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Using numerical simulations, we investigate the equilibrium dynamics of a single component fluid
with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the
dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics.
Since the Yukawa potential can describe the ion-ion interactions in a plasma, our results have
significant applicability for both analyzing and interpreting the results of x-ray scattering data from
high power lasers and fourth generation light sources.
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I. INTRODUCTION

Recently, using high power lasers and fourth generation
x-ray sources, it has become possible to create and diag-
nose extreme states of matter relevant to Inertial Con-
finement fusion (ICF) and the cores of compact astro-
physical objects in the laboratory [1–5]. A particularly
exciting development is that x-ray Thomson scattering
experiments will soon be able to fully resolve time de-
pendent ion dynamics in dense plasmas [1, 6, 7]. These
ion dynamics are encoded in the wavevector and fre-
quency dependent ion-ion structure factor (or simply dy-
namical structure factor), Sii(k, ω), which is the Fourier
transform in space and time of the density autocorrela-
tion function. For forthcoming experiments, an accurate
model for the ion-ion structure factor is needed.

In a previous work [8], we found that the conventional
hydrodynamic description (Navier-Stokes equations) re-
produces Sii(k, ω) well for k < kmax, where kmaxλs ≃
0.43 and λs is the electronic screening length. Despite
the success of the conventional hydrodynamic descrip-
tion at these large lengthscales (small k), a model that
works well at higher (momentum transfer) k is generally
of greater applicability to the experiments. Fortunately,
a well known framework - generalized hydrodynamics -
already exists for extending the results of conventional
hydrodynamics to these higher k values. In this paper,
we compare one of the simplest models of generalized
hydrodynamics to the results of state of the art numer-
ical simulations for Sii(k, ω). We show that the model
works remarkably well for all k values, i.e. the model
describes both the conventional hydrodynamic limit at
small k values and the large k behaviour (when the ions
behave as a collection of free particles), along with the
entire intermediate dynamics between these two regimes.
Our results thus show that this simple model has sig-
nificant applicability for analyzing and interpreting the
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results of forthcoming x-ray scattering experiments using
fourth generation light sources.
This paper is structured as follows. In Sec. II, the

Yukawa system - which represents interacting ions in a
plasma - is introduced and details of our numerical sim-
ulations of this system are given. In Sec. III, the gen-
eralized hydrodynamics framework is summarized, along
with the Gaussian approximation for the memory func-
tion that leads to a simple model for Sii(k, ω). This
model is then shown to very accurately reproduce the
results of our numerical simulations in Sec. IV. Also in
this Section, we briefly discuss the applicability of our re-
sults to x-ray scattering experiments (Sec. IVE), before
offering our conclusions in Sec. V.

II. NUMERICAL SIMULATIONS

We consider a plasma consisting of one species of ions
of charge Ze and mass m at temperature T and density
n. Because the ions are much more massive than the
electrons, on the time scale of the ion dynamics of in-
terest here, electrons instantaneously screen the ion-ion
Coulomb interactions and their degrees of freedom are
not treated explicitly. We take the Yukawa potential,

v(r) =
(Ze)2 exp(−r/λs)

4πǫ0r
,

to represent the screened interaction between ions. The
electronic screening length λs [3, 9, 10] reduces to ei-
ther the Debye-Huckel law or the Thomas-Fermi distance
in the limiting cases of classical and degenerate electron
fluid respectively [1].
This single component system is known to be fully

characterised by two dimensionless parameters only [11].
These are: (i) the coupling strength

Γ =
(Ze)2

4πǫ0

1

akBT
,

where a = (3/4πn)1/3 is the average inter-particle dis-
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tance, and (ii) the screening parameter

α =
a

λs
.

In our MD simulations, we compute the dynamical
structure factor, Sii(k, ω), of the Yukawa system for var-
ious Γ values (1,5,10,50,120,175) at α = 0.1, 1.0 and 2.0,
thereby spanning a range of thermodynamic conditions
1. In our simulations, the dynamics of N = 5000 par-
ticles mutually interacting through the Yukawa poten-
tial are resolved using the Verlet algorithm in periodic
boundary conditions [12]. In all cases, we include the
Ewald summation in our force calculation - this is es-
sential for small α values - using the particle-particle-
particle-mesh (PPPM) method [13]. The rms error of
our force calculation is 10−5. We find that obtaining
accurate MD data for Sii(k, ω) requires averaging the re-
sults of a large number of simulations to improve statis-
tics. This computational demand has made a thorough
study such as ours impractical before now. For example,
compared with the study of Hansen for the OCP sys-
tem [14] - which, even after more than 30 years remains
the primary source of MD data for quantitative studies
of that system [15] - we use 20 times as many particles,
a smaller timestep by a factor of 2 − 10, and simula-
tion times 200 − 40000 times as large. Our timestep
δt = 0.01ω−1

p , where ωp =
√

(Z2e2n)/(ǫ0m) is the ion
plasma frequency, ensures excellent energy conservation
(∆E/E ≈ 10−5). Moreover, we find that the long length
of our simulations, 25 × 819.2ω−1

p for every Γ and α
value, is of paramount importance: while it is possible
to capture the essential features of Sii(k, ω) with simu-
lations significantly shorter than this, producing a spec-
trum that is of sufficient accuracy to draw conclusions
about the validity of various models requires simulations
of approximately this length (we note that our data for
Sii(k, ω) changes negligibly by increasing the simulation
time beyond 25 × 819.2ω−1

p ). In particular, these long
simulation times are essential for computing accurately
the decay time of collective modes at small k values (i.e.
the width of the ion-acoustic peak in Sii(k, ω)).

In a previous work [8], we presented MD results for
Sii(k, ω) of the Yukawa system at small k values; the
MD data showed that the conventional hydrodynamic
description works well in describing the dynamics pro-
viding k < kmax , where kmaxλs ≃ 0.43. The new MD
results presented here are for a significantly larger range
of k values; in this paper we are interested in finding a
model that reproduces the MD data for all k values.

1 We have also performed some simulations at other α values; the

model presented in Sec. III A works very well for these other α

values, but here we present results for α = 0.1, 1.0 and 2.0 only.

III. MODEL

A. Model for Sii(k, ω)

In the hydrodynamic regime, the wavevector and fre-
quency dependent ion-ion structure factor can be written

SH
ii (k, ω)

Sii(k)
=

1

π

(csk)
2k2ηl

[ω2 − (csk)2]2 + [ωk2ηl]2
, (1)

where Sii(k) is the static ion-ion structure factor. Equa-
tion (1) is the result obtained from the linearised Navier
Stokes equation [12, 16]. Here cs is the (isothermal)
sound speed and ηl is the kinematic viscosity. Equation
(1) clearly has considerable similarity to the expression
that underlies the model we will consider in this article

Sii(k, ω)

Sii(k)
=

1

π

〈ω2
k〉k2φ

′

(k, ω)

[ω2 − 〈ω2
k〉 − ωk2φ′′ (k, ω)]2 + [ωk2φ′(k, ω)]2

.

(2)
Equation (2) is a well known and exact representation
of Sii(k, ω) that can be formally derived from micro-
scopic theory [17]. The similarity to Eq. (1) is no co-
incidence: Eq. (2) represents a generalized hydrodynam-
ics in which both equilibrium properties and transport
coefficients are replaced by suitably defined wavevector

dependent quantities. In Eq. (2), 〈ω2
k〉 = kBT

m
k2

Sii(k)

defines a generalised isothermal sound speed cs(k) =
√

〈ω2
k〉/k2 =

√

kBT
m

1
Sii(k)

that, in the hydrodynamic

limit of k → 0, reduces to the conventional isothermal

sound speed cs(0) = cs =
√

kBT
m

χ0

T

χT

, where χT is the

isothermal compressibility of the system and χ0
T that of

an ideal gas. The quantities φ
′

(k, ω) and φ
′′

(k, ω) are
respectively the real and imaginary parts of the Laplace
transform of the memory function φ(k, t): in the analogy
between Eqs. (1) and (2), the memory function plays the
role of a generalized viscosity.
The model we present here amounts to using the Gaus-

sian ansatz for the memory function,

k2φ(k, t) = k2φ(k, 0) exp(−πt2/4τ2k )

= [ω2
L(k)− 〈ω2

k〉] exp(−πt2/4τ2k ) , (3)

where ω2
L(k) = 〈ω4〉/〈ω2〉 is given in terms of the fre-

quency moments of Sii(k, ω)

〈ωn〉 =
∫

∞

−∞

ωnSii(k, ω)dω . (4)

Explicit expressions for 〈ω0〉, 〈ω2〉 and 〈ω4〉 are given
in the Appendix. Here τk, appearing in Eq. (3), is a
wavevector dependent relaxation time. According to Eq.
(3), the real and imaginary parts of the Laplace transform
of the memory function are given by, respectively [14, 18],

k2φ
′

(k, ω) = [ω2
L(k)− 〈ω2

k〉]τke−τ2

k
ω2/π (5)
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and

k2φ
′′

(k, ω) =
2τk√
π
[ω2

L(k)− 〈ω2
k〉]D(τkω/

√
π) , (6)

where the Dawson function D(x) =
exp(−x2)

∫ x

0
exp(y2)dy [19].

The quality of the Gaussian model has been previously
identified for the Lennard-Jones fluid [18, 20] and by
Hansen et al. in a pioneering study of the One Com-
ponent Plasma (OCP) [14]; it has also been applied to
experimental data for weakly coupled plasma produced
by arc jets [21]. However, because of the difficulty of
conducting highly accurate numerical simulations at the
time of the previous investigations, a detailed, conclusive
comparison of the model in Eq. (2) with the results of
Molecular Dynamics (MD) simulations was not possible
for those systems. Here, with the aid of modern com-
puting facilities, we have conducted accurate, large scale
MD simulations for Sii(k, ω) across a wide range of ther-
modynamic conditions. We find that the Gaussian model
matches the MD data for the Yukawa system very well
for all thermodynamic conditions we have examined in
our simulations.

B. Physical discussion of model for Sii(k, ω)

The structure factor in the hydrodynamic regime, as
given in Eq. (1), can be derived from the longitudinal
component of the linearized Navier Stokes equation,

d

dt
J(r, t) = − 1

m
∇P (r, t) + ηl∇2J(r, t) , (7)

where J(r, t) is the longitudinal current density and
P (r, t) is the pressure. Similarly, Eq. (2) can be de-
rived from a generalized version of Eq. (7) (see [18] for
more details),

d

dt
J(r, t) =− 1

m
∇
∫

dr
′ δP (r, t)

δn(r′ , t)
δn(r

′

, t) .

+∇2

∫ t

0

∫

dsdr
′

φ(r − r

′

, t− s)J(r
′

, s) ,

(8)

where n(r, t) is the number density. This generalization
is motivated in the following way. At small length scales,
the validity of the conventional hydrodynamic descrip-
tion can be expected to break down. Specifically, in the
Navier Stokes description of Eq. (7), both the pressure
term and viscosity term are local in space and time. The
generalization in Eq. (8) includes the non-local behav-
ior that is essential at small length scales in two ways.
Firstly, it is assumed that a change in pressure at a po-
sition r should not be determined completely by density
fluctuations at the same position r but also by density
fluctuations at neighbouring positions. This means that
the pressure gradient due to a density gradient is non-
local (hence the functional derivative appearing in Eq.

(8)). Secondly, the viscosity is made to be non-local in
space and time to model the viscoelastic effects in a real
liquid. The memory function φ(r, t) that models these
viscoelastic effects describes the delayed response of the
longitudinal part of the stress tensor to a change in the
rate of shear [18]. In Eq. (3), this response is mod-
eled by a single relaxation time τk. The requirement
that the model reproduces the result obtained from the
Navier-Stokes equations in the hydrodynamic limit gives
a relation between the long wavelength behavior of this
relaxation time and the kinematic viscosity ηl [18],

ηl = mn lim
k→0

[ω2
L(k)− 〈ω2

k〉]τk/k2 , (9)

where ηl = (43η+ζ)/mn, with η and ζ the shear and bulk
viscosities respectively.
The generalization included in Eq. (8) leads to the

expression in Eq. (2) for the dynamical structure factor
(see e.g. [18]). All that remains is to specify the memory
function. As discussed in Sec. III A, here we choose a
Gaussian memory function, as this is the simplest model
that previous studies have suggested gives a good de-
scription of the dynamics of classical fluids. We find that
this choice yields a model of the dynamical structure fac-
tor that matches the MD data for the Yukawa system
remarkably well.

IV. RESULTS AND ANALYSIS

The Gaussian memory function model given in Eqs.
(2), (5) and (6) requires values for 〈ω2

k〉, ω2
L(k) and τk for

each k. Since all three of these parameters are in general
unknown, we have fitted them to the MD spectrum of
Sii(k, ω) using the least squares method. That is to say,
for each k value for which we have computed Sii(k, ω)
with MD (these are the k values compatible with the
periodic boundary conditions in our simulations), we fit
the model to the MD spectrum of Sii(k, ω). When this is
done, the model reproduces the MD data very accurately
for all Γ and α values; in Sec. IVA we show that this is
the case for small, intermediate and large k values (see
also [22]).
The three parameter fit is the correct way to compare

the Gaussian memory function model to the MD spec-
trum of Sii(k, ω). This is true despite the fact that two
of the parameters, 〈ω2

k〉 and ω2
L(k), can in principle be

obtained by computing Sii(k) (or equivalently the radial
distribution function g(r) [12]) with MD and using the
formulae given in the Appendix. When obtained from
MD in this way, these two parameters are subject to nu-
merical incertainty. Therefore, one would expect that
constraining 〈ω2

k〉 and ω2
L(k) - and therefore fitting the

model to the MD spectrum using only a single parame-
ter τk [14, 18, 21] - would result in poorer fits and larger
errors. In Fig 1, we show that in general this is indeed
the case.
The validity of the three parameter fit can be confirmed

by comparing the fitted values of the two parameters 〈ω2
k〉
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FIG. 1: (color online) Comparison between the Gaussian
model when only the parameter τk is fitted to the MD spec-
trum (dashed line), and when all three parameters are fitted
(solid line) for four separate cases. The MD results are given
by the dots.

and ω2
L(k) to their values when instead computed with

MD as described above. As shown in Figs. 2 and 3, the
parameters 〈ω2

k〉 and ω2
L(k) obtained from the fit to the

MD spectrum of Sii(k, ω) agree very well (within 10%)
with those computed from the MD g(r) and Sii(k). This
is only the case because the model works so well. For
example, as shown in Fig. 3, if an exponential rather
than Gaussian memory function is used (this is known
as the viscoelastic model and is discussed in Sec. IVC),
the numerical values obtained for ω2

L(k) by fitting the
model with three parameters do not agree well with those
computed from the MD g(r) and Sii(k). In the remainder
of the paper, we present only the results for the Gaussian
memory function model with three fitting parameters;
the one parameter fits are irrelevant as their comparison
with the MD data for Sii(k, ω) is not indicative of the
quality of the model.

A. Comparison between model and MD

simulations

We find that in general the Gaussian memory func-
tion model reproduces the MD data very well for all of
the Γ (1,5,10,50,120,175) and α (0.1,1 and 2) values we
have considered, at all k values (our simulations are for
ka = 0.23− 6.19). Extended figures of our complete MD
results are available as supplementary material [22]; here,
in Figs. 4 - 6, we show only a selection of these complete
results at small, intermediate, and large k respectively.
At small k values (Fig. 4), for all α and Γ, the MD data

shows a clear ion-acoustic (or Brillouin) peak that repre-
sents a damped sound wave in the plasma. In this regime,
the model extends the conventional hydrodynamic de-
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FIG. 2: (color online) Comparison between 〈ω2

k〉 as computed
from MD using the formulae in the Appendix (dashed line,
with 10% error band), and the values obtained from the three
parameter fit of the Gaussian memory function model (trian-
gles) and the viscoelastic model (squares) for three different
plasma conditions. (a) Γ = 120, α = 0.1, (b) Γ = 50, α = 1,
(c) Γ = 175, α = 1.

scription to finite k values. Specifically, the generalised
sound speed along with the imaginary part of φ(k, ω) cor-
rect for the fact that the position of the peak does not
vary linearly with k as in the hydrodynamic description
[8], and the real part of φ(k, ω) corrects for the width.

At intermediate k values (Fig. 5), the model gives a
surprisingly accurate account of both the width and posi-
tion of the ion acoustic peak. This is particularly true for
Γ ≤ 50. For higher Γ values, the MD data does in some
cases show additional structure which the model cannot
recreate. In particular, for α = 0.1 and 1, a two peak
structure is visible for ka = 2.32 and a three peak struc-
ture for ka = 3.09 (e.g. Fig. 5, top left). The small peak
just below ωp for ka = 3.09 is of particular interest - it
does not appear to have been seen or commented upon in
previous MD calculations. We note that this peak is dis-
tinct from the higher harmonic peaks reported in [23]. In
fact, at κ = 0.1 only, we do see signs of a second harmonic
peak, at a frequency close to 2ωp. We have neglected this
harmonic peak in our analysis, since we find it to be more
than than 3 orders of magnitude smaller than the main
features in the spectrum of Sii(k, ω), in good agreement
with [23]. On the other hand, the peak shown in Fig. 5
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FIG. 3: (color online) Comparison between 〈ω2

L(k)〉 as com-
puted from MD using the formulae in the Appendix (dashed
line, with 10% error band), and the values obtained from the
three parameter fit of the Gaussian memory function model
(triangles) and the viscoelastic model (squares) for three dif-
ferent plasma conditions. (a) Γ = 120, α = 0.1, (b) Γ = 50,
α = 1, (c) Γ = 175, α = 1.
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Sii(k, ω) (dots) and the Gaussian memory function model
with three fitting parameters (solid line) for small ka values.

(top left) is of the same order of magnitude as the main
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FIG. 6: (color online) Comparison between the MD data for
Sii(k, ω) (dots) and the Gaussian memory function model
with three fitting parameters (solid line) for large ka values.

features of Sii(k, ω). We believe that this peak is due
to microscopic ‘caging’ effects (e.g. [12, 17]). That is,
at these lengthscales, the relatively high frequency oscil-
lations of individual particles in the cages produced by
their neighbors are imprinted on Sii(k, ω). We note that
although the model does not fully capture the additional
structure in the MD data for these conditions, on average
it does give a good account of the overall shape of the
spectrum.
At large k values (Fig. 6), Sii(k, ω) reduces to a single

peak at ω = 0. In this regime, the model reproduces
the MD data very accurately in all cases. As k increases,
Sii(k, ω) should tend to its ideal gas limit S0

ii(k, ω), which
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is independent of α [12, 14],

S0
ii(k, ω) =

(

m

2πkBTk2

)1/2

exp

(

− mω2

2kBTk2

)

. (10)

As shown in Fig. 7, at constant α, as Γ increases Sii(k, ω)
converges more slowly towards S0

ii(k, ω). Indeed, at the
highest k value we have considered in our MD simulations
(ka = 6.19), the MD result only compares well to its
ideal gas limit for Γ ≤ 10 (see Fig. 7). We note that
the discrepancy between Sii(k, ω) and its ideal gas limit
can more readily be seen by looking at the MD data for
the static structure factor Sii(k) ; the ideal gas limit will
only be approximated at k values for which Sii(k) ≈ 1
(since S0

ii(k) = 1).
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FIG. 7: (color online) Comparison between the MD data for
Sii(k, ω) for α = 1 and ka = 6.19 (dots) and the ideal gas
limit given by Eq. (10) (solid line). Also shown on each panel
is the value of the static structure factor Sii(k) at ka = 6.19.

In any case, as shown in Fig. 6, the Gaussian model
compares very well to the MD data at our highest k value
of ka = 6.19, regardless of whether or not this k value is
sufficiently large for Sii(k, ω) to be close to its ideal gas
limit.

B. Hydrodynamic limit

In previous investigations (e.g. [18]), Eq. (9) was
used to infer the kinematic viscosity from the long wave-
length behavior of the relaxation time τk appearing in the
memory function. For the Yukawa system, in principle
this could be used to determine the shear viscosity (the
bulk viscosity is in general negligible in comparison with
the shear viscosity for the Yukawa system [24]). How-
ever, due to the inaccuracy inherent in measuring the
width of the (very narrow) ion acoustic peak obtained
from the MD simulations at small k values, we find that

this method is of little practical use compared to other
approaches to determining the viscosity. These alterna-
tive approaches include utilizing the Green-Kubo relation
for the shear stress autocorrelation function [25], non-
equilibrium molecular dynamics methods [26], and com-
putation of the transverse current autocorrelation func-
tion [27].

Along with the generalized viscosity, as discussed in
Sec. III A, in the hydrodynamic limit k → 0 the gen-
eralized sound speed cs(k) =

√

〈ω2
k〉/k2 reduces to the

conventional (isothermal) sound speed cs. The small k
behaviour of the generalized viscosity and sound speed
thus ensure that using the Gaussian ansatz for the mem-
ory function in Eq. (2) gives a result that is compati-
ble with the result obtained from the linearised Navier
Stokes equations [12] when thermal fluctuations are ne-

glected. To be clear, Eq. (2) is an entirely general (i.e.
exact) representation of Sii(k, ω). The effective neglect
of thermal fluctuations is made by assuming the ansatz in
Eq. (3). That is to say, in the case of the Gaussian ansatz
it is instructive to think of the memory function as a sort
of generalized viscosity. There is no term in the memory
function that represents the effects of temperature fluc-
tuations i.e. a generalized (or indeed non-generalized)
thermal conductivity.

It is straightforward to modify Eq. (3) so that the
result from the Navier Stokes equations including tem-
perature fluctuations is recovered in the hydrodynamic
limit (see e.g. [16, 18]). The simplest extension in-
volves maintaining a generalized sound speed and vis-
cosity, and adding the (non-generalized) thermal con-
ductivity contribution obtained from conventional hy-
drodynamics (the Navier-Stokes equations) as an addi-
tional term in the memory function. In a more involved
scheme, this additional contribution can also be general-
ized [16, 20].

For the Yukawa system with the Γ and α values we
have considered here, including in the memory function
the effects of thermal fluctuations is unnecessary. This is
because the ratio of specific heats, γ, is very close to 1,
as indicated by the absence of a Rayleigh peak at ω = 0
for small k in the MD data (Fig. 4), as well as previous
equation of state calculations [28]. The only cases in
which this peak - which represents a diffusive thermal
mode - is not negligible is for the more weakly coupled
(Γ ≤ 10) systems at α = 2 (see Fig. 4, bottom left). As
expected, the model does not capture this peak in the
MD data.

The fact that γ ≈ 1 for the Yukawa system with the
Γ and α values considered here is certainly a reason why
the Gaussian memory function works so well. Indeed,
the ansatz in Eq. (3) would not be expected to work
as well when the ratio of specific heats γ is noticeably
different from unity [17]; this includes the Yukawa system
for Γ ≪ 1.
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C. Comparison with viscoelastic model

Given the excellent agreement between the MD data
and the Gaussian memory function model, we have not
found it necessary to undertake an exhaustive compari-
son with the numerous other forms of memory function
proposed in the literature [16]. However, here we briefly
comment on another widely studied and used ansatz for
the memory function

k2φ(k, t) = k2φ(k, 0) exp(−t/τVk )

= [ω2
L(k)− 〈ω2

k〉] exp(−t/τVk ) . (11)

When combined with Eq. (2), Eq. (11) - which repre-
sents the simplest assumption that can be made about
the time dependence of the memory function - is known
as the viscoelastic model [17].
As indicated in Fig. 8 and discussed in detail else-

where [17, 18, 20], the viscoelastic model cannot capture
the shape of Sii(k, ω) across a large range of k values.
While the model works well at small k (indeed, for the
viscoelastic model the results of isothermal hydrodynam-
ics are again recovered, with a relation between the re-
laxation time τVk and the kinematic viscosity similar to
Eq. (9)), the model tends to predict rather more struc-
ture in Sii(k, ω) than is evident in the MD data (Fig.
8). Clearly then the Gaussian memory function is vastly
superior to the exponential one.

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
ka=0.64

0.0 0.5 1.0 1.5

0.1

0.2

0.3 ka=3.09

0.0 0.5 1.0 1.5

�/�p

0.05

0.10

0.15

0.20
�

p
S
ii
(k

,�

)

ka=1.85

0.0 0.5 1.0 1.5

0.1

0.2

0.3

ka=6.19

FIG. 8: (color online) A sample of our MD results for Sii(k, ω)
at Γ = 10, α = 1 (dots) contrasting the results of the model
in Eq. (2) for exponential (dashed line) and Gaussian (solid
line) memory functions.

D. Discussion of the relaxation time τk

Fig. 9 shows the relaxation time τk as determined
from the fit of the Gaussian model to the MD spectrum
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FIG. 9: (color online) The relaxation time τk as determined
from the fit of the Gaussian model to the MD spectrum of
Sii(k, ω) for α = 2 and a range of Γ values.

of Sii(k, ω) for α = 2. As shown in Fig. 9, we find
that as k increases, τk decreases. This agrees qualita-
tively with e.g. the behavior of the relaxation time de-
termined for the Lennard-Jones fluid in previous investi-
gations [18, 29]. One certainly expects that at decreas-
ing wavevectors, the relaxation time should increase: as
k → 0, the memory function should decay fast enough to
guarantee the validity of the Markovian approximation,
which itself is related to the fulfillment of the conserva-
tion laws [17].
In our investigation, we find that at the very smallest

k values accessible to our simulations (i.e. below ka =
0.64, which is the minimum k value shown in Fig. 9),
the numerical value of τk is difficult to extract from the
MD spectrum reliably, and therefore it is not possible
to examine the exact k → 0 behavior of the relaxation
time. That is to say, the fitted value of τk at these small k
values does not connect smoothly to the values at higher
k values; this is because the spectrum Sii(k, ω) consists
of a very sharp peak, for which it is difficult to accurately
determine the parameters in the Gaussian model (see also
Sec. IVB).
Physically, the relaxation time τk controls the specific

collective behavior of the system: for times t ≪ τk the
system responds ‘elastically’ (i.e. like a ‘frozen’ solid-like
system), wheras for times t ≫ τk the viscous mecha-
nisms set in and reveal the inherent dynamic disorder
[17]. Therefore, the decrease in τk as k increases corre-
sponds physically to the fact that at increasingly short
lengthscales, viscous behavior is observed at increasingly
short timescales.

E. Applicability to x-ray scattering experiments

In a previous work [8], it was shown that the conven-
tional hydrodynamic description (i.e. Eq. (1)) is valid
providing k < kmax , where kmaxλs ≃ 0.43. This means
that experiments designed to measure Sii(k, ω) [1] at k
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values below kmax can in principle be used to determine
transport (e.g. viscosity) and thermodynamic properties
(e.g. compressibility) of dense plasmas.

At k values larger than kmax, our results show that
the Gaussian memory function model extends the con-
ventional hydrodynamic description very satisfactorily.
Thus experiments for k > kmax measure the generalized
quantities appearing in the memory function model of
Eq. (2).

Present x-ray scattering experiments are also con-
cerned with diagnosing the density and temperature of
dense plasmas [1]. For this task theoretical models for
how Sii(k, ω) depends on density and temperature are
required. In the Yukawa system, the density and temper-
ature are encoded in Γ and α. Thus here we briefly look
qualitatively at how Sii(k, ω) changes with Γ and α: this
gives an indication of how the experimental scattering
cross section should vary with density and temperature.
We restrict ourselves to the region of k values for which
Sii(k, ω) shows a clear ion-acoustic peak, since then its
description reduces to the position, width and height of
this peak.

Fig. 10 shows how the position, width and height of the
ion-acoustic peak as extracted from our MD simulations
vary with reduced wavenumber ka for a number of Γ and
α values. As shown in the top left panel of Fig. 10,
the dependence on ka of the ion-acoustic peak position
is almost identical for a large range of Γ values (i.e. Γ =
50 − 175). The peak width and height do show more
discernible differences for these Γ values. At smaller Γ
values (Γ = 1,5 and 10), the differences in the position,
width and height of the peak are greater.

At constant Γ (right panels of Fig. 10), the peak posi-
tion is rather different for α = 0.1,1 and 2. In this case,
the width and height are more similar, particularly for
α = 0.1 and α = 1.

We expect that a given experiment will be able to de-
termine peak position, width and height at a specific
wavenumber (determined by the scattering angle and x-
ray wavelength [1]). The extraction of Γ and α values
could then be done by using these experimental results
in conjunction with a set of three plots as shown in Fig.
10.

Of course, our discussion in this section assumes that
a real physical plasma at a certain density, temperature
and (average) ionization state can be described by the
Yukawa system. While in principle this mapping could
be attempted for any given values of these plasma param-
eters, our main interest at present concerns the dense (ap-
proximately solid density), liquid-like plasmas at temper-
atures of ≈ 10eV that can be created in high power laser
experiments [1]. Recently, a method for mapping the
physical parameters of these states to the Yukawa model
(i.e. determination of Γ and α) has been suggested [30].
Therefore, we expect that the results we have obtained
for the Yukawa system are certainly relevant for future
experiments that will measure ion dynamics of these ex-
treme states of matter.
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V. CONCLUDING COMMENTS

The Gaussian memory function model is an extremely
good representation of the dynamical structure factor
Sii(k, ω) of the Yukawa system for a wide range of ther-
modynamic conditions. The model very accurately re-
produces the spectrum of Sii(k, ω) from MD in terms
of just 3 parameters and, as such, it is a useful way of
accurately condensing or representing such data. This
conclusion was only possible because of the highly accu-
rate MD data presented in this paper. The model can be
used by fitting either a single parameter or three param-
eters to the spectrum of Sii(k, ω) at a particular k value;
in the latter case, the small numerical inaccuracies that
arise in the MD simulations can be accounted for.

Why exactly this form of memory function should work



9

so well is an interesting question that certainly merits
further investigation. Other memory function models,
such as the viscoelastic model (an exponential memory
function) do not compare well to the MD data for a wide
range of k values. It is possible that the reason a faster
decaying (compared to exponential) Gaussian works well
is related to the chaotic nature of classical systems - this
is reflected in the relatively short ‘memory’ of the system.
Since the Yukawa system can describe ion-ion inter-

actions in a plasma, our results are applicable to future
x-ray scattering experiments that will attempt to mea-
sure ion dynamics in dense plasmas [7]. In particular, our
MD results for the position, width and height of the ion-
acoustic peak could be used to infer the thermodynamic
conditions of dense plasmas.
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Appendix: Frequency moments of Sii(k, ω)

The wavevector dependent quantities,

〈ω2
k〉 =

〈ω2〉
〈ω0〉 , (A.1)

and

ω2
L(k) =

〈ω4〉
〈ω2〉 , (A.2)

are given in terms of the frequency moments of Sii(k, ω),
defined as

〈ωn〉 =
∫

∞

−∞

ωnSii(k, ω)dω . (A.3)

The zeroth moment of Sii(k, ω) gives the static structure
factor Sii(k)

〈ω0〉 = Sii(k) . (A.4)

The second moment is

〈ω2〉
ω2
p

=
q2

3Γ
, (A.5)

where q = ka is the reduced wavevector (a =
(3/(4πn))1/3 is the Wigner-Seitz radius) and ωp =
√

(Z2e2n)/(ǫ0m) is the (ion) plasma frequency. The
fourth moment is (see [17], Eq. (1.137))

〈ω4〉
ω4
p

=
1

3Γ

[

q4

Γ
+ q2Ω2

E − q2M(qr̄, αr̄)

]

. (A.6)

Here r̄ = r/a, the Einstein frequency ΩE is given by

Ω2
E =

α2

3

∫

∞

0

r̄ exp(−αr̄)g(r̄)dr̄ , (A.7)

and

M(x, y) =

∫

∞

0

1

r̄
g(r̄) exp(−y)

[

2

(

y2

3
+ y + 1

)

×
(

sinx

x
+

3 cosx

x2
− 3 sinx

x3

)

+
y2 sinx

3x

]

dr̄ .

(A.8)

Eqs. A.6 - A.8 give an exact expression for the fourth
moment for the Yukawa one component plasma.
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