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The viscosity of a suspension of swimming bacteria is investigated analytically and numerically.
We propose a simple model that allows for efficient computation for a large number of bacteria. Our
calculations show that long-range hydrodynamic interactions, intrinsic to self-locomoting objects in a
viscous fluid, result in a dramatic reduction of the effective viscosity. In agreement with experiments
on suspensions of Bacillus subtilis, we show that the viscosity reduction is related to the onset of
large-scale collective motion due to interactions between the swimmers. The simulations reveal that
the viscosity reduction occurs only for relatively low concentrations of swimmers: further increases of
the concentration yield an increase of the viscosity. We derive an explicit asymptotic formula for the
effective viscosity in terms of known physical parameters and show that hydrodynamic interactions
are manifested as self-induced noise in the absence of any explicit stochasticity in the system.

PACS numbers: 87.16.-b, 05.65.+b

Collective dynamics of self-locomoting micro-
organisms, such as bacteria, algae, sperm cells [1–6]
as well as synthetic swimmers [7, 8] have attracted
enormous attention, with a large number of experi-
mental and theoretical works published in the last few
years. A plethora of nontrivial properties have been
predicted and consequently studied, including dynamic
instabilities, anomalous density fluctuations, nontrivial
stress-strain relations, rectification of chaotic motion,
and viscosity reduction [9–15]. A seven-fold viscosity
reduction in a suspension of swimming bacteria, Bacillus
subtilis, was observed recently in [16]. Such a dramatic
effect occurred in the regime of well-developed large-
scale collective motion of the bacteria above a certain
critical concentration, about 1-2% of volume fraction;
for larger filling fractions (about 6-10%), the viscosity
was increasing, as would be anticipated for passive
suspensions.

Ref. [11] was the first to consider the effects of self-
propulsion on the viscosity of active suspensions. While
very stimulating for its time, in [11] pure relaxational dy-
namics of the alignment was assumed, whereas in planar
shear flow individual swimmers perform periodic rota-
tions (Jeffery orbits). The viscosity reduction for dilute
suspensions (i.e. for negligible interactions between the
swimmers) has been addressed in a number of theoretical
works [17–20]. Ref. [17] first demonstrated the necessity
of rotational noise in order to produce a reduction in the
effective viscosity for a suspension in flows with vorticity.
The analysis led to rather counter-intuitive conclusions:
for planar shear flow the viscosity reduction occurs only
if swimmers undergo rotational diffusion (e.g. tumbling).
Without tumbling, the net contribution to the viscosity
of non-interacting swimmers is zero [17, 19]! In appar-
ent contradiction to this, a viscosity reduction has been
measured without noticeable tumbling (for most experi-
mental conditions) for Bacillus subtilis [3, 16].
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FIG. 1. (color online) Viscosity η vs. filling fraction Φ for
pushers for three strain rates γ̇. Φ = 4
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πσ3

LJρ, where ρ is the
concentration, V0 = 1. Inset: Dipolar stress Σd vs LJ stress
ΣLJ ; σLJ = .35, B0 = 0.95, and U0 = −8πV0 (pushers).

In this Letter we investigate, numerically and ana-
lytically, the influence of hydrodynamic interactions on
the effective viscosity of a three-dimensional suspension
of swimming bacteria. We demonstrate that hydrody-
namic inter-bacterial interactions have a similar effect on
the effective viscosity as rotational diffusion or tumbling
have in the dilute case (no interactions) [17]. Both sim-
ulations and analytical theory reveal that the viscosity
reduction occurs due to hydrodynamic interactions be-
tween the swimmers, and no tumbling is needed. The
bacteria are modeled by massless self-locomoting point
dipoles suspended in a viscous fluid. Simulations show
that as concentration increases, the viscosity initially de-
creases and then increases (Fig. 1), which is in qualita-
tive agreement with recent experiments. We further an-
alyzed the hydrodynamic interactions in the continuum
limit and show that viscosity reduction is associated with
the breakdown of the uniform state in concentration.

Model.— Bacteria are modeled by massless hydrody-



2

namic point dipoles of strength U0 ∼ V0l
2 (stresslets

normalized by the solvent viscosity η0) swimming with
speed V0 with respect to the fluid along the orientation
of its dipole moment di, where i = 1...N , N being the
number of bacteria and l is the characteristic size of a
bacterium. We scale the velocities by the bacterium’s
swimming speed V0 ∼ 20 µm/sec, the positions by the
characteristic size l = 1 µm, the dipole strength by l2; the
unit of time is 1/20 sec. The positions ri and orientations
di of the bacteria are governed by

dri
dt

= V0di +
∑

j 6=i

(vij + Fij) +VBG,
ddi

dt
= Ωi (1)

where BG denotes the background flow and Ωi is the
rotation rate for ith dipole. vij is the fluid velocity
field produced by the jth bacterium on the ith and
is the solution to Stokes equation at |rj − ri| for a
point dipole at the origin with orientation dj . We
consider planar shear flow in the x − y plane, hence
VBG is given by Vy = γ̇x, Vx = Vz = 0; γ̇ is the
strain rate. The rotation rate is expressed via the
vorticity ωj = (∇× vij) and rate of strain tensor

Êj = (1/2)
(

∇vij +∇v
T
ij

)

of the flow. Ωi = −di ×
(

ωBG +
∑

j 6=i ωj +B0di ×
(

EBG +
∑

j 6=i Êj

)

· di

)

,

where B0 is the Bretherton constant (B0 = 0/1
for spheres/needles) [21]. The hydrodynamic in-
teractions are contained in vij ,Ωi (see [22]).
Fij = −∂Lij/∂rij in Eq. (1) is a short-range re-
pulsive force modeled by a Lennard-Jones-type (LJ)

potential, Lij = 4ε
[

(σLJ/rij)
12

− (σLJ/rij)
6
]

. Here

rij = |ri − rj | is the distance between the two particles
and ε ∼ (η0l

2)−1 is the normalized strength of interac-
tion; σLJ determines the equilibrium distance. The role
of the repulsive potential is two-fold. First, short-range
repulsion is needed for regularization of the dipole forces,
which diverge as 1/r2: when bacteria approach a certain
distance determined by the parameter σLJ , they are
pushed away. Thus, this parameter determines indirectly
the size of a bacterium and therefore introduces excluded
volume constraints. Second, this potential introduces
on a very simplified level additional dissipation due to
inelastic collisions between bacteria and deviations from
the fluid velocity field of a point dipole. A spherically
symmetric LJ potential is used. Simulations where run
with an anisotropic LJ potential and no qualitative
difference was found. While the form of the potential is
not crucial for the model, the LJ one is convenient. This
approach has been justified by experiments showing the
flow created by a bacterium is described by a point
dipole [23]. While close-field interactions are important
when considering two bacteria swimming near each
other, we consider only bulk properties where these
individual interactions are shown to be unimportant.
The simulations were performed in a cubic domain (size
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FIG. 2. (color online) η vs V0 for B0 = 0.95, σLJ = .35, and
U0 = −8πV0, viscosity is scaled by η when V0 = 0. Inset: η
vs Φ, B0 = 0.2, σLJ = .35, and U0 = 8πV0 (Pullers).

L = 50), with periodic boundary conditions in y and z
and Lees-Edwards conditions in x-direction along the
sheared boundary [24]. Simulations of up to N = 483

particles were implemented on graphic processing units,
and performed for varying strain rates γ̇, swimming
speeds V0, and sizes of bacteria σLJ .
Select results for viscosity η vs. volume fraction of

bacteria Φ are shown in Fig. 1. The viscosity is defined
as η = η0(1 + Σxy/γ̇), where Σl,m is the stress tensor,

Σl,m =

N
∑

i=1

(

U0

VL

(

d
(m)
i d

(l)
i −

δlm
3

)

+
r
(m)
i F

(l)
i

VL

)

(2)

The first term is due to the dipolar contribution Σd [25],
and the last term is due to the LJ forces between bacteria
ΣLJ [26]; VL = L3 is the volume of the integration do-
main. For U0 < 0 (pushers), the viscosity decreases with
increasing filling fraction Φ, see Fig. 1. Then, for high
filling fractions, two simultaneous trends occur: (i) the
last term in Eq. (2) increases leading to the viscosity in-
crease; (ii) due to the increased concentration, collisions
become increasingly frequent and alter the orientations
of the bacteria leading to a saturation of the contribution
from Σd in Eq. (2). The inset to Fig. 1 illustrates the
relationship between stresses Σd,ΣLJ for varying swim-
ming speeds, V0 and Φ = 0.02. When the collisional
stress ΣLJ increases, the orientational order (character-
ized by Σd) decreases. Thus, the increase in viscosity in
Fig 1 is not caused solely by the increased concentration,
but also by the disruption of orientation caused by the
collisions. In Fig. 1 the increase in viscosity for a fixed
swimming speed, V0 = 1.0, begins where volume frac-
tions are between 2-6%. For pullers (U0 > 0) we always
observed an increase of the viscosity with concentration,
see inset of Fig. 2. The viscosity appears to increase
with increasing strain rate γ̇ (shear thickening). Fig. 1
shows that for small Φ with an increase of γ̇ the effect of
interactions diminishes (resulting in a smaller viscosity
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FIG. 3. P (α, β) for Φ = .0003 (a) and Φ = .005 (b). Vertical
lines indicate α = π/4; V0 = 1, σLJ = .35, U0 = −8πV0, B0 =
0.95. Maxima are shown in white, minima in black.

reduction). As Φ becomes larger the LJ forces become
the dominant contributor to the viscosity regardless of
the shear rate: the curves for differing shear rates are
essentially the same. Also, in accordance with Ref. [16],
as V0 increases the viscosity decreases (see Fig. 2).
The distribution of bacterial orientations Pd(α, β) is

shown in Fig. 3 with α, β the spherical angles of the unit
vector: dx = cosα sinβ, dy = sinα sinβ, dz = cosβ. As
we see from Fig. 3, the maximum of the distribution shifts
from (α = π/2, β = π/2) to (α = π/4, β = π/2) with
increasing concentration. Note that a similar realignment
occurs in the non-interacting case with tumbling [17],
however for a different reason: there the transition is
governed by the shear rate.
Continuum model.— In order to obtain further in-

sights into the role of hydrodynamic interactions we con-
sider the continuum limit of Eq. (1). We assumed that
the suspension can be described by a probability den-
sity P (r,d) of finding a bacterium with orientation d at
location r; P (r,d) satisfies the equation

∂tP = −∇r · (VP ) −∇d · (ΩP ) (3)

where translational V and rotational Ω fluxes are
obtained by replacing in Eq. (1) sums by integrals,
∑

j 6=i Aij → V −1
L

∫

dr′dd′A(r − r
′,d,d′)P (r′,d′) + ζ,

where A is one of v,Ω, and primes denote integration
variables (compare to [15]). In the derivation of Eq. (3)
we neglected fluctuating terms ζ describing deviations
from the mean-field approximation given by the function
P (r,d). Their role will be discussed later. The quan-
tity of interest is the orientation distribution Pd(d) =
∫

drP (r,d)/(ρVL), with ρ =
∫

drddP (r,d)/VL the mean

concentration. To obtain the angular distribution, we
substitute P (r,d) into Eq. (3) and integrate over r.
The resulting equation cannot be solved analytically in

the general case. We thus consider the limit of small non-
sphericity, B0 → 0. We assume for simplicity (the as-
sumption is valid for B0 → 0) that P (r,d) = Pr(r)Pd(d),
where Pr(r) =

∫

Pdd =
∫

dkCk exp(ikr) is the local
concentration and Ck its Fourier component. We can
search for a steady-state solution of the form Pd(d) ≈

(4π)
−1 [

1 + sin2 β(A sin(2α) +B cos(2α))
]

+... where the
coefficientsA,B ∼ B0 are to be determined. These calcu-
lations were performed in the regime where U0B0 ∼ O(1)
in agreement with numerical simulations. Straightfor-
ward but very cumbersome calculations [22] yield the
following result for the coefficients A,B:

A = −
48B2

0π
2U0ρǫ

50γ̇R
,B = −

3B0

2R
. (4)

Here ǫ = ν/ρ2 is the time-averaged normalized variance

of concentration, R = 1 + ξ2, ξ = 16π2ρB0U0ǫ
25γ̇ and

ν =
1

V 2
L

∫

dk|Ck|
2(1−δ(k)) =

1

V 2
L

[

∫

drP 2
r −

(
∫

drPr

)2
]

In the derivation of Eq. (4) we assumed isotropy of the
positional fluctuations - i.e. that |Ck|

2 only depends on
the modulus |k|; the assumption is later supported by
comparison with numerical simulations. Finally, we ob-
tain the following approximate expressions for the orien-
tation distribution Pd and the viscosity η (we neglect for
simplicity the contribution due to the LJ interactions)

Pd(α, β) ≈
1

4π
−

3B0

8πR
sin2 β (cos(2α) + ξ sin(2α)) (5)

η

η0
− 1 =

ρU0

γ̇

∫

dxdyPddd = −
16B2

0π
2U2

0 ρ
2ǫ

125γ̇2R
(6)

One sees that for U0 < 0 (pushers), the asymptotic
solution as γ̇ → 0 is Pd ∼ (1/γ̇) sin2(β) sin(2α) - i.e has
a maximum at α = π/4 and β = π/2, in agreement with
our numerical simulations. In the dilute limit (ρ → 0)
or in the spatially-homogeneous case (ǫ = 0) the distri-
bution function Pd ∼ − sin2(β) cos(2α) has a maximum
at α = π/2 and β = π/2 and no viscosity reduction is
seen. For ǫ 6= 0 there is a viscosity reduction for pushers
(U0 < 0), again in agreement with our simulations and
experiments [16]. Our results also hint at a relationship
between collective motion and viscosity reduction: posi-
tional fluctuations (leading to nonzero ǫ) arise due to a
large-scale organized motion of swimmers via an insta-
bility of the homogeneous state [15].
It is interesting to compare the expression for the

viscosity (6) with the relationship obtained in [17] for
the non-interacting case in the presence of tumbling
(i.e. rotational diffusion with coefficient D). Expres-
sions become similar for D = −

(

8π2ρB0U0ǫ
)

/75 > 0 for
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FIG. 4. (color online) η vs Φ, B0 = 0.2, U0 = −8πV0. Inset:
Viscosity η vs. Bretherton constant B0 for Φ = .01986. The
error bars in the analytical results are due to uncertainty in
the numerical calculation of the concentration variance.

pushers. This suggests that hydrodynamic interactions
lead, via a breakdown of the spatially homogeneous state
(ǫ 6= 0), to an effective rotational diffusion/tumbling.

To check our predictions given by Eq. (6) we performed
simulations for small non-sphericity, B0 = 0.2. Results
are summarized in Fig. 4. The concentration variance
ǫ was extracted from the instant particle positions av-
eraged over long periods of time on a two-dimensional
square mesh in the x−y plane. For simplicity we assumed
that there is no z-dependence of the averaged concentra-
tion. This reduced significantly the statistical local den-
sity variations related to fluctuations of the number of
particles, Ni, entering/leaving bin i (the “fluctuational”
variance of the number of particles δNi ∼ Ni becomes im-
portant when there is a small number of particles in each
bin). As one sees from Fig. 4, the numerical results agree
with Eq. (6) within 10-15%. The inset of Fig. 4 shows
that the approximation breaks down for larger B0 and
the theory would overestimate the decrease in viscosity.
Fig. 1 was plotted using B0 = 0.95 for comparison with
experimental observations [16]. The effect on viscosity is
similar, but the magnitude decreases as B0 → 0.

Let us now discuss pullers. Experiments [27] and our
simulations show an increase of viscosity, whereas Eq. (6)
predicts a reduction independent of the sign of U0. How-
ever, for pullers there is no instability towards collec-
tive motion [15] and thus ǫ = 0. Hence fluctuations
- i.e. deviations from the mean-field in Eq. (3) - can-
not be neglected as for pushers: in a well-developed col-
lective state the fluctuations are small compared to the
mean field. The fluctuations (denoted above by ζ but
then neglected) can be treated as uncorrelated noise act-
ing on each swimmer. Simple calculations give the fol-
lowing estimate for the effective rotational diffusion Dh:
〈ζ(t)ζ(t′)〉 = Dhδ(t − t′) and Dh ∼ τB2

0U
2
0 ρ/σ

3
LJ . The

correlation time of hydrodynamic fluctuations τ can be
estimated as the time between collisions τ ≈ 1/V0ρ

1/3.
With U0 ∼ V0σ

2
LJ we arrive at Dh ∼ V0σLJB

2
0ρ

2/3. Sub-
stituting Dh into the expression for viscosity due to ro-
tational diffusion [17], we obtain for pullers η/η0 − 1 ∼
ρU0Dh/(γ̇

2 +D2
h), i.e. indeed a viscosity increase in ac-

cordance with [27] and Fig. 2.

In conclusion, we have shown that the viscosity reduc-
tion as a function of concentration observed for pushers
occurs primarily due to hydrodynamic interactions be-
tween swimmers. The effect of interactions on the effec-
tive viscosity is analogous to that of rotational noise in
the dilute case. This effect, arising due to density fluctua-
tions and the breakdown of the homogeneous state of the
swimmers, can be interpreted as the self-induced noise in
a system with no stochasticity. For pullers, in contrast,
the homogeneous state is stable. Thus the mean-field
treatment presented here yields no contribution and the
behavior can be roughly described by small-scale uncor-
related fluctuations. We presented a testable prediction
for the orientation distribution of interacting bacteria in
sheared suspensions. I. A. was supported by the U.S.
DOE BES, Division of Materials Science and Engineer-
ing, under Contract No. DE AC02-06CH11357. S. D. R.,
B. M. H. and L. B. were supported by the DOE grant
DE-FG02-08ER25862 and NSF grant DMS-0708324.
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