes from the [D]-BC list in SocNet. The over-
lap between the top lists at consecutive l values increases
with l. Given two lists, we define the overlap between
their first (top-ranking) r elements by the percentage of
common elements in both r-element lists. Table II shows
the overlap between the top list based on [5]-BC and the
one based on the ultimate [D]-BC values. At l = 5 the
top 4 nodes are already exactly in the same order as in
the [D]-BC list, the overlap is 90% between the lists of
the top 10 nodes, and even for the top 100 node lists we
have an overlap of 75%.
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Vertex B1 B2 B3 B4 B5 BD

1 600 7.76× 104 2.06× 106 3.01× 107 2.87× 108 1.26× 1011

2 715 9.71× 104 2.22× 106 3.05× 107 2.85× 108 1.25× 1011

3 458 5.04× 104 1.26× 106 1.87× 107 1.86× 108 9.82× 1010

4 377 3.11× 104 8.56× 105 1.31× 107 1.29× 108 5.82× 1010

5 337 2.29× 104 5.04× 105 7.23× 106 7.55× 107 5.34× 1010

6 285 1.93× 104 5.03× 105 7.56× 106 7.85× 107 5.07× 1010

7 488 2.82× 104 5.84× 105 7.94× 106 7.96× 107 4.89× 1010

8 299 2.56× 104 6.91× 105 1.09× 107 1.10× 108 4.88× 1010

9 244 1.47× 104 3.44× 105 4.87× 106 4.83× 107 4.87× 1010

10 239 1.64× 104 4.57× 105 7.48× 106 8.06× 107 4.81× 1010

TABLE I: Bl values of the top 10 nodes in the [D]-BC top-list for SocNet, for l = 1, 2, 3, 4, 5, D, where D = 26 is the diameter.

Top x nodes Overlap (%)
1 100
2 100
3 100
4 100
10 90
50 72
100 75
500 70.2
1000 67.1

TABLE II: Overlap between the lists of the top r nodes with
highest [5]-BC and with the highest [D]-BC values.

V. RANGE-LIMITED CENTRALITY IN
WEIGHTED GRAPHS

In unweighted graphs the length of the shortest path
between two nodes is defined as the number of edges in-
cluded in the shortest path. In weighted networks each
edge has a weight or “length”: wij . Depending on the na-
ture of the network this length can be an actual physical
distance (e.g., in road networks), or a cost or a resistance
value. We define the “shortest” (or lowest-weight) path
between nodes i and j as the network path along which
the sum of the weights of the edges included is mini-
mal. We will call this sum as the “shortest distance”
d(i, j) from node i to node j (note that we allow for di-
rected links, which implies that d(i, j) is not necessarily
the same as d(j, i)).

In order to define a range-limited quantity, let bl(j)
denote the (fixed) l-BC of node j from all-pair short-
est directed paths of length Wl−1 < d ≤ Wl, where
W1 < W2 < · · · < WL are a series of predefined weight
values or “distances”. The simplest way to define these
Wl distances is to take them uniformly Wl = l∆w, how-
ever depending on the application these may be redefined
in any suitable way. BL will again denote the cumulative
L-betweenness, which represents centralities from paths
not longer than WL. Note that we are still counting
paths when computing centralities, that is σmn(i) still
means the number of shortest paths from m to n passing
through i, except for the meaning of “shortest”, which is

now generalized to lowest-cost.

The algorithm is similar to the one presented above for
unweighted networks. We again build the subgraph of a
node i, but now a shell Gl(i) will contain all the nodes
k at shortest path distance Wl−1 < d(i, k) ≤ Wl from
the root node i. An edge j → k is considered to be part
of the layer in which node k is included. In unweighted
graphs a connection j → k can be part of the subgraph
only if the two nodes are in two consecutive layers: if
j ∈ Gr(i) then k ∈ Gr+1(i). In weighted networks the
situation is different (Fig. 6a)). In principle we may have
edges connecting nodes which are not in two consecutive
layers, but possibly further away from each other ( the
links i→ n, j → o in Fig. 6a)), or even in the same layer
(the link m→ n in the same figure).

When building the subgraph using breadth-first search,
we need to save the exact order in which the nodes
and edges are discovered and included in the subgraph
(Fig. 6b,c). Let us denote with v(p) the index of the
node which is included at position p in this node’s list
(Fig. 6b). This means that the following conditions hold:
d(i, v(1)) ≤ d(i, v(2)) ≤ d(i, v(3)) ≤ . . . . Similarly we
have a list of edges, where qx(p) → qy(p) is the edge in
position p of the list, and qx, qy denote the indexes of the
two nodes connected by the edge (Fig. 6c). This implies
the conditions: d(i, qy(1)) ≤ d(i, qy(2)) ≤ d(i, qy(3)) ≤
. . . (note that every edge qx(p) → qy(p) is included in
the edge-list when node qy(p) is discovered). Again, we
calculate brl (i|k) for a node k, and brl (i|j, k) for an edge
j → k. As defined above, these values take into ac-
count only the shortest paths starting from node i, and
r denotes the shell containing the corresponding node or
edge. One uses the same initial conditions σii = 1, and
σik = 0 for all k 6= i, as before.

The algorithm has the following main steps. For every
l = 1, . . . , L:

1) We build the next layer Gl(i) using breadth first
search. During this search we build the list of indexes
v, qx, qy as defined above. We denote the total number
of nodes included in the list (from all shells G1(i) up to
Gl(i)) as Nl and the number of edges included as Ml.
During this breadth-first search we also calculate the σik
of the discovered nodes. Every time a new edge j → k is
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p v(p) b1 b2 b3 

1 i 2 2 1 
2 j 1 4/3 1/2 
3 k 1 1/3 1/4 
4 m 0 4/3 1/4 
5 n 0 1 3/4 
6 o 0 0 1 

p qx(p)!qy(p) � b1 b2 b3 

1 i ! j 1 4/3 1/2 
2 i ! k 1 1/3 1/4 
3 j ! m 0 4/3 1/4 
4 i ! n 0 1/3 1/4 
5 k ! n 0 1/3 1/4 
6 m ! n 0 1/3 1/4 
7 j ! o 0 0 1/4 
8 n ! o 0 0 3/4 

(c) 

FIG. 6: (Color) a) Shells of the C3 subgraph of node i (black)
are colored red, blue, green. Distances defining the shells are:
W1 = 1, W2 = 2, W3 = 3. The weight or length is shown
next to each edge. Given a node j, the number inside its
circle is the total number of shortest paths coming from the
root i: σij . b) The list of nodes v(p) and c) list of edges
qx(p) → qy(p) are shown together with their 1-, 2-, and 3-
betweenness values.

added to the list we update σik by adding to it σij (using
algorithmic notation, σik := σik + σij). Recall that σik
denotes the total number of shortest paths from i to k. If
the edge j → k is included in the subgraph (meaning that
it is part of a shortest path) the number of shortest paths
ending in j has to be added to the number of shortest
paths ending in k.

2) The l-betweenness of all nodes included in the new
layer is set to bll(i|k) = 1, similarly to Eq. (7).

3) Going backwards through the list of edges we cal-
culate the fixed-l BC of all nodes and edges. For p =
Ml, . . . , 1, we perform the following recursions:

a) for the edge qx(p)→ qy(p):

brl (i|qx(p), qy(p)) = brl (i|qy(p))
σiqx(p)

σiqy(p)
(37)

b) immediately after the BC of an edge is calculated, the
betweenness of node qx(p) must also be updated. We
have to add to its previous value the l-BC of the edge
qx(p)→ qy(p):

brl (i|qx(p)) = brl (i|qx(p)) + brl (i|qx(p), qy(p)) (38)

4) We return to step 1) until the last shell GL(i) is
reached.

As we have seen, the algorithm and the recursions are
very similar to the one presented for unweighted graphs.
The crucial difference is that the exact order of the dis-
covered nodes and edges has to be saved, because the BC
values of edges and nodes in a shell cannot be updated in
an arbitrary order. As an example, Fig. 6 shows a small
subgraph and the list of nodes and edges together with
their 1-, 2- and 3-betweenness values.

VI. VULNERABILITY BACKBONE

An important problem in network research is identify-
ing the most vulnerable parts of a network. Here we
define the vulnerability backbone (VB) of a graph as
the smallest fraction of the highest betweenness nodes
forming a percolating cluster through the network. Re-
moving simultaneously all elements of this backbone will
efficiently shatter the network into many disconnected
pieces [51, 82]. Although the shattering performance can
be improved by sequentially removing and recomputing
the top-ranking nodes [51], here we focus only on the si-
multaneous removal of the one-time computed VB of a
graph, the generalization being straightforward.

Next we illustrate that range-limited BCs can be used
to efficiently detect this backbone by performing calcu-
lations up to a length much smaller than the diameter.
This is of course expected in networks that have a small
diameter (D = O(lnN) or smaller), however, it is less
obvious for networks with large diameter (D = O(Nα),
α > 0). For this reason, in the following we consider ran-
dom geometric (RG) graphs [83, 84] in the plane. The
graphs are obtained by sprinkling at random N points
into the unit square and connecting all pairs of points
that are found within a given distance R of each other.
We will use the average degree 〈k〉 = NπR2 [84] in-
stead of R to parametrize the graphs. In Fig. 7 we
present measurements on a random geometric graph with
N = 5000 nodes, average degree 〈k〉 = 5. The hop-
count diameter of this graph is D = 195. The weights
of connections are considered to be the physical (Eu-
clidean) distances. Clearly, since the links of the graph
are built based on a rule involving the Euclidean dis-
tances, the weight structure and the topology of the
graph should be tightly correlated. Thus, we do expect
strong correlations between the [l]-BC values measured
both from the unweighted and the weighted graph. The
weight ranges Wl defining the layers during the algorithm
were chosen as Wl = 0.00725l, l = 1, . . . , D, so that
WD = 0.00725D = 1.413 is close to the diagonal length
of the unit square

√
2. The nodes and connections are

colored according to their [l] − BC ranking for different
l values (see the color bar in Fig 7). The backbone is al-
ready clearly formed at l = 45. Fig. 8 compares the VBs
of the graphs obtained with and without considering the
connection weights (distances). Two RGs with densities
〈k〉 = 5 and 〈k〉 = 10 are presented. In the case of the
denser graph the backbone is concentrated towards the
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FIG. 7: (Color) The vulnerability backbone VB of a random
geometric graph in the unit square with N = 5000, 〈k〉 = 5
and D = 195. The top 30% of nodes are colored from red
to yellow according to their [l]-BC ranking (see color bar).
The VB based on the [l]-BC is shown for different values:
l = 1, 2, 5, 15, 45, 195.

center of unit square, as periphery effects in this case are
stronger (we do not use periodic boundary conditions).
Although qualitatively the two VBs are similar, the VB
is sharper and clearer in the weighted case. There can
be actually significant differences between the two back-
bones, in spite the fact that one would expect a strong
overlap. In Fig. 9 we show these differences by color-
ing the nodes of the two graphs from Fig 8 according to
the ln(rnw/rw) values, where rnw is the rank of a node
obtained using the non-weighted algorithm and rw is ob-
tained using the weighted graph. The nodes are colored
from blue to red, blue corresponding to the case when
the unweighted algorithm strongly underestimates the
weighted ranking of a node and red is used when it over-
estimates it. Although it is of no surprise that weighted
and unweighted backbones differ in networks where the
graph topology and the weights are weakly correlated,
the fact that there are considerable differences also for
the strongly correlated case of random geometric graphs
(the blue and red colored parts in the right panel of Fig

weighted unweighted 
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< 
k 
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FIG. 8: (Color) Vulnerability backbones based on full BC
rankings in two random geometric graphs with N = 5000
nodes, and average degrees 〈k〉 = 5 and 〈k〉 = 10, respectively.
The rankings were calculated both on the unweighted graph
(left column) and weighted one (right column).
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FIG. 9: (Color) Comparison between the rankings obtained
with and without considering the weights of connections for
the two RG graphs in Fig. 8. Colors indicate the ln(rnw/rw)
values, where rnw is the rank of a node obtained using the
non-weighted algorithm and rw is obtained with the weighted
graph (see the color bar). In denser graphs the differences
become more significant.

9) is rather unexpected, underlining the importance of
using weigh-based centrality measures in weighted net-
works.

VII. CONCLUSIONS

In this paper we have introduced a systematic ap-
proach to network centrality measures decomposed by
graph distances for both unweighted and weighted di-
rected networks. There are several advantages to such
range-based decompositions. First, they provide much
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finer grained information on the positioning importance
of a node (or edge) with respect to the network, than the
traditional (diameter-based) centrality measures. Tradi-
tional centrality values are dominated by the large num-
ber of long-distance network paths, even though most of
these paths might not actually be used frequently by the
transport processes occurring on the network. Due to
the fast growth of the number of paths with distance in
large complex networks, one expects that the distribu-
tion of the centrality measures (which incorporate these
paths) to obey scaling laws as the range is increased.
We have shown both numerically and via analytic ar-
guments (identifying the scaling form) that this is in-
deed the case, for unweighted networks; for the same
reasons, however, we expect the existence of scaling laws
for weighted networks as well. We have shown that these
scaling laws can be used to predict or estimate efficiently
several quantities of interest, that are otherwise costly
to compute on large networks. In particular, the largest
typical node-to-node distance L∗, the traditional indi-
vidual node and edge centralities (diameter range) and
the ranking of nodes and edges by their centrality val-
ues. The latter is made possible by the existence of the
phenomenon of fast freezing of the rank ordering by dis-
tance, which we demonstrated both numerically and via
analytic arguments. We have also introduced efficient al-
gorithms for range-limited centrality measures for both
unweighted and weighted networks. Although they have
been presented for betweenness centrality, they can be
modified to obtain all the other centrality measure vari-
ants.

Finally, we presented an application of these concepts
in identifying the vulnerability backbone of a network,
and have shown that it can be identified efficiently us-
ing range-limited betweenness centralities. We have also
illustrated the importance of taking into account link-
weights [85] when computing centralities, even in net-
works where graph topology and weights are strongly
correlated.
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