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We consider voter dynamics on a directed adaptive netwoitk fixed out-degree distribution. A transition
between an active phase and a fragmented phase is obsetviedransition is similar to the undirected case
if the networks are sufficiently dense and have a narrow egtak distribution. However, if a significant
number of nodes with low out-degree are present, then fratatien can occur even far below the estimated
critical point due to the formation of self-stabilizing wttures that nucleate fragmentation. This process may
be relevant for fragmentation in current political opinimnmation processes.

I. INTRODUCTION The question when fragmentation in opinion formation pro-
cesses can occur on a social scale is beyond the scope of clas-

The defining feature of complex systems is the emergenc%ic"’” social research, bepause it focuses on an emergent phe
of collective phenomena from the interaction of many part§’0menon that may require new conceptual approaches from
[1]. A vivid example is provided by social (swarm) intelli- Physics. A minimal yet paradigmatic physical model of opin-
gence P]. Crowds of humans, shoals of fish, and even swarm4on formation is the voter moded[10]. It describes a network
of insects are known to solve problems more efficiently tharPf nodes representing agents, and links representing te so
any individual on its own3, 4]. However, only in humans Contacts among them. The agents hold one of two possible
social intelligence is also used on a higher level. Among alPPinions, which they can change by adopting the opinion of
species, only we have evolved the ability to discuss (and dgheir topological neighbors. Due to its similarity to irdet-

bate) future problems and opportunities, and formulatgdon N9 SPin models, the voter model has attracted considerable
term policy. attention in the physics literature and has been studietjusi

Recent media reports have pointed out that a central fundifférentinteraction geometries, such as regular latarhet-
tion of the political opinion formation process, the debimgk ~ €rogeneous networks1-14].
of counter-factual opinions, may be starting to fail (S8lddr An important extension of the voter model is achieved by
an example from U.S. politics). including homophily, the agents’ propensity to discarésito

In the political discourse our opinions are exposed to clos@PPosing neighbors and establish new links to agents fpldin
scrutiny and criticism. Well-founded criticism may cause u the same opinion1f5]. Thus, the interaction network is not
to change counter-factual beliefs and thus promote rationgtatic but co-evolves with the agent dynamics, as the agents
decision making. However, because of the stresses involvegewire their links depending on their opinions. Such networ
humans tend to favor discussing with others who share simildn which the node and link dynamics co-evolve, are called
beliefs. adaptive networksl[6-18].

With the increasing diversity of offline and online media The long-term dynamics of the adaptive voter model can
[6, 7] and new media technologie§]| it is becoming easier reach one of two absorbing statescénsensus state which
to avoid opposing opinions altogether. In particular, the | all agents hold the same opinion, ofragmented statein
ternet enables people not only to access but also to publisithich the network breaks into at least two components, which
information easily. One of the best examples is perhaps thare internally in consensus. The adaptive voter model there
micro-blogging service Twitter, which currently is appcba  fore provides a simple framework in which the fragmentation
ing a billion user posts per week. Among this flood of in- of opinion formation processes can be studi#8-p3]. In
formation, it is easy to find sources supporting almost everyhis model, fragmentation occurs in a phase transitiontthat
conceivable opinion, while avoiding contradicting eviden been identified as a generic absorbing transit@).[ It can

It thus seems likely that situations develop where a giverbe computed analytically using a recently proposed motif ex
subset of the society (and the media by which it is represinte pansion approacl2f].
only pay attention to information sources with the same be- The adaptive voter model has been studied so far on undi-
lief system, thus reinforcing and perpetuating myths that a rected networks. In the context of opinion formation, how-
never confronted with opposing views. In this light, one mayever, the underlying interactions are often asymmetrids It
ask whether we are heading for a society that is fractionategherefore reasonable to encode “who pays attention to whom”
into groups adhering to internally consistent but mutuelly  as directed links in the interaction network. Directed $ink
clusive belief systems. were considered in previous studies on static netwa2ks [

29), but directed adaptive networks have only been investi-
gated in a generic threshold model for boolean netwd&k [

In this paper, we investigate voter dynamics in a directed
* zschaler@pks.mpg.de adaptive network, in which both the opinion dynamics and
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the topological change are influenced by the directionality 0.5 T T ]
the interactions. The agents can avoid disagreeing witfhaei
bors by rewiring their outgoing links, whereas they cantfiot a 7 N
fect their incoming links. The overall network topology ¢hu r 1
changes adaptively, while the out-degree of each agent, i.e
its number of outgoing links remains unchanged. This en-
ables us to study the influence of different realistic oujrde . (.25 N\ -
distributions. b
For sufficiently dense Poissonian out-degree distribstion 0.04
fragmentation occurs if the rewiring of network connection L N
exceeds a critical rate, which is consistent with previais r 4 '
sults on undirected networkd$-23]. However, for scale- /
free out-degree distributions and Poissonian distrilmstivith / | 1c1)509 t, 12500
small mean degree, we find that fragmentation can already t -1 -0.5 0 0.5 1
observed at much lower rewiring rates than in undirected net m

works. We show that this behavior is due to the nodes of low G Col i ical trai ios f rmilati
out-degree, which can form self-stabilizing topologidalis- FIG. 1. (Color online) Typical trajectories from networkgilations.

tures that nucleate fragmentation The state of the network is characterized by the density tifeac
) links p and the magnetizatiom. The trajectories shown correspond
to networks with Poissonian out-degree distributions wWith = 4
(red/light gray),(k) = 8 (black), and an out-degree distribution fol-
Il. MODEL lowing Pou (k) o< k2 (blue/dark gray). The trajectories initially
drift along a parabola of active states (dotted red, dashezk band

; : dash-dotted blue lines, analytical results from Ed))). However,
We consider a network a¥ nodes representing agents and only the black trajectory reaches a consensus state, whireath-

ﬁ( Iglrectk?_d links r_epresentlng soma_l_r(]:m:jtacts_. Ea;:? rlzode ers eventually collapse to a fragmented state. The insetsshdime
Nolds a binary opiniom; < { , B} e direction of links — ggjeg ofp from the scale-free network shortly before fragmentation.
indicates the flow of attention between the agents. In othefy — ¢ , — o.1.

words, in our notation we draw links in the direction that one
would draw the “follows”-links on Twitter.

We initialize the network as a random directed graph witheyork breaks into at least two components, which are-inter
randomly assigned equiprobable strategies. The nodesstatgy)y in consensus. Second, for sufficiently low rewirintesa
and the network topology are then left to evolve according (e network first approaches a stationary active staié &
the following rules: In sequential updates, a Imkj_ is plcke_d 1, p > 0), in which the opinions and the topology change con-
at random from the networ[]. If o; = o;, the linkis said iy aly. Because such active states form a parabola ipthe
to beinert and nothing happens. Otherwise, the link is said 10, njane, the system can drift randomly along the parabola un-
beactive and itis either reW|_r_ed (probabilify), or an opinion 4| 3 absorbing consensus state & +1, p = 0) is reached.
update takes place (probability- p). In the former case, the  These dynamics are closely reminiscent of the adaptive vote
node: cuts the link and reconnects to a random nédeith  ,,44el on undirected networkag, 22].

Tk :Wai' Ir][ tht?] I?tttﬁr casg,_nodﬂ?slywr(chesllts ﬁp'n'oml’t;o . In addition to the trajectories described above, the digct
gﬂ" eg_ote_b ? € Lew'”ngtr? n tsdon yc ;n?%s € " model can show a third type of behavior not observed in the
thegree IS ”du |oné W_ %ejavs ftehou -t egrlfe ISt fixed undirected case. Here, the systems drifts along the parabol
€ average degre >._ / orthe network remain fixed. o 4ctive states for some time and then collapses slowlyeo th
_ In contrast to previous studies of the voter model on Stat"?ragmented state (Fid). This can lead to fragmentation sig-
directed networks, we do not need to restrict our model (Q;iicantly below the critical rewiring rate found in undited
networks consisting of a single strongly connected COMPOR ey orks. The delayed fragmentation after the drift aldvey t
_nen;f|25, 2(18,b32],hbecaus¢ the ne_t\_/vork? I(?olinponﬁnLStrUCt_ureparabola of active states suggests that in the active s$tate t
IS a Iec;ce yt g ongoing rewwn% ot lin defff’ Ic Cont'n'lnetwork undergoes some slow reorganization that evegtuall
uously forms and re-routes paths between different styongljga4s 1o the destabilization of the active states. In the fol

connected components. _ _lowing we investigate the nature of this reorganization isd
Below, we study the proposed model in terms of the dens'tYmplications for network fragmentation.

n of A-nodes (corresponding to agents holding opinion A) and
the per-capita densities andh of active links, f = [A—B]
andh = [B—A]. Following [20, 21] we characterize the state
of the network by the magnetization = 1 — 2n and the
active link densityy = (f + h)/ (k).

In network simulations of the directed adaptive voter model The main goal of this paper is exploring the impact of di-
one observes qualitatively different types of trajectsiriéirst ~ rectionality of attention on the opinion formation processr
at sufficiently high rewiring rates the network rapidly ap- this purpose we compare the dynamics of the directed adap-
proaches a fragmented state:{ > 0, p = 0), in which the tive voter model to well known results for the undirected@da

I1l. ANALYTICAL APPROACH
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tive voter model. In the following we refer to these two mod-  In the following, we express the triplet densities in terrhs o
els simply as thalirected modebnd theundirected model node and link densities using the pair approximat@®s-B6|,
respectively. A direct comparison of different models is of

ten difficult and may lead to misleading results. We therfor (XY 2] ~ [X—Y] (k) [Y—Z] )
compare simulation results of the directed model to two ana- (k)[Y]’
lytical approximations that are known to capture the dymami [Y—Z]
of the undirected model in different limits. In this compar- px z [ XY —=Z] ~ [Y=X](qo) Bk ®)

ison an agreement between analytical and numerical results
indicates that the assumptions made for the undirectedimodeherenxz = 1 + dxz accounts for the double-counting of
are still valid in the directed model, whereas a disagreemersymmetric triplets. In the equations, the numbers of ttgle
points to new physics in the directed model that is not ob-are approximated as the number &Y or Y—X links
served in the undirected model. times the average number ®f-Z links connected to & -
node. Here, we assume that the probability of finding an
outgoingZ-neighbor of a¥"-node is independent of the pres-
ence of anX-neighbor of theY'-node. Thus the probability
of finding a given triplet depends on the global link density
) ) . Y—Z]/(k)[Y]. In (4), each of thek) outgoing links of the
The undirected model was studied extensively by momeny _node is av—27 link with this probability. In ), on the
expansionsg0, 22, 33]. Following previous works, we de- gother hand, tha -node has already been selected by follow-
rive differential equations for the t|m.e.evolut|on of sdled ing one of its outgoing links. In this case, each of its reriman
network moments, namely the densitiesf, andh defined () outgoing links is a¥—Z link with this probability. The
above. The change in the density of A-nodes.is given  quantity (¢,) is the mean excess out-degree in the network,
by the balance between opinion adoptiorB®A andA—B  \hich can be computed from the out-degree distribut8i. [

A. Moment expansion

links, As a further simplification we assume that the mean degree
. of both node types is equal, so tHat>A] = (k)n — f and
n=1-p)h—f). (1) [B=B] = (k)(1 —n) — h [20]. We then obtain a closed set of
ODEs,
The density ofA—B links, f, changes according to
n=(1-p)(h—f), (6)
f=—pf+ (1 ~-p){[A>A—B] — 2[B«A—B]
+ [B«B—A] — [A=B—A] — f}, (2 . —
[ -1 |=f} @ f—pf+(1—p){(<>nf)f—f
where[X—Y—Z] and[X+Y—Z] denote the per-capita densi- N 2
ties of triplets in the networkX, Y, Z € {A,B}). In Eq. @), — 1fh + n(<k>(11 n) = mh nf—}, @)
—n —n n

the first term corresponds the gain jhdue to rewiring,
whereas the remaining terms correspond to gains and losses

due to opinion adoption. In an opinion adoption event, a (kY(1 = n) — h)h
node copies a neighbor’s opinion via one of its outgoing ac- h = —ph + (1 — p){ —h
tive links, transforming it into an inert link. This also afits I=n
all other links connected to the focal node, transforming ac _h k= Df h? (®)
tive links into inert ones and vice versa. The resultingriect n " n T
change in the density of active links is accounted for by the
triplet variables. wherer = (qo)/ (k).
The time evolution of the density &—A links, &, is deter- This system of differential equations has a trivial solnfio
mined by the analogous equation Wt = f* =0, ©)
h = —ph+ (1 — p){[B=B—A] — 2[A«B—A] corresponding to the absorbing states, in which no actike i

+ [A¢A—B] — [BoASB] - b}, (3) are left. These states can be either fragmented states (
n* < 1) or consensus states(= 0 orn* = 1).
Additionally, there is a continuum of non-absorbing, aetiv

Equations {)—-(3) do not constitute a closed ODE sys- stationary states,

tem, as they involve the triplet moment¥—Y—Z] and
[X«Y—Z]. In principle, the equation system could be com- 1

plemented by similar equations for the triplet moments.sehe W =f"=n"1-n") (<k> B m> . (19)
would, however, depend on higher moments, such as four-

node motifs. An appropriate truncation of the expansion isn which neither consensus nor fragmentation is achieved.
thus necessary in order to obtain a closed system of eqsatioriThese states form the parabola in then-plane discussed
This approximation is referred to as moment clos3& 4. above (Figl).
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P characterized by their numbers of inert incoming and outgo-
— ing links (m,, moyt) and active incoming and outgoing links
(Mypy Moo T 1, L) (lin, lout)- Following [24], we derive a set of balance equa-
1-p) o tions capturing the effect of all possible update processes
L, P (G) Psl(Gut 1) -0 the densities of active motifs,
o
® ] i 1) outy lin' 1’ Iou( 0! 11 in> Yout. A
3 g I (i * 1, m ) ( Gim Gou) P(min, Mout, lina lout) - —P(min, Mout, lina lout)
(min: Moyt Iim Ioul) lin +0U‘Imnp l + 1
#pp(mina Mout, lin + 17 lout)
t
(M Mo 1, iy 1) Tl
[ - (1- o —1 :
m(l'[’) E z: + lin+ 1+ lout (1 p)p(mm s Mout, lin + 1, lout)
lout + 1
(oo T 1) T Tt G 5 172U Mot = L fins Lo 1)

Mout
FIG. 2. Transitions of a general active motifiin, mout, lin, lout )- (1 = p)p(lin; lout Min, Mout) (12)
The transition probabilities follow from the link updatelewf the
directed adaptive voter model. New active motifs are onbated
when an opinion update occurs on an incoming active linkqiseéc

transition). In this case the number of incoming and outg@aictive

Min + Mout

for m;, > 0 andmegy, > 1, and

links (dashed) of the new motif is estimated based on theegrat 50,1, in, Towt) = —p(0, 1, lim, loue)
distribution P;,, and out-degree distributioR,.,; of the underlying in) fout) = —p i, fout
network. + (1 - )Pm (lin)Pout (lout + 1)
nln
X ins Mlout s Min; Ttou
Znm'i_nout prm fout- 11 " t)

In the undirected model the moment expansion is known
to yield good results whep is far from the fragmentation
point, but to become less precise foclose to fragmentation.
To estimate the fragmentation point we therefore resort to
motif expansion described below. It is nevertheless icsire
to consider the critical rewiring rate

for mi, = 0, mowt = 1. The summation runs over all active

MOtifs (1min, Mout, Nin, Nout) UP 10 @ Maximum in- and out-

%egree i.e. over all possible 4-tuples wnthn + nin < kin

andmous + Nout < Kout, Wherek;, andk,,, denote the cut-

offs. Note that the dimension of the transition matrix grows

Fo=1—[)(x+1)", (11) with the cut-off faster thai?, which has a significant effect
on the computation time.

which is computed by a linear stability analysis of the ac- A schematic representation of the transition probabdliise

tive states. Fop < j. the active states are stable, whereasshown in Fig.2. We account for heterogeneous in- and out-
the absorbing states are stable for- p.. This estimate of degree distributionsH,, P..), but assume that the in- and
the critical point closely resembles the analogous result f out-degree of a node are uncorrelated. In the balance equa-
the adaptive voter model using link update on undirected nettions, the fragmented state is obtained as the stationduy so
works [36]. The main difference is that in the undirected case tion containing zero active motifs. The critical rewirirajep..

the parametex is unknown and therefore usually set to unity. is then extracted from the linear stability analysis of #tate

This approximation is well justified, because in the undizgdc  as the rewiring rate at which the fragmented state becomes
model, the ongoing rewiring leads to an approximately Poisstable.

sonian degree distribution for which = 1 [37]. By con-

trast, in the directed model, the outgoing degree distidbut

remains fixed, and has to be considered explicitly. In the

results presented here, we use values diat are explicitly IV. NUMERICAL EXPLORATION OF EARLY
measured in realizations of the respective out-degreefuist FRAGMENTATION
tions.

In the following we compare the estimated fragmentation
. . points, obtained from the approximations above, with itasul
B. Motif expansion from agent-based simulation of the networks. We first con-
sider the case of a network with Poissonian out-degred-distr
In the undirected model a precise estimate of the transitiobution with (k) = 8. As a second example we study a network
point can be obtained byraotif expansiomproposed in24]. with a scale-free out-degree distribution, in which thegfra
In this expansion we consider an almost fragmented networknentation occurs much earlier. We conjecture that thisyearl
consisting of two almost isolated components which ara-inte fragmentation occurs due to the presence of a large number of
nally in consensus, but are still connected by a low dengity onodes with low out-degree, which is then verified in a network
“active motifs”. In the directed network the active motiiea with Poissonian degree distribution with) = 4.
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FIG. 3. Fragmentation of a network with Poissonian out-degfis-  FIG. 4. Early fragmentation in scale-free networks. Thephre
tribution and(k) = 8. Shown is the absolute value of the magnetiza- analogous to Fig3, but describe networks with an out-degree dis-
tion in the final frozen state (top) and the proportioaf simulation  tribution Pou: (k) o< k~%. Fragmentation occurs far below the esti-
runs that reach a fragmented state befarg. = 80000 (bottom) as  mated transition points (motif expansiom:= 2 (dashed)o = 2.25

a function of the rewiring ratp. Each point is an average over 100 (dash-dot-dotted) = 2.5 (dash-dotted); moment closure: = 2
simulations. The critical point computed by the momentutesap-  (dotted)) and extends over a wider rangé.= 10?, kin = kout =
proximation (dotted) overestimates the critical rewiniate, whereas 10, (k) = 5.5665, (k) = 2.7042, (k) = 1.876 fora = 2, o = 2.25,
the motif expansion yields a better estimate of the truetiegtation  anda = 2.5.

point. For the motif-expansion a cut-off &f, = kouwt = 10 was

used. For a higher cut-off the estimated critical rewiriateris ex-

pected to shift to slightly higher values. analytical approaches capture the dynamics with similes pr

cision as in the undirected case.

A. Poissonian out-degree distribution with (k) = 8
B. Scalefreeout-degreedistribution

We first consider networks with a Poissonian out-degree
distribution, because this distribution closely matcHnesdis- We now ask how the model behaves for more realistic out-
tribution observed in the undirected mod20[. Starting from  degree distributions which cannot be realized in the previ-
a random graph with both in- and out-degrees drawn from a@usly studied undirected model. In the following, we coesid
Poisson distribution with meafk), we simulate the full net-  power-law distributions of the forn#,,(k) o« k=%, which
work dynamics for systems of up &% = 10? nodes until a  capture the diversity that is observed in a wide variety of so
frozen state is reached or a maximum simulation tijg: is  cial applications 38]. For generating networks with power-
exceeded. Time is measured in unitd ¢, so that’l’ update  law distributed out-degrees and Poissonian in-degreefisiie
events take place in one simulated time unit. draw an out-degree sequence of lengtHrom a power-law

The results in Fig3 show a relatively sharp fragmentation distribution. For each out-degréein this sequence, we then
transition at a critical rewiring ratg. ~ 0.79. Forp < p., connect the outgoing links of nodeto k; random nodes in
the network reaches a state of global consensus, in whicthe network. We explicitly avoid creating nodes without-out
all nodes have the same statex| = 1). By contrast, for going links as these would never change their state and act as
p > p., it separates into two disconnected components of ap*zealots”, trivially preventing the possibility of globabnsen-
proximately the same size, which hold opposing opinions busus B9].
are internally in consensus. These results are strongly-rem The results in Fig4 show that in scale-free networks with
niscent of the undirected modélq, 22, 24). a € [2,3] the fragmentation occurs much earlier than in the

The analogy between the directed and undirected modétoissonian case. Moreover, the proportiorof networks
extends also to the analytical results. As in the undirectedeaching fragmentation now increases gradually with iasre
model the moment expansion overestimates the transitioimg p. Considering individual simulation runs in detail one
point, whereas the motif expansion yields a relatively {geec finds that the networks remain for some time in an active state
estimate. before slowly approaching fragmentation—a behavior net ob

The study of the directed model in Poissonian networksserved in the undirected model or in the directed networks
with (k) = 8 highlights the similarities between the directed considered in the previous section.
and undirected networks and provides a basic test for our an- The observation that the networks spend some time in
alytical approaches. For these networks the directed mod#he active state before fragmenting indicates that thegesst
exhibits the same dynamics as the undirected model and thee still feasible at least in the beginning of the simulatio
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it can lead to the formation of small clusters which have few
| outgoing links and hence have a very high resistance to inva-
%ol P, o o o sion of the opposing opinion. In an extreme case small sub-
e %ond’oo 0°%® , °8 . graphs can form in which all nodes are in consensus and all
Ei‘i”cﬂz DUJDDD“DDU ° 8 outgoing links starting within the subgraph lead to othete®
DC 4r o‘“':' DD‘:':F o °af N in the same subgraph. Such structures are attracting compo-
g | m‘ nd:n o nents of the network, which can be entered by following a
”"0 - directed path but never left due to the lack of outgoing links
oL o - . | Therefore, such subgraphs can never be invaded by the oppos-
. ’:“& ing opinion. Further, no outgoing links leaving the subdrap
. can be formed because none of the nodes in the subgraph will
A ever rewire an outgoing link.

"
\\\\\H‘ \\\\\H‘ \\\\\H‘ Il L1 1111l . . .
0 0 02 04 We call subgraphs that are hard or impossible to invade self-
|1- 1 stabilizing structures. The initial formation of such austure
out through the creation of a state-homogeneous attracting com
ponent is a stochastic event that occurs with a small proba-
FIG. 5. Average in-degree vs. out-degree at the initiak(0, cir-  bility. However, once such a structure has been formed it
cles), intermediatef (= 20, squares), and stabilized stage before full can grow as other nodes rewire their outgoing links into the
fragmentation{ = 500, diamonds). Shown is the average in-degreestrycture. Nodes of low out-degree can be recruited rapidly
of the network nodes vs. their logarithmically binned oagiee, av- - pacayse only few rewiring events are necessary to rewire all
eraged over 10 simulation runs. On average, the in-degreedsis ¢ o o )1q0ing links into the self-stabilizing struoturRe-
with large out-degree decreases with time. Parameférs: 5000, . - . .
Pout(K) o k=2, p = 0.3. crunment. qf nodes with more_outgomg links takeg longer as
more rewiring events are required. Note that the size offa sel
stabilizing structure can only increase. In simulationst- n

runs. The mechanism by which fragmentation is reached muyorks observed shortly before fragmentation are oftendoun

therefore differ from the mechanism observed in the casel® cOnsist of two almost disconnected clusters, which alg on
studied so far, where fragmentation occurs due to the dest§°nnected by afew nodes of high out-degree. Because of their

bilization of the parabola of active states in a transaiti-  'eduent changes of state, these connecting hubs have very
furcation. few or no incoming links.

Notably both the moment and motif expansion seem not For illustration of the mechanism described above an em-
to capture the different mechanism for fragmentation bseau bedding of a small network at four time points before frag-
they significantly overestimate the fragmentation point. | mentation is shown in Fig6. The network breaks into two
the following we call fragmentation well below the estindite almost disconnected clusters. The remaining connecti@ns a
fragmentation poinearly fragmentation The main assump- finally formed by a single hub node. The fragmentation has
tion used in both approximations is the absence of correlabeen nucleated by the formation of two state-homogeneeus at
tions between a node’s in- and out-degree and between nedfacting components: a self-referential cycle consistifiive
est neighbors. Their failure thus indicates the appearahce hodes of out-degree one and another consisting of two such
correlations that are absent or not substantial in the msvo nodes.
with Poissonian out-degree distribution. Given the observations above we can explain the shape of

Network simulations suggest that early fragmentationiis in the trajectories shown in Fid.. Because the formation of
tiated by the formation of self-stabilizing structures algthe  a self-stabilizing structure is a rare event, they are galyer
agents. For understanding the process leading to such strucot present in the initial network. The system therefore ap-
tures, consider that the networks, even far from fragmamtat proaches the parabola of active states, which is in agreemen
are partially ordered. In average the number of in- and outgowith results from the undirected model and the analytical ap
ing neighbors of an agent that share the focal agent’s apinioproximations for the directed model. However, while the-sys
will be greater than the number of neighbors that oppose theem drifts along the parabola of active states, self-staig
focal agent’s opinion, because the rewiring dynamics transstructures are eventually formed due to the ongoing regiirin
forms active links into inert ones. This implies thatif areay  As the self-stabilizing structures grow, the permissilalege
changes her opinion, she is likely to experience a subséquefor the magnetization shrinks, effectively arrestimgas al-
loss of incoming links because the majority of her neighborsnost all nodes are recruited into the self-stabilizingatites
now oppose her opinion and rewire their links with some prob{Fig. 7). Because the last nodes to join the structures are “hub”
ability. In the long run agents that frequently change theimodes with high out-degree, a relatively high density oivact
opinion have lower in-degree than those who change theiinks can be maintained for some time. Because the hub nodes
opinion rarely. Therefore, the attention, measured in $ermundergo rapid opinion switches, rewiring can only slowlg-se
of incoming links, focuses on the agents that have a low outarate them from opposing neighbors, which explains the slow
degree and thus rarely change their opinion (B)g. fragmentation. The switching and rewiring of the hub nodes

Focusing the attention on agents of low out-degree impedeare clearly visible in the time series of the active link den-
the propagation of opinions across the network. In pawigul sity p. In the inset in Fig.l, this is shown for the last03
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FIG. 6. (Color online) Snapshots of an exemplary network of

N = 100 nodes with out-degree distributiaR, (k) oc k2 at

t = 200, 250, 350, 400 (top to bottom). Two state-homogeneous at-
tracting components (blue/dark gray) nucleate self-Btaing struc-
tures leading to early fragmentation. Note that the nodéls kigh
out-degree (represented by the node size) have very lowrorize
degree and keep the network connected for a long time. Hag, f
mentation is reached at~ 413.
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FIG. 7. (Color online) Typical restriction of the permisgibmag-
netization range by self-stabilizing structures. Showathe upper
and lower bounds fom (dashed red and dotted blue lines) computed
from the total sizeSa and Sg of the stable A- and B-components,
i.e. maximally connected components in which each node has o
going links to nodes in the same state only. The magnetizasio
confined to the shaded area and effectively arrested at aialed
eventually. The arrow marks the point when only a single iaing
hub node connects the two parts of the network (cf. Bjg.Here
fragmentation is reached itz 524. The jumps occur when the last
links leaving a self-stabilizing structure are rewired tmlas within
the same structure, so that it is fully stabilized and candiedled.
ParametersN = 500, Pou (k) &< k=2, p = 0.3.

time units before fragmentation. Here, one of the two remain
ing connecting hubs detaches from one of the components and
the final hub still switches several times before eventusdiy
separating.

Summarizing the observations above, we conjecture that
early fragmentation is initiated by the formation of self-
stabilizing structures among nodes of low out degree. We em-
phasize that contrary to most dynamical phenomena observed
in scale-free networks, the dynamics of interest is gerdrat
primarily in the nodes of low degree. Nodes of high degree
still play an important role as they are the last nodes to con-
nect the separating components and thus determine the time
of fragmentation. This mechanism is not captured by cur-
rent analytical approaches, because it relies on the lopilof
negative correlations between the in-degree and out-dedre
nodes that is neglected in previously proposed approximati
schemes.

C. Poissonian out-degree distribution with low (k)

Because the mechanism postulated above relies on the for-
mation of correlations, one can perform a simple test by con-
sidering a system in which these correlations are removed by
an additional rewiring process. However, such a test is for
two reasons difficult in scale-free networks: First, beeanfs
the constraints in scale-free topology it is well-knownttha
is difficult to remove correlations in scale-free networksne



that is in the same state as the source.

The model variant in which the rewiring of inert links is
switched on shows no evidence for early fragmentation (see
Fig. 8). Fragmentation occurs in a relatively sharp transition
at a critical rewiring rate, that is consistent with the estimate
from the motif expansion. We emphasize that the rewiring
of inert links neither introduces nor destroys active links
therefore has ndalirect impact on fragmentation. However,
rewiring inert links prevents the build-up of correlatior-b
tween the in-degree and the out-degree of nodes and thereby
inhibits the formation of self-stabilizing structures. €'hb-
sence of early fragmentation in a model where these corre-
lations are removed confirms the causal relationships postu
lated above. We therefore conclude that in directed adaptiv
networks the slow build-up of negative correlations betwee
in-degree and out-degree can initiate early fragmentdtjon
leading to the formation of self-stabilizing structures.

V. CONCLUSIONS

FIG. 8. Fragmentation of networks with Poissonian out-degfistri- In the present article, we have investigated an extension of
bution and low(k), in which the inert links are also rewired (squares) the voter model on adaptive networks that takes the dinectio
or are not rewired (circles). Early fragmentation is cleaisible, al-  ality of the interactions among the agents into account. We
though the shown averages over 100 simulation runs areatiér ~ found that our model can transition to a fractionated state f
noisy due to the highly stochastic nature of early fragnénta  rewiring rates that lie much below the critical value estieda
Shown are the absolute value of the magnetization (top)ptbe  ysing analytical approaches known to work well in undirdcte
portion of fragmenting simulation runs (center), and the@ation  models. We discovered that fragmentation occurs due to a
coefficient between trle in- and out-degree of the nodes ififaé 46| mechanism that depends inherently on the directed na-
state (bottom)N' = 107, (k) = 4, kin = kour = 10. ture of the links. Thigarly fragmentatiomccurs when agents
focus their attention on those who are steady in their opinio
because they pay attention only to few sources of informatio

pletely, and second, because of the presence of nodes of vely this case self-stabilizing structures can form that eats
high degree, fragmentation takes a long time, making numekragmentation.
ical studies of fragmentation tedious. Our results illustrate that directed networks can exhieitn

Our reasoning above predicts that early fragmentatiophysics not observed in their undirected counterpartseEsp
should be observed also in directed Poissonian networks witcially in the investigation of opinion formation processtse
sufficiently low mean degree. In the present section we therepften directed flow of attention should therefore be takéa in
fore consider a Poissonian network with a mean degree odccount in models.
4, which avoids the difficulties encountered in scale-free n In the context of real-world opinion formation processes th
works. In this section we show a) that this network exhibitsmechanism described here may constitute a threat but also an
early fragmentation and b) that the early fragmentation campportunity. Early fragmentation maintains diversity pim-
be avoided by an additional rewiring mechanism that destroyions, it may thus aid the survival of counter-factual myths,
the correlations implicated in the formation of self-staimg  also of legitimate and well-founded views of minoritiesisit
structures. conceivable that this mechanism may be employed in the fu-

Simulation results for the network described above ardure to adjust the perceived degree of controversy in ciatro
shown in Fig 8. The figure shows clear evidence of fragmen-environments. For instance, in online discussion boards or
tation well below the estimated fragmentation point. Ferth music recommendation systems the underlying software can
this early fragmentation is accompanied by the build-up ofin principle control which posts are displayed to whom. It
negative correlations between the in- and out- degreeseof thcould thus encourage rewiring of attention that eitherlifaci
nodes. This confirms our previous observation that attentiotates or inhibits early fragmentation.
focuses on those nodes who pay little attention to otherathe  Even the adaptive directed voter model paints a highly sim-
selves, as we have also seen in the scale-free case if.Fig. plified picture of real-world opinion formation processesla

To verify that the correlation described above is the causéhus must be considered as a toy model. Therefore, investiga
and not a symptom of the early fragmentation, we now contion of more realistic models is an important goal for the fu-
sider a different variant of the model. This variantis idesit  ture. Based on the results and analysis presented in therpres
to the model used so far, except that when an inert link is chopaper we believe that the mechanism of early fragmentation
sen, this link is also rewired to a randomly chosen targeenodwill be observed whenever directed attention is focused pre
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erentially on agents that change their opinions at less thatation, whereas curiosity would favor connecting to well in

average rate. We therefore expect that early fragmentatioiormed agents and thereby hinder early fragmentation.isn th

should be robust to future refinements of the model. light, novelty, whether in the form of true innovation or arb
A key ingredient that is missing in our present model istrarily changing fashions may play an important role in pre-

novelty. Here we considered only the exchange of opiniongenting social fragmentation.

regarding a single well defined question, whereas in reality

many discussions are enriched by the constant inflow of new The authors thank G. Demirel for fruitful discussions. The

ideas. We have shown that homophily favors connecting tevork of CH was partially supported by the National Science

poorly informed agents and thereby promotes early fragmenFoundation under Grant No. PHY-0848755.
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