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ABSTRACT 
  

 The turbulent flow of a ferrofluid in channel flow is studied using direct numerical simulation 

(DNS).  The method of analysis is an extension of that used for Newtonian fluids, with additional 

features necessary to model the ferrofluid.  The analysis is applied to low Reynolds number turbulence 

in the range of existing experimental data in a capillary.  For steady and oscillating magnetic fields, 

comparisons are made between a Newtonian fluid and a ferrofluid by comparing the pressure drop, 

turbulent Reynolds number, turbulent kinetic energy, Reynolds stress, velocity and spin profiles. The 

results are also compared with predictions of a k-ε model to show the accuracy of that model when 

applied to ferrofluids. 
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I. INTRODUCTION 

Ferrofluids are composed of nano-sized particles of a magnetic material and are studied here 

while flowing in turbulent flow.  While most of the applications of ferrofluids have been for laminar 

flow, they have been considered for enhanced heat transfer in oil-cooled electromagnetic equipment, 

transducers, and to mix and homogenize a suspension [1,2,3].  Schumacher, et al. [4] measured flow 

properties for a ferrofluid in laminar and turbulent flow in a pipe. They successfully modeled the flow 

using a k-ε model of turbulence. Zablockis, et al. [5] used a two-equation k-ω model of turbulence when 

studying thermal convection. The present paper is the third in a series to justify the turbulence models by 

comparison with direct numerical simulation (DNS). The equations governing them in turbulent flow are 

described more fully in Schumacher, et al. [6], where the effect of steady magnetic fields is examined in 

homogeneous turbulence.   A second paper [7] extends this work to homogeneous turbulence with an 

oscillating magnetic field.  The current paper considers channel flow with either a steady or oscillating 

magnetic field. Wall-bounded flows are more complex than homogeneous flows.  The solid boundary 

makes the flow inhomogeneous and leads to turbulence structures such as wall streaks and bursts and 

hairpin vortices near the center of the channel. In addition, predictions made here using direct numerical 

simulation are compared with those from a standard k-ε model. 

 

The domain and geometry of the parallel plate channel system is shown in Figure 1.  The fluid is 

driven by a pressure gradient in the x-direction.  The stream-wise direction is parallel to the mean 

pressure drop.   The wall normal direction is perpendicular to the two parallel walls.  The span-wise 

direction is perpendicular to the streamwise direction and parallel to the two walls.  Here, (x,y,z) and 

(u,v,w) are used as the streamwise, spanwise, and wall normal coordinates and velocities, respectively.  

The x and y-directions are homogeneous, and the dependent variables have periodic boundary conditions 

in these directions.  The x-y plane is referred to as the homogeneous plane.  The direct numerical 

simulation techniques for solving for Newtonian fluid flows in this geometry are established [8-10].  The 

literature concludes that the turbulent Newtonian fluid simulation results compare very well with 

experimental data.  

 

 In experimental studies of ‘drag-reducing’ turbulent polymer flow, the total shear stress is not 

equal to the sum of the usual shear stress ( )yu ∂∂μ  and the Reynolds shear stress ''vu−  [11-13].  The 

difference between the total shear stress and the sum of ( )yu ∂∂μ  and ''vu−  is called the stress deficit.  
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In these polymer flow studies, the stress deficit is attributed to viscoelastic properties of the polymer 

solution.  In ferrofluid flow, the total shear stress isn’t equal to ( )yu ∂∂μ ''vu−  either.  Ferrofluid theory 

suggests that this inequality is due to an asymmetric stress tensor rather than viscoelasticity.  In this 

paper we present ‘stress-deficit’ profiles that are just the asymmetric Reynolds shear stress.  In steady 

and slowly oscillating magnetic fields, we expect that the total shear stress will be greater than that for 

an analogous Newtonian fluid. 

 

II. EQUATIONS 

The equations are used in a non-dimensionalized form.  The characteristic length used is the 

channel half-width, δ, and the characteristic velocity is chosen to be the friction velocity, uτ = τ w
s ρ , 

where τw
s  is the symmetric part of the viscous wall stress.  The characteristic time is δ uτ ; the 

characteristic spin rate is uτ δ .  The magnetization, M, and magnetic field, H, have the SI units of A/m, 

and both are normalized by the saturation magnetization, Msat.  The normalized governing equations are 

then the non-dimensional form of equations (2.3, 2.21, and 2.11) of Schumacher, et al. [6]: 

 

∂u
∂t

= −∇P'+ 1
Reτ

∇2u + u × ∇ × u( )+ ΔP
L

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

δ
ρuτ

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ex +

Cζ

Reτ

∇ × 2ω − ∇ × u( )+ CMBFM ⋅ ∇H

∂M
∂t

= −u ⋅ ∇M +ω × M − 1
Cτ B

M − Meq( )       

∇ ⋅ u = 0,      ∇ × H = 0,     ∇ ⋅ H + M( )= 0,     ω = 1 2∇ × u − CTRQM × H      

 

for the momentum, magnetization, continuity, Maxwell, and spin equations, respectively.  The 

magnetization equation was derived by Shliomis [14] and is used here in a normalized version. The 

rotational form of the momentum equation is used here because it conserves energy to machine 

precision for our type of spatial discretization methods [15].  The parameters in the above equations are: 

 

Reτ = δuτ

ν
,     Cζ = ζ μ ,     CMBF = μoMsat

2

τ w
s ,     Cτ B

= 1
Reτ

τ w
s τ B

μ
,     CTRQ = 1

4 Reτ
CMBF

Cζ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

An overall force balance on the system gives  
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ΔP L = τ w δ ,  (1) 

 

where τ w  is the total viscous stress  at the wall.  The total viscous stress in a ferrofluid is composed of a 

symmetric and an asymmetric part,  

 

τw = τ w
s + τw

a .   (2) 

 

Using Eqns. (1-2), along with the definition of uτ , the stream-wise pressure body force term in the 

normalized momentum equation becomes  

 

ΔP
L

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

δ
ρuτ

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ex = 1+ τ w

a

ρuτ
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ex . (3) 

 

Using Eqn. (3) the normalized momentum equation is 

 

∂u
∂t

= −∇P'+ 1
Reτ

∇2u + u × ∇ × u( )+ 1+ τ w
a

ρuτ
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ex +

Cζ

Reτ

∇ × 2ω − ∇ × u( )+ CMBFM ⋅ ∇H   

 

When Cζ = 0, CMBF = 0, and τw
a = 0, the momentum equations revert to the classical Navier-Stokes 

form.  

 

It is common in the turbulent channel flow DNS literature to eliminate the pressure from the 

equations, and that is done here.  This step allows continuity to be satisfied automatically and requires 

less memory since P'  doesn’t have to be stored.  To eliminate pressure, P' , the momentum equations 

are recast into a velocity-vorticity formulation with the same general form as the starting equations used 

by Kim et al. [8]. First, taking the divergence of the momentum equation, and using continuity, yields 

the Poisson equation for pressure, 

 

∇2P'= ∇ ⋅ F  where F = u × ∇ × u( )+ Cζ Reτ ∇ × 2ω − ∇ × u( )+ CMBFM ⋅ ∇H.   
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Then, apply the Laplacian operator to the wall normal component of the momentum equation, and use 

the Poisson equation to eliminate pressure; the result is a fourth order equation for the wall-normal 

velocity, w ,  

 

∂∇2w
∂t

= 1
Reτ

∇4w + h3  (4) 

 

where h3 = −∂ ∂z ∂F1 ∂x + ∂F2 ∂y( )+ ∂ 2 ∂x 2 + ∂ 2 ∂y 2( )F3.  Eqn. (4) has boundary conditions w z ±1( )= 0 

and ∂w ∂z z ±1( )= 0.  To avoid dealing directly with a biharmonic operator, Eqn. (4) is split into two 

second-order equations 

 

∂φ
∂t

= 1
Reτ

∇2φ + h3 (5) 

∇2w = φ . (6) 

 

Together, these two equations must satisfy the w z ±1( )= 0 and ∂w ∂z z ±1( )= 0 boundary conditions.  

The curl of the momentum equation yields equations for the components of vorticity.  The equation for 

the wall-normal component of vorticity, g = ∂v ∂x −∂u ∂y , is 

 

∂g
∂t

= 1
Reτ

∇2g + hg where hg = ∂F2 ∂x −∂F1 ∂y . (7) 

 

The boundary condition of normal vorticity at the wall is g z ±1( )= 0. 

 

 Eqn. (5-7) are the form of the momentum equations that we advance in time.  The general form 

is the same as used by Kim, et al. [8]; the major difference lies in the definition of F.  In the Navier-

Stokes formulation by Kim, et al. [8], F = u × ∇ × u( ). 
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III. NUMERICAL METHOD 

A. Fractional pressure drop 

Turbulent channel flow with a constant mass flow rate is simulated by dynamically adjusting 

Reτ  after each time step such that the bulk average velocity is equal to some specified constant value.  

The numerical experiment is designed to study the fractional pressure drop of ferrofluid under the 

influence of a uniform axial magnetic field.  The fractional pressure drop (PFPD) is the pressure drop 

required to maintain a constant flow rate in a magnetic field divided by the ΔP  required to maintain the 

same flow rate without a magnetic field, minus one: 

 

PFPD =
ΔP H( )
ΔP 0( )

−1 

 
The homogeneous simulations of Schumacher, et al [6,7], and the k-ε simulations of Schumacher 

et al. [4], suggest that the ferrofluid behaves like a Newtonian fluid when the magnetic field is absent.  

Therefore, we use ΔPo  from the Newtonian fluid simulations to approximate ΔP 0( ).  

 

PFPD =
ΔP H( )

ΔPo

−1,  

 

where the subscript o refers to the Newtonian fluid.  The fractional pressure drop is computed from the 

normalized simulation data using 

 

PFPD = 1+ τ w
a

ρuτ
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Reτ
2

Reτ o

2 −1, 

 

where the derivation is given in Schumacher [16, Appendix D]. 

 

B. Solution for φ , g and velocity normal to the wall 

The equations for φ  and g are advanced in time using a semi-implicit technique.  The diffusive 

terms are treated implicitly with the Crank-Nicholson method, and all other terms, including the non-

linear terms, are treated explicitly with the Adams-Bashforth method.  The time discretized equations 

are 



 7

 

1− Δt
2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φ n +1 = φRHS  (8) 

1− Δt
2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ gn +1 = gRHS  (9) 

where 

 φRHS = 1+ Δt
2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φ n + Δt αh3

n + βh3
n−1( ),  gRHS = 1+ Δt

2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ gn + Δt αhg

n + βhg
n−1( ). 

 

A low storage third order Runge-Kutta method is used for the first time step in order to “start” the 

Adams-Bashforth scheme.  If the Δt changes to meet stability requirements, the first step after the 

change is advanced using the Runge-Kutta method in order to “restart” the Adams-Bashforth method at 

a new Δt.  

 

The Courant number for this flow, { }
max

dzwdyvdxutCN ++Δ= π , limits the maximum 

stable time-step size. With the Adams-Bashforth-Crank-Nicolson (ABCN) method, the simulation is 

stable as long as CN <1 [10]. 

 

Boundary conditions for φ  do not exist.  Thus, the direct solution of Eqn. (5) and subsequent 

calculation of a w that satisfies w z ±1( )= 0 and ∂w ∂z z ±1( )= 0 is not possible.  To get an updated 

value of normal velocity that satisfies these boundary conditions, we use the same technique as Kim et 

al. [8]  and let 

 

wn +1 = wp
n +1 + c1w1

n +1 + c2w2
n +1 (10) 

 

where wp
n +1, is the particular solution, and w1

n +1 and w2
n +1, are the two homogeneous solutions.  The 

wp
n +1, w1

n +1, and w2
n +1 are computed as [8]: 

 

1− Δt
2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φp

n +1 = φRHS ,     φp
n +1 ±1( )= 0,     ∇2wp

n +1 = φp
n +1,     wp

n +1 ±1( )= 0 

 



 8

1− Δt
2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φ1

n +1 = 0 ,     φ1
n +1 +1( )= 0, φ1

n +1 −1( )=1,     ∇2w1
n +1 = φ1

n +1,     w1
n +1 ±1( )= 0 

 

1− Δt
2Reτ

∇2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φ2

n +1 = 0  ,     φ2
n +1 +1( )=1, φ2

n +1 −1( )= 0 ,     ∇2w2
n +1 = φ2

n +1,    w2
n +1 ±1( )= 0. 

 
The constants c1 and c2  in Eqn. (10) are then chosen such that the Neumann condition on the normal 

velocity is satisfied.  The constants are found by evaluating 

 

c1

c2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = −G−1b ,  

where 

1

1

1
2

1

1
1

1

1
2

1

1
1

1

−

−=

+

−=

+
+=

+

+=

+

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

z

n

z

n
z

n

z

n

dz
dw

dz
dw

dz
dw

dz
dw

G   and 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−=

+
+=

+

1

1
1

1

z

n
p

z

n
p

dz
dw

dz
dw

b . 

 
1−G  is the Greens function matrix.  For a given time step, tΔ , the w1

n +1, 1
2

+nw , and G−1 are computed 

once, and saved in memory. 

 

A spectral method using Fourier series in the homogeneous directions and a Chebyshev 

expansion in the wall-normal direction is used for spatial discretization.  The domain transforms from 

(x,y,z) to (kx, ky, z).  Derivatives in homogeneous directions are evaluated in Fourier space by 

multiplication by an appropriate wave number, while derivatives in the normal direction are computed 

using Chebyshev collocation matrices.  After the transformation, the governing equations can be solved 

for each wave-number pair (kx, ky).  Non-linear terms are computed in physical space, and then the 

products are transformed back to Fourier space.  The Fourier transformed products are completely de-

aliased using the 2/3 truncation method. 

 

 Following the notation of Rutledge and Sleicher [10], the transformed Eqns. (6, 8, 9), are 

discretized and written in matrix notation as 
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 Bij − cIij[ ] ˆ g j
n +1 = − 1

fc

ˆ g RHSi
, (11) 

 Bij − cIij[ ] ˆ φ j
n +1 = − 1

fc

ˆ φ RHSi
, (12) 

 Bij − cwIij[ ] ˆ w j
n +1 = ˆ φ i

n +1, (13) 

 

where B is the second-derivative collocation array, I is the identity matrix, and 

 
2
2

2
11 kkfc c ++= ,    2

2
2

1 kkcw += ,     fc = Δt 2Reτ( ),      i = 0 to N3  and 30 Ntoj = . 

 

 To apply the boundary conditions, the first and last columns of the collocation array are 

multiplied by the boundary condition and then brought to the RHS.  The first and last rows of the 

collocation array are then not necessary.  Eqn. (11-13) are then written as 

 

Bij − cIij[ ] ˆ g j
n +1 = − 1

fc

ˆ g RHSi
− Bik ˆ g k

n +1,  

Bij − cIij[ ] ˆ φ j
n +1 = − 1

fc

ˆ φ RHSi
− Bik ˆ ϕ k

n +1,  

Bij − cwIij[ ] ˆ w j
n +1 = ˆ φ i

n +1 − Bik ˆ w k
n +1, 11 3 −= Ntoi  and 11 3 −= Ntoj , and 30 Nandk = . 

 

These equations are unique for each wavenumber pair, and c and cw are functions of wavenumber; c is 

also a function of Δt.  In our solution, we compute the inverse Bij − cIij[ ]−1 and Bij − cwIij[ ]−1  at each 

wave number pair and save these in memory to reduce the computation time.  If Δt is changed, the 

inverse values of the inverse arrays must be recomputed and re-saved in memory. 

 

 In solving this system of Helmholtz equations, one must be careful that the c and cw values lie 

within the range of eigenvalues of B.  The maximum eigenvalue of B is given for different values of Nz 

in Table I.  The maximum value of c increases as the grid is refined, in the homogeneous directions, and 

as Δt is decreased.   
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C. Solve for u and v 

The homogeneous velocity components, u and v, are computed using 

 

 2

11 öö
ö

k
wDikgik

u
n

x
n
zy

++ +
=  and 2

11 öö
ö

k
wDikgik

v
n

y
n
zx

++ +−
= . (14) 

 

The ˆ u  and ˆ v  in Eqn. (14) are derived in Schumacher [16, Appendix E]. 

 

D. Solve for the magnetic field and magnetization 

The mean magnetic field within the domain is related to the externally applied magnetic field.  In 

our specific system, the average internal magnetic field is related to the external field by: 

 
ˆ H x  0,0,z( ) = ˆ H ox

cos Ωt( ),     ˆ H y  0,0,z( ) = 0, and     ˆ H z  0,0,z( ) + ˆ M z  0,0,z( ) = ˆ B oz
μo . (15) 

 

The relationships in Eqn. (15)  are enforced by direct substitution into the (0,0) Fourier modes.  

Due to the chaotic behavior of the flow field and the coupling between the velocity, magnetization, and 

magnetic field, the magnetization and magnetic field will have a spectrum of fluctuating components.  

Maxwell’s equations are used to relate the fluctuating magnetic field with the fluctuating magnetization 

at an instant in time and are solved as shown in Schumacher, et al. [6]. φ  can be computed by solving 

the Poisson equation ∇2φ = −∇ ⋅ M .  This equation is solved for ˆ φ  in Fourier space by solving the 

following Helmholtz equation   

 

D2 − cwI⎡⎣ ⎤⎦φ̂(z) = −iki M̂ i (z) , 

 

where cw = kx
2 + ky

2 .  Once ˆ φ  is known, the components of ˆ H  are computed. 

 

In the channel flow simulations the Shliomis magnetization equation [14 and Eq. (2.21) in 

Schumacher 6] is used and the magnetic convection term, found to be very small in Part II, is ignored.  

The magnetization equation is updated in physical space and then transformed back into Fourier space, 

where it is dealiased using the 2/3-truncation method.  The full Shliomis magnetization equation is 
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 ∂Mi

∂t
= − u ⋅ ∇M{ }i + ω × M{ }i − 1

Cτ B

Mi − Meqi( ). (16) 

 

The equilibrium magnetization is related to the magnetic field by the non-linear function 

 

Meqi
= χHi ,   where χ = MS

H
1

tanh ξ( )
− 1

ξ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,   ξ = μomH

kBT
, and H = Hx

2 + Hy
2 + Hz

2 . 

 

A semi-implicit time stepping method is used.  The 
B

CM τ  term is treated implicitly and the nonlinear 

terms and equilibrium magnetization term are treated explicitly.  An Euler/backward-Euler or Adams-

Bashforth/Crank-Nicolson semi-implicit scheme is used.     

 

 There is theoretical evidence [17-20] that under certain conditions on vorticity, magnetic field, 

and oscillation frequency the flow solutions in laminar flow may be unstable or multi-valued. The 

parameter ξ, identifies the strength of the magnetic field. 

 ξ =
μomHox

kBT
, 

where μ0 is the permeability of free space, m is the magnetic moment of a single particle, kB is 

Boltzmann’s constant and T is the absolute temperature.   The instabilities occur for large ξ = 10-120, but 

only values up to 5.76 are used here. In addition, the largest value of τ BΩ is 0.1, whereas values up to 5 

are needed for the unusual effects to be predicted theoretically. In that case other magnetization 

equations are needed [21-22]. In the cases studied here, though, the parameters are not in the 

problematic range, and previous simulations [7] indicate that for the parameters studied here the 

Felderhof and Kroh [21] and Martsensuk, et al. [22] magnetization equation make little difference 

compared with the one used here. 

 

E. Solve for spin 

The torque is computed spectrally and dealiased using the 2/3-truncation method.  Once the 

torque is computed using the updated M and H values, the spin can be calculated using the spin 

equation. 
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 ω n +1 =1/2∇ × un − CTRQMn +1 × Hn +1 

 

F. Calculation order 

 The order in which we update the set of equations is as follows.  First, the magnetization 

equation is advanced one time step.  Using the updated magnetization, the magnetic field is then updated 

in time.  Next, using the old velocity field and the new M and H, the spin is computed.  The momentum 

equation is then updated using the new values of M, H, and spin.  Finally, after the momentum equation 

is updated, the spin is recomputed using the new velocity field.  Solving the spin equation twice, before 

and after the velocity update, helped stabilize the simulation. 

 

The turbulent flows of interest have Reynolds numbers of 2250 and 2800.  For all cases, the 

system domain size is 4πδ (4 /3πδ)(2δ) LxLyLz .  The simulations with Reynolds number = 2250 use 144 

x 144 x 65 physical space grid points, and the simulations with Reynolds number = 2800 use 192 x 160 

x 65 grid points. The domain size, grid spacing, and time step size, for our cases, are all comparable with 

what has been reported in the literature for low Reynolds numbers [9, 10, 23, 24]. 

 

Table II lists the cases solved.  Cases A and H are Newtonian fluid cases. Parameters varied 

include the Reynolds number, magnetic field (specified by the parameter ξ), and frequency of 

oscillation, Ω. 

 

The range of c and cw, in the Helmholtz equations varies with grid resolution and Δt. Based on 

the range of c for our problem, we choose Nz=65 for both cases as shown in Table III.   The flow field is 

fully developed when the magnetic field is on.  We follow the same approach as Lyons, et al. [9] to get a 

realistic turbulent flow field.  Start with a laminar flow profile with a disturbance on a coarse grid. 

Advance in time and allow the kinetic energy to redistribute from the (0, 0) mode to all of the higher 

modes.  After the turbulent flow reaches a stationary state, the solution is interpolated onto a finer grid.  

The process is continued until the resolution is fine enough to pick up all scales of motion; the steady 

state solution at this resolution is used as the initial velocity field for the ferrofluid equations. 
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Before the full ferrohydrodynamic equations are solved, the channel code, for a Newtonian fluid 

at Re=2800, is verified and validated.  The mean velocity results are validated against the empirical law-

of-the-wall, and the directional energy spectra compares well with the published data of Moser, et al. 

[23].  

 

G. k-ε model 

The k-ε method of Chien [25] was also run for comparison, since it had been validated against 

fully developed turbulent channel flow data, including profiles of average velocity profiles, Reynolds 

stress, and turbulent kinetic energy.  The parameters and functions used were for a low Reynolds 

number [26, Eq. 8] case, and the same parameters are used here for both Newtonian fluids and 

ferrofluids:  Cμ = 0.09, Cε1 = 1.35, Cε2 = 1.8, σk = 1, σε = 1.3, and 

fμ =1− exp(−0.0115z+), f1 =1, f2 =1− 2
9

exp − RT

6
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

D = 2υk
z2 , E = − 2υε

z2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ exp(−0.5z+), RT = k 2

υε
, z+ = (1− z

δ
)Reτ  

 

It is extended for ferrofluids using a model (but for channel flow) similar to that used in Schumacher, et 

al. [4] for pipe flow.  The non-dimensional torque is 

 

 To = 0.5χ0
−ωτ B (a + b2)

(a + b)2 + (2 + χo)2(Ωτ B )2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , a = (ωτ B )2 − (Ωτ B )2, b =1+ χo  

 

The value of χo  is taken as the slope of the magnetization versus magnetic field curve at the ξ  in 

question, χo=0.1815, 0.0301 for H = 316, 948 Oe, respectively. 

 

IV. RESULTS 

A. Fractional Pressure Drop 

 Experiments show that when a slowly oscillating magnetic field, ΩτB <<1, is applied to turbulent 

ferrofluid pipe flow, the pressure drop required to maintain a constant flow rate increases [4].  The wall 

stress is related to the pressure drop by ΔP L = τ w δ .  The Reynolds number based on wall stress is 
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Reτ = τ w ρδ( ) ν .  Figure 2 shows how Reτ adjusts in time after the magnetic field is turned on.  When 

the magnetic field is steady, the Reτ readjusts to a new steady value, but when the magnetic field is 

oscillating, Reτ has a more dynamic behavior and oscillates between the ξ=0 case and the case with 

ξ=1.92 (H = 316 Oe) and a steady magnetic field.  The adjustment of the Reτ to a steady state value 

occurs in approximately 1/10th of a non-dimensional time unit.  The fractional pressure drop ( PFPD) is 

computed at each time step in the simulation and time-averages are reported in Table IV.  The pressure 

drop required to maintain a constant flow rate increases as the magnitude of the magnetic field goes up.  

The magnetic field has a larger effect when the Reynolds number is smaller.  When the magnetic field 

oscillates, the pressure drop required to maintain a steady flow rate is between that for a steady field and 

no field.  In fact, the fractional pressure drop  oscillates between the values for the steady case and the 

zero field case.  Thus, going from a steady to an oscillating magnetic field essentially reduces the 

effective viscosity.   

 

The k-ε results are shown for comparison in Table IV and exhibit the same trends as the DNS, 

but the magnitude of the effect is larger in the k-ε solutions.  When χo  was calculated using the chord 

(M/H), ( χo  = 0.2705, 0.1425, for H = 316, 948 Oe, respectively) the fractional pressure drop was even 

larger and the errors were bigger.  When the slope is used, as reported in Table IV, the k-ε model 

predicts results that are above the DNS results for H = 316 Oe and below them for H = 948 Oe. Both 

options for χo  show very little change with frequency. While the k-ε model predicts the pressure drop 

with only a few percent error, the fractional pressure drop varies significantly from the DNS results. The 

trends shown here for channel flow, depending upon the magnetic field and frequency, agree with the 

trends measured for pipes in Ref. [4]. The fractional pressure drop varies most with magnetic field; in 

the k-ε model the fractional pressure drop does not change with frequency whereas it decreases very 

slightly as frequency is increased for the DNS model. 

 

B. Mean profiles 

 The mean profiles of the velocity, turbulent kinetic energy, Reynolds stress, spin rate, and y-

torque are plotted as a function of distance from the wall.  The velocity is normalized by the friction 
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velocity based on total wall shear stress, ρττ wu = .  When the z+ variable is used, it refers to 

( )( )ντuzz −=+ 1 , otherwise z is normalized by the halfwidth, δ. 

 

 The mean velocity profiles are shown in Figure 3.  As the magnetic field magnitude increases, 

there is a downward shift of the velocity profile in the log-region of the flow.  The k-ε profiles show the 

same general behavior.  The bulk average velocity is the same in all cases, but the velocity 

normalization factor, ρττ wu = , changes with H.  Figure 3c shows the same profile for a range of 

frequencies. The effect of frequency is very small. 

 

 The normalized turbulent kinetic energy is not largely affected by the steady magnetic field, as 

shown in Figure 4.  The peaks occur at approximately the same z/δ value in all cases.  The k-ε 

simulations show a good predictive capability, in that the profiles are similar and close together and the 

peaks occur at approximately the same place as the DNS data.   

 

 Figure 5 plots the normalized Reynolds stress vs. distance from the wall.  In the DNS results, the 

Reynolds stress decreases as H is increased.  In the k-ε simulations, the lines are almost superimposed.  

In the channel flow simulations, a constant flow rate is maintained by adjusting the applied pressure 

drop.  As a result, the wall shear stresses at the upper and lower walls are no longer at fixed values.  That 

is, uτ +δ( )≠ uτ −δ( ).  Both uτ +δ( ) and uτ −δ( ) change in time.  Thus, the spatially averaged vorticity and 

spin profiles are slightly asymmetric at any instant in time, but the profiles of vorticity and spin become 

symmetric when the spatially averaged profiles are time averaged over long times.  Figure 5c shows that 

the effect of frequency is very slight. In Figure 6, the DNS results show that the mean spin profiles are 

highly asymmetric.  As H increases, the spin decreases in both the DNS and the k-ε results. 

 

 The torque is a sensitive quantity, and is a non-linear function of the spin.  In Figure 7, the mean 

y-torque is plotted for the two steady field cases. The torque from the k-ε  model  shows good agreement 

with the DNS torque. 

 

C. Spectra 
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 Next we examine the effect of steady magnetic fields on the energy spectra at z+≈9 and z+≈150 

wall units from the wall.  The Reynolds number is a constant 2250 for all the cases in this section. 

Figure 8 shows the effect of a steady magnetic field with a magnitude ξ=5.76 on the energy spectra at 

z+≈9 wall units. The magnetic field results, solid lines, are compared to the Newtonian results, dotted 

lines, for each case. The magnetic field has only a small damping effect on the spectra at high wave-

numbers.  Figure 9 shows the effect at the centerline, and the effect is minimal.  For ξ=1.92 the curves 

are similar [16]. The figures show that there is no significant accumulation of energy at high 

wavenumbers, and that the energy at high wavenumbers is at least two or more decades lower than the 

energy at low wavenumbers.  Thus, the grid resolution is adequate in the magnetic field simulations. 

 

V. CONCLUSIONS 

 The pressure drop required to maintain a constant flow rate for a ferrofluid increases with the 

applied magnetic field strength. When a magnetic field is oscillated at a frequency of 1000 s-1 

(ΩτB=0.06), the pressure drop required to maintain a constant flow rate is less than that when the 

magnetic field is steady, but larger than when there is no magnetic field applied. Applying the magnetic 

field has a bigger effect for smaller Reynolds numbers. The mean profiles involving velocity are not 

highly affected by magnetic field strength, but the spin and torque profiles show a strong dependence on 

H. The only significant change in energy spectra occurred near the wall in the case of a high magnetic 

field, ξ=5.76, where the spectra decreases slightly at large wavenumbers.  The k-ε model does a 

reasonable job modeling the mean velocity profiles, the turbulent kinetic energy, Reynolds stresses, 

spin, and torque.  The trends reported here for channel flow are very much in agreement with the 

experimental trends for pipe flow reported in Ref. [4]: in low Reynolds number turbulent flow the 

excess pressure drop increases with magnetic field and varies only slightly with frequency. 
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Nz Maximum Eigenvalue of B 

33 104.7 

40 105.08 

65 105.9 

97 106.6 

129 107.1 

  

Table I.  Maximum Eigenvalues of B, for different Nz. 
 
 

Case Fluid Re H (Oe) Ω(Ηz) Comments 
A Newtonian 2250 N/A N/A Initial cond. For cases B-G
B Ferrofluid 2250 316, ξ=1.92 0   
C Ferrofluid 2250 948, ξ=5.76 0   
D Ferrofluid 2250 316, ξ=1.92 400  
E Ferrofluid 2250 948, ξ=5.76 400  
F Ferrofluid 2250 316, ξ=1.92 1000  
G Ferrofluid 2250 948, ξ=5.76 1000  
H Ferrofluid 2800 N/A N/A Initial cond. For cases B-G
I Ferrofluid 2800 316, ξ=1.92 0   
J Ferrofluid 2800 948, ξ=5.76 0   
K Ferrofluid 2800 316, ξ=1.92 400   
L Ferrofluid 2800 948, ξ=5.76 400   
M Ferrofluid 2800 316, ξ=1.92 1000  
N Ferrofluid 2800 948, ξ=5.76 1000  

 
 

Table II.  Overview of the channel flow cases. 
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Re 2250 2800 

Reτ ~150 ~180 

Δt 6e-4 5e-4 

cw=k2 0.25-5760 0.25-7585 

c 105.699-105.704 105.857-105.862

 

Table III.  Range of c and cw. 
 
 

    DNS Results k-ε Results 
Case H(Oe) Ω(Hz) Re Reτ Re*τ PFPD χ0 Re*τ PFPD

A 0 0 2250 148.5765 148.5765 0 – 142.9247 0.0000
B 316 0 2250 148.5765 149.4596 0.01192 0.1815 143.8419 0.0129
C 948 0 2250 148.5765 153.1061 0.06190 0.0301 144.2930 0.0192
D 316 400 2250 148.5765 149.0662 0.00661 0.1815 143.8419 0.0129
E 948 400 2250 148.5765 151.3059 0.03718 0.0301 144.2940 0.0193
F 316 1000 2250 148.5765 149.0369 0.00621 0.1815 143.8421 0.0129
G 948 1000 2250 148.5765 151.1219 0.03466 0.0301 144.2943 0.0193
H 0 0 2800 182.1141 182.1141 0 – 172.2422 0.0000
I 316 0 2800 182.1126 182.6402 0.00579 0.1815 172.8321 0.0069
J 948 0 2800 182.1126 184.8629 0.03043 0.0301 173.1279 0.0103
K 316 400 2800 182.1127 182.4157 0.00332 0.1815 172.8322 0.0069
L 948 400 2800 182.1127 183.8142 0.01880 0.0301 173.1281 0.0103
M 316 1000 2800 182.1127 182.3845 0.00297 0.1815 172.8329 0.0069
N 948 1000 2800 182.1127 185.3628 0.01695 0.0301 173.1292 0.0103

 
Table IV.  Summary of time-averaged results from DNS and comparison to Chien k-ε model. 
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LIST OF FIGURE CAPTIONS 
 

FIG 1. Channel Flow Geometry 

FIG 2.  Reτ
*  vs. t uτ δ( ), where ( )νδρττ w=Re .  Subplot (a) shows results for the Re=2250 cases. 

FIG 3.  Effect of the magnetic field and frequency of oscillation on the average normalized velocity 

profile. (a) DNS results for Ω=0; (b) Chien k-ε results for Ω=0; (c) DNS results for H=948 Oe, for Ω=0, 

400, 1000 Hz 

FIG 4.  Effect of the magnetic field on the normalized turbulent kinetic energy profile. (a) DNS results; 

(b) Chien k-ε results. 

FIG 5.  Effect of the magnetic field and frequency of oscillation on the normalized Reynolds stress 

profiles. (a) DNS results for Ω=0; (b) Chien k-ε results for Ω=0; (c) DNS results for H=948 Oe, for 

Ω=0, 400, 1000 Hz 

FIG 6.  Effect of the magnetic field on the normalized mean profile. (a) DNS results; (b) Chien k-ε 

results. 

FIG 7.  Effect of the magnetic field on the average y-directed normalized magnetic torque profile. (a) 

DNS results; (b) Chien k-ε results. 

FIG 8.  Power spectra of the stresses normalized by ρττ wu =2  at Re=2250, at a distance of about 9 wall 

units away from the wall; (a) x-directed spectra; (b) y-directed spectra. The solid lines are the ferrofluid 

steady case, ξ=5.76 (Case C in Table I), and the dotted lines are the Newtonian base case results (Case A 

in Table I). 

FIG 9.  Power spectra of the stresses normalized by ρττ wu =2  at Re=2250, at the channel centerline, 

(z+~150); (a) x-directed spectra; (b) y-directed spectra. The solid lines are the ferrofluid steady case, 

ξ=5.76 (Case C in Table I), and the dotted lines are the Newtonian base case results (Case A in Table I). 
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