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We study the semi-inclusive limit of the deep inelastic scattering and Drell-Yan (DY) processes
in soft collinear effective theory. In this regime so-called threshold logarithms must be resummed
to render perturbation theory well behaved. Part of this resummation occurs via the Dokshitzer,
Gribov, Lipatov, Altarelli, Parisi (DGLAP) equation, which at threshold contains a large logarithm
that calls into question the convergence of the anomalous dimension. We demonstrate here that the
problematic logarithm is related to rapidity divergences, and by introducing a rapidity regulator can
be tamed. We show that resumming the rapidity logarithms allows us to reproduce the standard
DGLAP running at threshold as long as a set of potentially large non-perturbative logarithms are
absorbed into the definition of the parton distribution function (PDF). These terms could, in turn,
explain the steep fall-off of the PDF in the endpoint. We then go on to show that the resummation
of rapidity divergences does not change the standard threshold resummation in DY, nor do our
results depend on the rapidity regulator we choose to use.
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I. INTRODUCTION

Lepton pair production in hadron-hadron collisions, known as the Drell-Yan (DY) process, helped establish the
parton model as a valid leading-order description of high energy QCD interactions. At present the DY process is still
of great interest as it provides a testbed for other final states, such as the Higgs boson or beyond-the-standard-model
particles, which are similarly produced in the collision of high energy partons [1].

Of particular theoretical interest is the so-called threshold region, where the invariant mass of the lepton pair
approaches the center-of-mass energy of the collision. In this regime large Sudakov logarithms must be resummed [2–
5]. Similar, but on less rigorous footing is the need for partonic resummation. In this case one is not in the true
endpoint region, but rather in the region where the invariant mass of the colliding partons is just above the threshold
for the production of the final state. It is argued [6, 7] that the sharp fall-off of parton luminosity at large x enhances
the partonic threshold region, and thus requires resummation. A quantitative study of this question was carried out
in the context of soft collinear effective theory (SCET) [8–11] in Ref. [12], which concludes among other things that
“the dynamical enhancement of the threshold contributions remains effective down to moderate values τ ≈ 0.2...”,
where τ = 1 represents the true endpoint.

In the threshold region the large Sudakov logarithms which need to be resummed have a simple form in Mellin
moment space, where leading terms appear in perturbation theory as double logarithms αn

s ln2n(N), where N is the
Mellin moment. The threshold region corresponds to the limit of large N , so clearly the presence of these types
of terms poses problems for a naive perturbative expansion and calls for resummation. Part of this resummation
occurs when the parton distribution function (PDF) is evolved using the DGLAP [13–15] equation, which in the
threshold region becomes particularly simple. In Mellin moment space the anomalous dimension for the non-singlet
quark-to-quark PDF has the form [16]

γ(n)ns = −

(

αs(µ)

4π

)n+1[

An log(N̄)−Bn

]

+O

(

ln(N)

N
,
1

N

)

, (1)

where N̄ = NeγE , γE being the Euler-Mascheroni constant. At order n = 0, for example, A0 = 16/3 ≈ 5.3 and
B0 = 4. What is peculiar about this result is that while An and Bn are numbers of the same order, there is the large
logarithm of N enhancing the An term. From an effective field theory (EFT) point of view the large logarithm is
problematic because a consistent power counting in the threshold region should never encounter such enhanced terms.

This issue was addressed in a previous paper in which we revisited deeply inelastic scattering (DIS) in the threshold
(or endpoint) region, where Bjorken-x approaches its endpoint value of one [17]. In that work we use SCET to show
that the PDF in the threshold region can be expressed as the product of a collinear factor and a soft function. Since
both the collinear and soft degrees of freedom in the endpoint have an invariant mass of order the hadronic scale such
a separation necessitates the introduction of a rapidity regulator to keep the two modes separate. We use the rapidity
regulator of Refs. [18, 19]. This tool allows us to reorganize the perturbative expansion of the anomalous dimension
for the non-singlet quark-to-quark PDF in the threshold region. We find the leading order anomalous dimension in
Mellin moment space to be

γ(0)ns = −

(

αs(µ)

4π

)n+1[

A0 ln

(

νcνs
Q2/N̄

)

−B0

]

, (2)

where νc ≈ Q is the collinear rapidity scale, and νs ≈ Q/N̄ is the soft rapidity scale. The rapidity scales are set

by minimizing logarithms in the collinear and soft anomalous dimensions, and result in a γ
(0)
ns free of a logarithmic

enhancement. Now both terms in the anomalous dimension are of “natural” size, O(1).
Unfortunately, there is a downside to separating modes in rapidity: the PDF now depends on logarithms of the

ratio of νc to νs. In principle these logarithms can be resummed using a rapidity renormalization group equation
(rRGE), however the anomalous dimension in the rRGE is not infrared safe. As a result the running in rapidity can
not be reliably calculated and must be included in the function chosen to model the PDF at the hadronic scale. This
does not mean that we can not use our rapidity separated PDF as the definition of the PDF in the endpoint: we can
as long as we let the scale νs approach Q as we move away from threshold. This can be achieved by introducing a
rapidity profile function [20].

In our previous work we showed that one can introduce a rapidity separated PDF in the endpoint of DIS that has
all the properties that a PDF should have, and that DIS in the endpoint using our approach factors in the same way
as DIS factors in the region away from the endpoint. This approach, however, must also reproduce the well-known
result in DY that threshold resummation is expressed as a convolution of perturbatively resummed logarithms with
the same PDF as appears in DIS. The aim of this paper is to show that this is indeed the case. Furthermore, we
investigate an alternative rapidity regulator, the Delta-regulator, and show that our results are rapidity regulator
independent to the order we are working.
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We begin in Sec. II by reviewing our calculation of the DIS soft and collinear functions using the η regulator. In
Sec. III, we calculate the soft and collinear functions for DY using the η regulator and resum the endpoint logarithms
using the rapidity renormalization group. In Sec. IV, we repeat the calculations for both DIS and DY using the Delta
regulator and compare the results to those from using the η regulator. For completeness, in Appendix A we calculate
the jet function (for DIS) using the Delta regulator, which has not previously appeared in the literature. We explore
the difference in the structure of the zero-bin subtraction between DY and DIS in Appendix B.

II. DIS AT ENDPOINT WITH RAPIDITY REGULATOR

In this section, we review the SCET factorization and resummation results for deep inelastic scattering (DIS) in
the endpoint regime which we studied in Ref. [17]. At the end of this section we remark on aspects of our results that
were not addressed in our previous work, and compare to previous work [21]

The DIS process is when an high energy electron with momentum k strikes a proton with momentum p and produces
to a final hadronic state X(pX) and a scattered electron. We denote the final state electron momentum as k′, and

the square of the momentum transfer is q2 = (k − k′)2. We define Q2 ≡ −q2, and x =
Q2

2p · q
. With this notation, we

follow Ref. [17] and write the differential cross-section as,

dσ =
d3~k

2|~k′|(2π)3
πe4

SQ4
Lµν(k, k

′)Wµν(p, q), (3)

where s = (p+ k)2 is the invariant mass square of the collision, and the lepton tensor is:

Lµν = 2(kµk
′
ν + kνk

′
µ − k · k′gµν) . (4)

Wµν is the DIS hadronic tensor, which at large x will be the subject of our analysis.
In this section, we first determine the kinematics and power-counting specific to the endpoint. Then we match

QCD onto SCETI. Next at an intermediate scale of order the invariant mass of the final state, we match the SCETI

onto SCETII. Using the rapidity regulator introduced in Refs [18, 19], we explicitly calculate both the collinear and
the soft functions to one-loop in the SCETII.

A. Kinematics

There are a number of different approaches in the literature [22–24] that describe how momentum components
separate and scale in the x ∼ 1 regime. In this article, we choose the notations in Ref. [22]. We define light-
cone unit vectors nµ = (1, 0, 0,−1) and n̄µ = (1, 0, 0, 1), which allows us to decompose the proton momenta pµ =
nµ

2 n̄ ·p+
n̄µ

2 n ·p+p
µ
⊥, in which p+ = n ·p and p− = n̄ ·p. In the target rest frame, p = (p+, p−, p⊥) = (Mp,Mp, 0), and

Q2 = −q2 = −q+q−. The direction of the incoming electron fixes the z-axis, and in the target rest frame, q− ≫ q+.
In this limit, Bjorken x simplifies to

x =
Q2

2p · q
= −

q+q−

p+q− + p−q+
≃ −

q+

p+
. (5)

We can express all momenta in terms of x, Mp and Q in the target rest frame, and then boost them along the z-axis
into the Breit frame:

q =

(

−xMp,
Q2

xMp
, 0

)

boost
−−−→ (−Q,Q, 0)

p = (Mp,Mp, 0)
boost
−−−→

(

Q

x
,
xM2

p

Q
, 0

)

pX = p+ q =
(

Mp(1− x), q−, 0
) boost
−−−→

(

Q(1− x)

x
,Q, 0

)

,

where pX is the (total) final state momentum. In the large-x limit, the large component of the incoming proton is

p+ = Q
x = Q + l+, in which l+ = Q 1−x

x is a rapidity scale lying between the collinear momentum scale Q and soft
momentum scale ΛQCD. The rapidity scale, as we will see later, separates soft and collinear modes and gives rise to
logarithms of νs and νc. Correspondingly, we have naturally separated momenta
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• hard modes with q ∼ (−Q,Q, 0) and invariant mass q2 ∼ Q2 at the hard collision scale;

• final state jet hard-collinear modes with pX ∼
(

Q
(

1−x
x

)

, Q,Q
√

1−x
x

)

∼
(

l+, Q,
√

Ql+
)

and invariant mass

p2X ∼ Ql+ ≫ Λ2
QCD at the hard-collinear scale;

• n-collinear modes with pc ∼
(

Q,
Λ2

QCD

Q ,ΛQCD

)

and invariant mass M2
p ∼ Λ2

QCD at the soft scale;

• soft modes with ps ∼ (ΛQCD,ΛQCD,ΛQCD) at the soft scale.

We first integrate out the hard degrees of freedom in QCD at the scale Q2 by matching onto SCETI with offshellness
Ql+. We then integrate out hard-collinear degrees of freedom at Ql+ by matching onto SCETII with offshellness
Λ2
QCD. In the case where the final state momentum p+X is of order Q

(

1−x
x

)

∼ l+ & ΛQCD ≪ Q, the process is

semi-inclusive in character. If on the other hand l+ ∼
Λ2

QCD

Q , the collision would be exclusive, and we would be unable

to factor the hadronic tensor.

B. Factorization

In Eq.(3), the DIS hadronic tensor is the matrix element of the time-ordered product of two QCD currents Jµ(x) =
ψ̄(x)γµψ(x) between external in- and out- proton states,

Wµν(p, q) =
1

2

∑

σ

∫

d4xeiq·x〈h(p, σ)|Jµ(x)Jν(0)|h(p, σ)〉, (6)

where σ is the spin of the proton. Matching QCD onto SCET is carried out at the scale µq ∼ Q, and the SCET
current is

Jµ(x) →
∑

w1,w2

C(w1, w2;µ, µq)
(

e−
i
2
w1n·xe

i
2
w2n̄·xχ̄n̄,w2

γµ⊥χn,w1
+ h.c.

)

, (7)

where χ̄n̄,w2
, χn,w1

are SCET fields. Correspondingly, the hadronic tensor in SCETI is

Wµν
eff =

∑

w1,w2,w′

1,w
′

2

C∗(w1, w2;µq, µ)C(w
′
1, w

′
2;µq, µ)

∫

d4x

4π
e−

i
2
(Q−w1)n·xe

i
2
(Q−w2)n̄·x

×
1

2

∑

σ

〈hn(p, σ)|T̄ [χ̄n,w1
γµ⊥χn̄,w2

(x)]T [χ̄n̄,w′

2
γν⊥χn,w′

1
(0)]|hn(p, σ)〉

=
−gµν⊥
2

Nc

∑

ω′

1,ω
′

2

C∗(Q,Q;µq, µ)C(ω
′
1, ω

′
2;µq, µ)

×

∫

d4x

4π

1

2

∑

σ

〈hn(p, σ)|χ̄n,Q(x)
n̄/

2
χn,ω′

1
(0)|hn(p, σ)〉

×〈0|
n/

2
χn̄,Q(x)χ̄n̄,ω′

2
(0)|0〉

1

Nc
〈0|Tr

(

T̄

[

Y †
n (x)Ỹn̄(x)

]

T

[

Ỹ †
n̄ (0)Yn(0)

])

|0〉 , (8)

where T and T̄ denote time ordering and anti-time ordering operations of the soft gluon fields Yn̄ and Yn respectively.
The two collinear sectors and one usoft sector are decoupled by the BPS phase redefinition in Ref. [8].

In order to match Eq. (8) onto SCETII, it is convenient to introduce a jet function as in Ref. [25]

〈0|
n̄/

2
χn̄,ω2

(x)χ̄n̄,ω′

2
(0)|0〉 ≡ Qδ(n̄ · x)δ(2)(x⊥)

∫

dr e−
i
2
rn·xJn̄(r;µ) , (9)

which characterizes the final state with p2X ∼ Ql+. The final state is integrated out at the scale µc ∼
√

Ql+ and
Jn̄(r;µ) becomes a matching coefficient in SCETII.

We define a soft function in SCETI as in Ref. [26]

1

Nc
〈0|Tr

(

T̄

[

Y †
n (n · x)Ỹn̄(n · x)

]

T

[

Ỹ †
n̄ (0)Yn(0)

])

|0〉 ≡

∫

dℓ e−
i
2
ℓn·xS(DIS)(ℓ;µ) , (10)



5

which describes usoft gluon emission throughout the interaction, from initial to final state. The Wilson lines are
defined as

Yn(x) = P exp

(

ig

∫ x

−∞

ds n ·As(sn)

)

,

Ỹ †
n̄ (x) = P exp

(

ig

∫ ∞

x

ds n̄ ·As(sn̄)

)

. (11)

The usoft gluons in SCETI with offshellness p2us ∼ Λ2
QCD become soft gluons of SCETII, so Eq.(10) retains its form

in matching SCETI to SCETII.
Using label momentum conservation, which is just momentum conservation at fixed (large) Q, we simplify the

collinear matrix element in the n-collinear direction:

〈hn(p, σ)|χ̄n,Q(x)
n̄/

2
χn,ω′

1
(0)|hn(p, σ)〉 = δQ,ω′

1
〈hn(p, σ)|χ̄n(x)

n̄/

2
δP̄,2Qχn(0)|hn(p, σ)〉 . (12)

We then define an n-direction collinear sector as the n-collinear function and match it onto SCETII. We insert an
explicit Kronecker delta to ensure the large momentum of the proton p̃ · n̄ is Q at large x,

Cn(Q− k;µ) =

∫

dn·x

4π
e

i
2
kn·x 1

2

∑

σ

δn̄·p̃,Q 〈hn(p, σ)|χ̄n(n·x)
n̄/

2
δP̄,2Qχn(0)|hn(p, σ)〉

=
1

2

∑

σ

δn̄·p̃,Q 〈hn(p, σ)|χ̄n(0)
n̄/

2
δP̄,2Qδ(in̄ · ∂ − k)χn(0)|hn(p, σ)〉 , (13)

where P̄ = n̄ · (P +P+) and k ∼ ΛQCD is the residual momentum lying in the SCETII soft region. Label momentum
conservation then forces w′

1 = Q, meaning that the large momenta of the incoming and outgoing protons are both
equal to Q.

In the SCETII soft and collinear fields have the same off-shellness p2 ∼ Λ2
QCD. An arbitrary separation between

these soft and collinear modes may lead to rapidity divergences [18, 19], which we regulate by a Lorentz invariant η
regulator with a dimensionful scale ν. Since the matching procedure shows that the final state jet function is decoupled
from the initial state n-collinear function, we can express the n-collinear function as Cn(Q − k;µ) → Cn(Q − k;µ, ν)
and the soft function as S(l, µ) → S(l;µ, ν). Combining Eq.(8), Eq.(9), Eq.(12) and Eq.(13), we arrive at the SCETII

factorized DIS hadronic tensor,

Wµν
eff = −gµν⊥ H(Q;µq, µc)

∫

dℓ Jn̄(ℓ;µc, µ)f
ns
q (Q

(

1− x

x

)

+ ℓ;µ), (14)

with

fns
q (ℓ;µ) = δñ·p̃,QZn(µ, ν)S

(DIS)(ℓ;µ, ν) (15)

and

Zn(µ, ν) = Cn(Q− k;µ, ν)δ(k)δn̄·p̃,Q . (16)

C. Renormalization and Resummation with Rapidity

In this section we study the collinear and soft functions using the η regulator from Refs. [18, 19]. The rapidity
logarithms in the collinear and soft functions are regulated by a modification of the momentum space Wilson lines as
follows

Wn =
∑

perms exp
[

− gw2

n̄·P
|n̄·P|−η

ν−η n̄ ·An

]

,

Sn =
∑

perms exp
[

− gw
n̄·P

|2P3|
−η

ν−η n ·As

]

, (17)

where ν is a rapidity scale and w is analogous to a coupling constant, which will be used to derive the rapidity
renormalization group equation. We take η → 0 at the end.
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FIG. 1. O(α0
s
) Feynman diagram for the n-collinear function.

FIG. 2. O(αs) Feynman diagram for the n collinear function (a) is the virtual contribution; (b) and (c) are the real contribution.

1. Collinear Function to O(αs) for DIS

The n-collinear function in Eq. (13) has the tree-level Feynman diagram shown in Fig. 1 We consider the explicit
calculation of this diagram using external parton states, and find the O(α0

s) result

C(0)
n (Q− k) = δn̄·p̃,Qδ(n̄ · pr − k)m0 , (18)

where n̄ · p̃ is the O(1) quark label momentum at the hard scale Q, pr is the quark residual momentum at the soft
scale and

m0 =
1

2

∑

σ

ξ̄σn
n̄6

2
ξσn , (19)

where ξσn is the SCET quark spinor in the n-direction with spin σ.
The O(αs) n-collinear function Feynman diagrams are shown in Fig. 2. Fig. 2(a) shows the virtual contribution,

while Figs. 2(b) and (c) show the real contribution. We omit the mirror images of the Fig. 2(a) and (b). With the
rapidity regulated collinear Wilson lines, we obtain the naive result corresponding to the diagram in Fig. 2(a),

im̃n
a = (im0)(2g

2CF )δn̄·p,Qδ(l
−)µ2ǫνη

∫

dDq

(2π)D
|n̄ · q|−η

n̄ · q

n̄ · (p− q)

(p− q)2 + iǫ

1

q2 −m2
g + iǫ

(20)

in D = 4− 2ǫ dimensions. The Kronecker delta sets the large component of the external quark momentum to Q. The
integral in Eq. (20) overlaps with a region of soft momenta that must be subtracted to avoid double counting, the
so-called zero-bin which was first discussed in Ref. [27] and then improved in Ref. [28]. Taking the limit n̄ · q ≪ n̄ · p
in the collinear gluon loop gives the overlap region, and the zero-bin subtraction for this diagram is

imnφ
a = im0(2g

2CF )δn̄·p,Qδ(l
−)µ2ǫνη

∫

dDq

(2π)D
|n̄ · q|−η

n̄ · q

n̄ · p

(n̄ · p)(n · q) + iǫ

1

q2 −m2
g + iǫ

. (21)

Eq. (21) is scaleless and thus vanishes. The naive results corresonding to the diagrams of Fig. 2(b) and (c) are

im̃n
b = (−im0)(2g

2CF )δn̄·p+n̄·q̃,Qδn̄·p,Qµ
2ǫνη

∫

dDq

(2π)D
(−2πi)δ(q2)

|n̄ · q|−η

n̄ · q

n̄ · (p− q)

(p−q)2 + iǫ
δ(n̄ · qr − l−) (22)

im̃n
c = (im0)(2g

2CF )δn̄·p+n̄·q̃,Qδn̄·p,Qµ
2ǫ(D − 2)

∫

dDq

(2π)D
(−2πi)δ(q2)

(n̄ · q)(n · q)

((p− q)2 + iǫ)2
δ(n̄ · qr − l−) , (23)
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where q̃ is the large component of the collinear gluon momentum which obeys label momentum conservation, and
q = q̃ + qr with qr the soft residual momentum. In the n-collinear function, the n-collinear quarks only couple with
n-collinear gluons, which means n · q̃ = 0 and n · q = n · qr. The two Kronecker deltas in front of the integrals in
both Eq. (22) and Eq. (23) force n̄ · q̃ = 0, which implies that gluons emitted from initial to final state only have soft
momentum. As a result, Eq. (22) and Eq. (23) can be reduced to

im̃n
b = (−im0)(2g

2CF )δn̄·q̃,0

∫

dDqr
(2π)D

(−2πi)δ(q2r)
|n̄ · qr|−η

n̄ · qr

n̄ · (p− qr)

(p− qr)2 + iǫ
δ(n̄ · qr − l−) (24)

im̃n
c = (im0)(2g

2CF )δn̄·q̃,0

∫

dDqr
(2π)D

(−2πi)δ(q2r )
(n̄ · qr)(n · qr)

((p− q)2 + iǫ)2
δ(n̄ · qr − l−) , (25)

which is equal to the zero-bin subtraction. Therefore, after subtracting Eq. (24) and Eq. (25) from Eq. (22) and
Eq. (23) respectively, the results vanish.

After computing the virtual collinear diagrams in Eq. (20) and Eq. (21) and adding their mirrors, we have to O(αs)

∑

m = C(0)
n (Q− k)

αsCF

π
w2

{

eǫγEΓ(ǫ)

η

(

µ2

m2
g

)ǫ

+
1

ǫ

[

1 + ln
ν

n̄ · p

]

+ ln
µ2

m2
g

ln
ν

n̄ · p
+ ln

µ2

m2
g

+ 1−
π2

6

}

, (26)

which depends on the rapidity regulator. A natural choice of ν ∼ n̄ · p = Q minimizes the rapidity logarithm. The
collinear matrix element is obtained by multiplying the above result by the quark wave function renormalization

Zξ = 1−
αsCF

4π

(

1

ǫ
+ ln

µ2

m2
g

+ 1

)

, (27)

which gives

C(1)
n (Q− k) = C(0)

n (Q − k)
αsCF

π
w2

{

eǫγEΓ(ǫ)

η

(

µ2

m2
g

)ǫ

+
1

ǫ

[

3

4
+ ln

ν

n̄ · p

]

+ ln
µ2

m2
g

ln
ν

n̄ · p
+

3

4
ln
µ2

m2
g

+
3

4
−
π2

6

}

. (28)

2. Soft Function to O(αs) for DIS

The soft function, given in Eq. (10), at tree level is

S(l)(0) = δ(l). (29)

To O(αs), with the η-regulated soft Wilson line Eq. (17), we can explicitly isolate the rapidity poles of the soft
function. The Feynman diagrams for the one-loop soft functions are shown in Fig. 3, where Fig. 3(a) is the virtual
piece and Fig. 3(b) is the real piece. The double lines represent the eikonal lines. Here we also omit the mirror images
of Fig. 3(a) and (b).

The naive virtual soft function amplitude determined from Fig. 3(a) is

S̃v = (2ig2CF )δ(l)µ
2ǫνηw2

∫

ddk
|2k3|−η

k2 −m2
g + iǫ

1

k− + iǫ

1

k+ + iǫ

= δ(l)
αsCF

π
w2
[

−
eǫγEΓ(ǫ)

η

(

µ

mg

)2ǫ

+
1

2ǫ2
+

1

ǫ
ln
µ

ν
+ ln2

µ

mg
− ln

µ2

m2
g

ln
ν

mg
−
π2

24

]

. (30)

The zero bin subtraction for the naive virtual piece is the overlap with the n and n̄ collinear directions:

Sn̄
vφ(k

− ≫ k+) = (2ig2CF )δ(l)µ
2ǫνη

∫

dDk

(2π)D
|k−|−η

(k+ + iǫ)(k− + iǫ)(k2 −m2
g + iǫ)

, (31)

Sn
vφ(k

+ ≫ k−) = (2ig2CF )δ(l)µ
2ǫνη

∫

dDk

(2π)D
|k+|−η

(k+ + iǫ)(k− + iǫ)(k2 −m2
g + iǫ)

. (32)
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FIG. 3. O(αs) soft function Feynman diagrams: (a) is the virtual contribution; (b) is the real contribution.

These integrals are scaleless in rapidity regularization and vanish. This must be the case because adding the rapidity
regulator to the soft Wilson lines Eq.(17) restricts the soft function integral to lie only in the soft momentum region.
In other words, in the virtual contributions, the rapidity regulator properly separates soft and collinear modes in
SCETII. Thus the total virtual soft function is

Sv = 2S̃v . (33)

The naive real contribution from the diagram in Fig. 3(b) is

S̃r = +4πCF g
2
sµ

2ǫw2νη
∫

dDk

(2π)D−1
δ(k2 −m2

g)δ(ℓ − k+)|2k3|
−η 1

k+
1

k−
(34)

= −
αsCF

π

(

eγE
µ2

m2
g

)ǫ

w2νη
θ(ℓ)

ℓ1+η
Γ(ǫ) .

In the scheme introduced in our previous paper [17] the collinear zero bin subtraction for the real soft function is
given by expanding the real soft contribution about the collinear limit everywhere in the integrand except in the
measurement function. Then our zero bin subtraction is not zero at this order, because overlap with the collinear
regions in the soft function is not suppressed by the rapidity regulator in the initial state Wilson lines. Mathematically,
we see this by the presence of the scale brought into the integral by the measurement function. The overlap of the
integral in Eq. (34) with the n-collinear region is given by taking the limit k+ ≫ k− with k+k− ∼ k2⊥

Sr
nφ = −4πCF g

2
sµ

2ǫw2νη
∫

dDk

(2π)D−1
δ(k2 −m2

g)δ(ℓ − k+)|k+|−η 1

k+
1

k−
(35)

= +
αsCF

π

(

eγE
µ2

m2
g

)ǫ

w2νη
θ(ℓ)

ℓ1+η
Γ(ǫ) ,

which is the same as the result in Eq. (34). The n̄-collinear subtraction is given by taking the limit k− ≫ k+ with
k+k− ∼ k2⊥ in the first line of Eq. (34):

Sr
n̄φ = −4πCF g

2
sµ

2ǫw2νη
∫

dDk

(2π)D−1
δ(k2 −m2

g)δ(ℓ − k+)|k−|−η 1

k+
1

k−
(36)

= −
αsCF

π

(

eγE
µ2

m2
g

)ǫ

w2

(

ν

m2
g

)η
θ(ℓ)

ℓ1−η

Γ(η + ǫ)

Γ(1 + η)
.

Comparing Eq. (34), Eq. (35) and Eq. (36), we see that the unsubtracted soft function S̃r is dominated by overlap
with the n-collinear region as Eq. (35) represents the n-collinear modes running into the soft function. This is due to
the measurement being on soft radiation only in the n-collinear direction. Radiation in the n̄-collinear direction has
been integrated out in the matching onto SCETII and subtracting Eq. (36) from Eq. (34) removes the momentum in
the soft function that overlaps with the n̄-collinear momentum region. Thus the zero bin subtracted real contribution,
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given by the diagrams in Fig. 3(b), is

Sr = 2(S̃r − Sr
nφ − Sr

n̄φ) = −2Sr
n̄φ (37)

= 2
αsCF

π
w2 1

Q

{[

1

2

eǫγEΓ(ǫ)

η

(

µ

mg

)2ǫ

−
1

2ǫ2
+

1

2ǫ
ln
νQ

µ2
− ln2

µ

mg
+ ln

µ

mg
ln
νQ

m2
g

+
π2

24

]

δ(z)

+

[

1

2ǫ
+ ln

µ

mg

](

1

z

)

+

}

,

where the plus-function of the dimensionful variable ℓ is given in terms of the definition of a dimensionless variable
z = ℓ/κ

(

1

ℓ

)

+

=
1

κ

(

1

z

)

+

+ lnκ δ(κ z) , (38)

with
(

1

z

)

+

≡ lim
β→0

[

θ(z − β)

z
+ lnβ δ(z)

]

. (39)

Adding the virtual and real contributions gives the one loop expression for the soft function

S(z)(1) =
αsCF

π
w2 1

Q

{

−
eǫγEΓ(ǫ)

η

(

µ

mg

)2ǫ

δ(z) +

(

1

ǫ
+ ln

µ2

m2
g

)(

− ln
ν

Q
δ(z) +

(

1

z

)

+

)}

. (40)

Logarithms in the soft function are minimized by setting µ ∼ mg and ν ∼ ℓ ∼ Qz ∼ Q
(

1−x
x

)

. Note that Q
(

1−x
x

)

is an
end-point region energy scale, which is however different from what one naturally chooses for the collinear function.
Clearly, resumming logarithms in ν is needed.

At this point we wish to alert the reader to an alternative approach to deriving Eq. (40), developed in Ref. [29].
In our work we strictly take the mg → 0 limit while holding the momentum ℓ fixed in the soft contribution, and
determine the zero bin subtraction as outlined above. In contradistinction, the authors of Ref. [29] hold mg fixed and
consider both ℓ > mg and ℓ < mg, and then take the mg → 0 limit in the soft contribution. The zero bin subtractions
are determined by expanding the soft integrand around the collinear limit, including the measurement function but
excluding the rapidity regulator term |2ℓ3|−η. These two approaches result in different collinear zero-bin subtractions
for the soft function; while we have both an n-collinear and n̄-collinear subtraction, the approach of Ref. [29] requires
no collinear zero bin subtraction in the soft function. In DIS at the endpoint the two approaches give the same results
up to O(mg/ℓ), which vanishes in the mg → 0 limit. Thus, there is no way to determine from DIS if one of the two
(or both) of the approaches is inconsistent. However, as we point out in Section III, DY cannot be treated with our
approach, while the approach used in Ref. [29] gives a consistent result. Furthermore, our approach is not compatible
with the threshold expansion while that in Ref. [29] is [30].

3. Renormalization Group Running for DIS

To subtract the divergences in ǫ and η in Eq. (28) and Eq. (40), we introduce counter-terms,

Cn(Q− k)R = Z−1
n Cn(Q − k)B ,

S(ℓ)R =

∫

dz′Zs(z − z′)−1S(ℓ′)B ,

where ℓ′ = Qz′ and superscripts R and B indicating renormalized and bare. The one-loop collinear counter-term is

Zn = 1 +
αsCF

π
w2

[

eǫγEΓ(ǫ)

η

(

µ

mg

)2ǫ

+
1

ǫ

(

3

4
+ ln

ν

n̄ · p

)]

, (41)

and the one-loop soft counter-term is

Zs(z) = δ(z) +
αsCF

π
w2

{

−
eǫγEΓ(ǫ)

η

(

µ

mg

)2ǫ

δ(z) +
1

ǫ

[(

1

z

)

+

− ln
ν

Q
δ(z)

]}

. (42)
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These counter-terms obey the consistency condition put forth in Ref. [25], as they must:

ZHZJn̄
(z) = Z−1

n Z−1
s (z) , (43)

where ZJn̄
(z) is the jet-function counter-term and ZH is the square of the counter-term for the SCET DIS current,

which has been given at one loop in Ref. [26] in 4−ǫ dimensions. Converting the result of Ref. [26] to 4−2ǫ dimensions
and squaring gives

ZH = 1−
αsCF

2π

(

2

ǫ2
+

3

ǫ
+

2

ǫ
ln
µ2

Q2

)

, (44)

where Q2 = n̄ · p n · pX . The one-loop result for ZJn̄
(z) is given by Ref. [22]

ZJn̄
(z) = δ(z) +

αsCF

4π

[(

4

ǫ2
+

3

ǫ
−

1

ǫ
ln

(n · p)Q

µ2

)

δ(z)−
4

ǫ

(

1

z

)

+

]

. (45)

Putting the factors together,

ZHZJn̄
(z) = δ(z) +

αsCF

4π

{[

−
3

ǫ
+

4

ǫ
ln

(

n̄ · p

Q

)]

δ(z)−
4

ǫ

(

1

z

)

+

}

. (46)

which is exactly equal to the product of inverses Z−1
n Z−1

s (z) taken from Eq. (41) and Eq. (42).
From the one-loop results, we extract the µ anomalous dimensions for the collinear and soft function respectively,

γµn(µ, ν) =
2αs(µ)CF

π

(

3

4
+ ln

ν

n̄ · p

)

(47)

γµs (µ, ν) =
2αs(µ)CF

π

[(

1

z

)

+

− ln
ν

Q
δ(z)

]

.

Note that

γµ = γµnδ(z) + γµs =
2αsCF

π

{

[

3

4
− ln

(

n̄ · p

Q

)]

δ(z) +

(

1

z

)

+

}

, (48)

which agrees with the known result, and the ν-dependence cancels as expected. In Mellin moment space this is the
n = 0 result given in Eq. (1). We can now trace the origin of the large logarithm to the rapidity region. If we choose
ν = νc ∼ Q in the collinear anomalous dimension on the first line of Eq. (47) and ν = νs ∼ Q(1 − x) in the soft
anomalous dimension in the second line, then neither term contains large logarithms. Adding the two anomalous
dimensions together then gives

γµ = γµnδ(z) + γµs =
2αsCF

π

{

[

3

4
− ln

(

νs
νc

n̄ · p

Q

)]

δ(z) +

(

1

z

)

+

}

, (49)

where the combination of plus-function and logarithmic term is no longer anomalously enhanced compared to the 3/4.
Minimizing the logarithmic term in the µ anomalous dimension requires choosing two widely separated rapidity

scales, νc and νs. This necessitates a resummation of logarithms of ν. The ν anomalous dimensions for the collinear
and soft functions are

γνn(µ, ν) =
αs(µ)CF

π
ln
µ2

m2
g

,

γνs (µ, ν) = −
αs(µ)CF

π
ln
µ2

m2
g

δ(z) . (50)

Adding them together, we have γν = γνnδ(z) + γνs = 0, as is dictated by the consistency condition. The presence of
mg in γνn and γνs indicates that the renormalization group running in ν depends on an infrared scale, and therefore is
non-perturbative. Thus we are left with little choice but to treat the ν resummation as part of the non-perturbative
aspect of DIS and to absorb it into the definition of the PDF.

The µ and ν running are independent and can be carried out in either order, however they must obey the constraint

d

d lnµ
γν =

d

d ln ν
γµ . (51)
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For the collinear function, the µ-running is given to one loop by

Cn(Q− k;µ, νc) = U(µ, µ0, νc)Cn(Q − k;µ0, νc) (52)

U(µ, µ0, νc) = e
3
4
ω(µ0,µ)

[

νc
n̄ · p

]ω(µ0,µ)

,

where νc is the collinear rapidity scale and

ω(µ0, µ) =
4CF

β0
ln

[

αs(µ0)

αs(µ)

]

. (53)

Note, that ω(µ0, µ) = 2aΓ(µ, µ0) of Ref. [21]. For the soft function, the one-loop µ-running is

S(ℓ;µ, νs) =

∫

dr U(ℓ− r;µ, µ0, νs)S(ℓ;µ0, νs) (54)

U(ℓ− r;µ, µ0, νs) =

(

eγEνs
)−ω(µ0,µ)

Γ(ω(µ0, µ))

(

1

(ℓ− r)1−ω(µ0,µ)

)

+

.

Combining the running factors we find

U(µ, µ0, νc)U(ℓ− r;µ, µ0, νs) =

[

e−γEνc
n̄ · p νs

]ω(µ0,µ) e
3
4
ω(µ0,µ)

Γ(ω(µ0, µ))

(

1

(ℓ− r)1−ω(µ0,µ)

)

+

. (55)

This agrees with Eq. (66) of Ref. [21] if we set νc = νs, convert the plus-distribution to dimensionless variables, and
recognize that 2aγφ(µf , µ0) = (3/4)ω(µ0, µf ) at this order.

To get a feel for which logarithms are being summed we will transform the combined running factors into Mellin
moment space (for large N):

U(µ, µ0, νc)U(N ;µ, µ0, νs) =

[

e−γEνc

N̄ νs

]ω(µ0,µ)

e
3
4
ω(µ0,µ) . (56)

The first term on the right-hand side in square brackets can be expressed as

[

e−γEνc

N̄ νs

]ω(µ0,µ)

= Exp

[

ω(µ0, µ) ln

(

e−γEνc

N̄ νs

)]

= Exp

[

4CF

β0
ln

(

N̄ νs
e−γEνc

) ∞
∑

n=1

1

n

(

β0αs(µ)

2π
ln

µ

µ0

)n]

, (57)

which, in the exponent, gives a series in αn
s (µ) ln

n(µ/µ0) times a single power of ln(N̄νs/νc). If we make the choice
νc = νs we reproduce the standard result of a single logarithmic series multiplied by a single logarithm of N . However,
if we make the choice for νc and νs given above then we merely have a single logarithmic series multiplied by an O(1)
quantity. We argue that this is the natural choice from an EFT perspective.

Having widely separated rapidity scales then forces us to consider the rRGE. Although the ν running is non-
perturbative it is still enlightening to see what the resummation looks like, and we push ahead and determine the soft
ν running factor using the constraint Eq. (51) to sum large logarithms in the rapidity anomalous dimension

S(ℓ;µs, ν) = V (µs, ν, ν0)S(ℓ;µs, ν0), (58)

V (µs, ν, ν0) =

[

ν

ν0

]ω(µs,mg)

.

Note that if we choose ν = νc and ν0 = νs in the above equations with µs = µ then

V (µ, νs, νc) =

[

νc
νs

]ω(µ,mg)

=

[

νc
νs

]ω(µ,µ0)[νc
νs

]ω(µ0,mg)

=

[

νs
νc

]ω(µ0,µ)[νc
νs

]ω(µ0,mg)

. (59)

The first term in square brackets on the far right-hand side cancels the νs/νc dependence in Eq. (55), and results in
a running factor identical to the one obtained without rapidity resummation. However, the second term in square
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brackets on the far right-hand side of this equation remains. This term is infrared sensitive and is absorbed into the
definition of the PDF. Finally we expressing the left-over rapidity running factor as

V (µ0, νs, νc) = Exp

[

−
4CF

β0
ln

(

νc
νs

) ∞
∑

n=1

1

n

(

β0αs(µ0)

2π
ln
µ0

mg

)n]

, (60)

with νc/νs = N̄ , makes it clear that what is being summed (in Mellin moment space) by the rRGE is the product
αn
s (µ0) ln

n(µ0/mg) lnN . The large logarithm of N multiply infrared logarithms, which explains why no one has tried
to sum these terms before.

Of course, this begs the question of why we should even bother to separate collinear from soft in the PDF. One
answer is that we have a consistent EFT formalism that never produces terms that violate power counting. There
is, however, more. Currently fits of the PDF produce a very steeply falling function of momentum fraction as the
endpoint is approached, with no understanding of why; our result offers an explanation. To see why we define our
PDF for large-x in DIS as a modified form of the function fns

q in Eq. (15):

fns
q (z;µ)endpoint = δñ·p̃,QZn(µ, νc)S

(DIS)(ℓ;µ, νs)V (µ0, νs, νc) . (61)

This is the same as the operator definition we give in our previous paper, but we have made the presence of the
V (µ0, νs, νc) factor explicit. Away from the endpoint νc and νs must flow together so the PDF in the endpoint
matches smoothly onto the usual definition of the PDF. Choosing to set the rapidity scales in Mellin space with
νc/νs = N̄ , we have

V (µ0, νs, νc) = N̄−ω(mg,µ0) . (62)

If we transform back into momentum fraction space we find

V (µ0, νs, νc) =
1

Γ
(

ω(mg, µ0)
) (1− z)ω(mg,µ0)−1 ,

where the exponent of (1− z) is nonperturbative and could be large. Thus we can interpret the conventional running
of the PDF in the endpoint using the anomalous dimension in Eq. (1) as a combined running in µ and in ν, with a
subset of potentially large non-perturbative rapidity logarithms remaining in the PDF. These remaining logarithms
could then be responsible for the steep fall-off of the PDF in the endpoint.

Finally, it is interesting to see how the above modification to the PDF fairs in the analysis carried out in Sec. 3.5
of Ref. [21]. Nothing in that analysis changes if we identify

b(µ0) = bIR + ω(mg, µ0) , (63)

with bIR being the non-perturbative value of the b-parameter with absolutely no running. Furthermore, the relation
for N (µ) remains unchanged.

4. Compairing to perturbative QCD result

In this section, we compare the one-loop expression of the hadronic tenor in SCET to that in QCD. This provides
a powerful check that nothing has been missed in the SCET calculation. Extracting the scalar part of the SCET
effective hadronic tensor from Eq.(14), we have

Wµν
eff = −

gµν⊥
2
Weff (64)

where

Weff = 2QH(Q;µq, µc)

∫ 1

x

dw

w
Jn̄(Qw;µc;µ)Cn((Q − k);µc;µ, ν)S

DIS(Q(1 − w);µ, ν) . (65)
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The renormalized hard function HR(Q;µq;µc) and jet function JR
n̄ (Qz;µc;µ) are given in the literature Refs. [21, 22,

24, 26, 42, 43]:

HR
DIS(Q,µ) = 1 +

αsCF

2π

(

− ln2
µ2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

)

(66)

JR
n̄ (Q(1− x), µ) = δ(1− x) +

αsCF

2π

{

δ(1 − x)

(

3

2
ln
µ2

Q2
+ ln2

µ2

Q2
+

7

2
−
π2

2

)

−

(

2

1− x

)

+

(

ln
µ2

Q2
+

3

4

)

+ 2

(

ln(1− x)

1− x

)

+

}

. (67)

From Eq. (28) and Eq. (41), we obtain the renormalized collinear function,

CR(Q − k;µ, ν) = m0δn̄,p̃,Qδ(k)

[

1 +
αsCF

π

(

ln
µ2

m2
g

ln
νc
n̄ · p

+
3

4
ln
µ2

m2
g

+
3

4
−
π2

6

)]

. (68)

From Eq. (40) and Eq. (42), we obtain the renormalized soft function,

SR(Q(1− x);µ, ν) =
1

Q
δ(1 − x) +

αsCF

πQ

{

ln
µ2

m2
g

[

(

1

1− x

)

+

− ln
νs
Q
δ(1− x)

]}

. (69)

Inserting Eqs. (66), (67), (68), and (69) into (65), we arrive at the one-loop expression for the hadronic structure
function calculated in SCET which is valid in the endpoint region:

Weff = 2m0δn̄,p̃,Q

{

δ(1 − x) +
αsCF

π

[

(

−
3

4
ln
m2

g

Q2
−

3

2
−
π2

3

)

δ(1− x)

−

(

1

1− x

)

+

(

ln
m2

g

Q2
+

3

4

)

+

(

ln(1− x)

1− x

)

+

+ ln
µ2

m2
g

ln
νc
νs

]}

. (70)

Note the rapidity scale dependence in the last term is multiplied by an IR logarithm indicating once again the the
logarithms that are being summed are infrared in nature. In order to compare to W in QCD we first set νc = νs.

The quark contribution to the hadronic structure function in perturbative QCD is given in Ref. [31],

F2(x) =

∫ 1

x

dy

y
(G

(0)
p−q(y) +G

(0)
p−q̄(y))

{

δ(1 − z) +
αs

2π
Pq→gq(z) ln

Q2

m2
g

+ αsf
q DIS
2 (z)

}

, (71)

where

Pq→qg(z) =
4

3

(

1 + z2

1− z

)

+

=
4

3

(

(1 + z2)

(

1

1− z

)

+

+
3

2
δ(1− z)

)

,

αsf
q DIS
2 (z) =

2αs

3π

[

(1 + z2)

(

ln(1− z)

1− z

)

+

−
1 + z2

1− z
(2 ln z)−

3

2

(

1

1− z

)

+

+ 4z + 1−

(

2π2

3
+

9

4

)

δ(1− z)

]

, (72)

z = x/y, and G
(0)
p→q +G

(0)
p→q̄ = 2m0δn̄,p̃,Q. As x→ 1, we have

F2
z→1
−−−→ (2m0δn̄·p̄,Q)

{

δ(1 − x) +
αsCF

π

[

(

−
3

4
ln
m2

g

Q2
−

3

8
−
π2

3

)

δ(1− x)

−

(

1

1− x

)

+

(

ln
m2

g

Q2
+

3

4

)

+

(

ln(1 − x)

1− x

)

+

+ 9

]}

. (73)

Comparing Eq. (73) to Eq. (70), we find the low energy behavior agrees. In particular, by comparing the jet function
and soft function separately in SCET, we can trace the origin of the m2

g dependence in the quark splitting term

∼ Pq→qg ln
Q2

m2
g

to the large scale difference between the collinear gluons and the soft gluons entering the final state

jet. The difference between Eq. (73) and Eq. (70) is the constant coefficient of δ(1 − x) and the constant term. The
former is regularization scheme dependent, and the latter subleading. Since the SCET calculation uses a different
regularization scheme from Ref. [31] this discrepancy is expected.
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III. DRELL-YAN AT ENDPOINT WITH RAPIDITY REGULATOR

We now apply a similar analysis to the Drell-Yan processes. We investigate DY in the semi-inclusive region of
phase space where the momentum fractions x, x̄ of the two colliding partons become large, approaching the maximal
value x ∼ x̄ ∼ 1. Drell-Yan in the large-x region has been investigated before using perturbative QCD factorization
techniques [3, 32–35] as well as effective field theory techniques based on SCET [12]. Although the endpoint in
Drell-Yan is not accessible in real experiments, it is of theoretical interest to investigate how the parton distribution
functions in two protons interfere with each other at large x.

We analyze Drell-Yan at threshold by integrating out the large scale ∼ Q by matching QCD onto SCETII, and
then we factorize. We compute each piece in the factorization formula to the first perturbative order and resum large
logarithms to NLL order. Finally, we discuss the PDF for two protons colliding at large x.

A. Kinematics

While we worked through the kinematics of DIS process in both the target rest frame and Breit frame, we consider
the Drell-Yan process only in the Breit frame. The proton in the n̄-direction carries momentum pµ = n̄µ

2 n · p+ nµ

2 n̄ ·

p+ p̄µ⊥, and proton in the n-direction carries momentum p̄µ = nµ

2 n̄ · p̄+ n̄µ

2 n · p̄+ p̄µ⊥. The invariant mass-squared of

the proton-proton collision is s = (p + p̄)2 ≃ (n · p)(n̄ · p̄), since n · p and n̄ · p̄ are the large components of p and p̄
respectively. The squared momentum transfer between the two protons is Q2 = q2, so for p we define

x =
Q2

2p · q
=

Q2

(n · p)(n̄ · q)
≃
n · q

n · p
, (74)

while for p̄ we define

x̄ =
Q2

2p̄ · q
=

Q2

(n̄ · p̄)(n · q)
≃
n̄ · q

n̄ · p̄
. (75)

Here τ = Q2/s = x · x̄ is the fraction of the energy-squared taken by the colliding partons from the protons. The

endpoint corresponds to τ → 1. As in DIS, we define Q
x = Q + l+, Q

x̄ = Q + l̄− with lightcone momenta l+ and l̄−.
The separated scales are

• hard modes with q = (Q,Q, 0) at the hard scale;

• n-collinear modes with pc =
(

Q
x ,

Λ2
QCD

Q ,ΛQCD

)

∼ (Q+ l+, l−,ΛQCD) with invariant mass p2 ∼ Λ2
QCD;

• n̄-collinear modes with p̄c =
(

Λ2
QCD

Q , Qx̄ ,ΛQCD

)

∼ (l̄+, Q+ l̄−,ΛQCD) with invariant mass p̄2 ∼ Λ2
QCD;

• soft modes with ps ∼ (ΛQCD,ΛQCD,ΛQCD) at the soft scale.

As x, x̄→ 1, the off-shellness of the initial states Q (1−x)
x ∼ l+ and Q (1−x̄)

x̄ ∼ l̄− go to ΛQCD, bringing in new rapidity

singularities arising from the fact that both soft and collinear modes have invariant mass squared of order Λ2
QCD.

These singularities are regulated with the covariant η regulator, which allows us to resum the rapidity logarithms by

running from Q to Q (1−x)
x ∼ l+ ∼ Q (1−x̄)

x̄ ∼ l̄−.

B. Factorization

A number of papers have discussed factorization of Drell-Yan using SCET [11, 12, 36–40]. Here we follow Ref. [11],
starting with the unpolarized DY cross section:

dσ =
32π2α2

sQ4
LµνW

µν d3k1
(2π)3(2k01)

d3k2
(2π)3(2k02)

, (76)

where Lµν is the lepton tensor, and Wµν is the DY hadronic tensor. Eq. (76) gives

dσ

dQ2
= −

2α

3Q2s

∫

d4q

(2π)3
δ(q2 −Q2)θ(q0)W (τ,Q2) (77)
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where Q2 = τs is the lepton pair’s center of mass energy squared. Summing over final states, we obtain

W (τ,Q2) = −
1

4

∑

spin

∫

d4ye−iq·y〈pp̄|Jµ†(y)Jµ(0)|pp̄〉 , (78)

where Jµ(y) is the QCD current as in Eq. (7). Near the endpoint region, the magnitude of the 3-momentum transferred
is

|~q| ≤
Q

2
(1− τ), (79)

where Q =
√

Q2. As a result, the zero component is

q0 = Q+O(1 − τ) ≫ |~q|. (80)

Therefore the δ-function in Eq. (77) is expanded

δ(q2 −Q2) =
1

2Q
δ(q0 −Q) +O(1− τ)2. (81)

Carrying out the q0 integration, the hadronic structure function becomes

W (τ,Q2) = −
1

8Q

∑

spins

∫

d3q

(2π)3

∫

d4ye−iQy0+i~q·~y〈pp̄|Jµ†(y)Jµ(0)|pp̄〉. (82)

We match W onto the SCETII, and get

W eff = −
1

4

∑

σ,σ′

∫

d3q

(2π)3

∫

d4y
1

2Q

∑

w̄,w

C∗(Q,Q′;µq, µ)C(w̄, w, ;µq, µ)δn̄·pn,Qδn·p̄n̄,Q (83)

× 〈h(pn, σ)h̄(p̄n̄, σ
′)|T̄ [χ̄n̄,w̄′Y †

n̄ Ȳnγ
⊥
µ χn,w′(y)] T [χ̄n,wȲ

†
n̄Ynγ

µ
⊥χn̄,w̄(0)]|h(pn, σ)h̄(p̄n̄, σ

′)〉 .

Here, we have defined the n̄-direction incoming proton to be carrying momentum p̄µ = 1
2 (n · pn̄ + n · p̄r)n̄µ with the

large component of p̄µ scaling as n · pn̄ ≃ Q/x̄ ≃ Q and the residual momentum p̄µr containing the small momentum
p̄µr ≃ ℓ̄− ≃ Q 1−x̄

x̄ . Similarly, the n-direction incoming proton momentum is pµ = 1
2 (n̄ · pn + n̄ · pr)nµ with the

large component of pµ scaling as n̄ · pn ≃ Q/x ≃ Q and the residual momentum p̄µr containing the small momenta
pµr ≃ ℓ+ ≃ Q 1−x

x . We introduce Kronecker deltas to fix the large components of p and p̄ to be equal to Q and integrate

over the residual components of the coordinates in position space. The Wilson lines Yn̄ and Ȳn are associated with
soft radiation from two incoming states,

Yn(y) = P exp[ig

∫ y

−∞

dsn · Aus(sn)],

Ȳ †
n̄ (y) = P exp[−ig

∫ y

−∞

dsn̄ ·Aus(sn̄)] . (84)

The hadronic structure function can be factored into the three sectors:

W eff = −
1

4

∑

σ

∫

d3q

(2π)3

∫

d4y

2Q
ei~q·~y

∑

w̄,w

C∗(Q,Q;µq, µ)C(w, w̄;µq, µ)

× 〈h(pn, σ)h̄(p̄n̄, σ)|T̄ [(χ̄
α
n̄,Q)

i
(

Y †
n̄ (γ

⊥
µ )αβ Ȳn

)

ij
(χβ

n,Q)
j(y)]δn̄·pn,Q

× δn·p̄n̄,QT [(χ̄
ρ
n,w)

l
(

Ȳ †
n̄ (γ

µ
⊥)ρλYn

)

lm
(χλ

n̄,w′)m(0)]|h(pn, σ)h̄(p̄n̄, σ)〉 (85)

= −
1

4

∑

σ

∫

d4y

2Q
δ3(~y)

∑

w,w̄

C∗(Q,Q;µq, µ)C(w, w̄;µq, µ)δn̄·pn,Qδn·p̄n̄,Q

× 〈h(pn, σ)|T̄ [(χ̄
α
n̄,Q)

i(y)(χλ
n̄,w̄)

m(0)]|h(pn, σ)〉

× 〈h̄(p̄n̄, σ)|T [(χ̄
ρ
n,w)

l(0)(χβ
n,Q)

j(y)]|h̄(p̄n̄, σ)〉

× 〈0|T̄ [(Y †
n Ȳn)ij(y)]T [(Ȳ

†
n̄Yn)lm(0)]|0〉(γ⊥µ )αβ(γ

µ
⊥)ρλ . (86)
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Integrating over ~y, contracting the color indices and averaging the color of the initial states, we have

W eff =
1

4

∫

dy0
2Q

1

2

∑

w,w̄

C∗(Q,Q;µq, µ)C(w, w̄;µq, µ)
1

Nc

∑

σ

〈h(p, σ)|χ̄n̄,Q(y0)
n/

2
χn̄,w̄(0)|h(p, σ)〉δn̄·pn,Q

×
1

Nc

∑

σ′

〈h̄(p̄n̄, σ
′)|χ̄n,w(0)

/̄n

2
χn,Q(y0)|h̄(p̄n̄, σ

′)〉δp̄n̄·n,Q〈0|T̄ [(Y
†
n̄ Ȳn)](y0)T [(Ȳ

†
n̄Yn)](0)|0〉 . (87)

Due to label momentum conservation, w = Q = w̄, and we rewrite the large component of the matter field as
χ̄n,w = χ̄nδw,Q. We insert the identities

χ̄n̄,Q(y0) = ei∂̂0y0 χ̄n̄,Q(0)e
−i∂̂0y0 (88)

χn,Q(y0) = ei∂̂0y0χn,Q(0)e
−i∂̂0y0 (89)

to shift χ̄n̄ and χn to the same spacetime point. The operator ∂̂0 is a residual momentum operator that acts on the
external states to yield

∂̂0|h̄(p̄n̄, σ
′)〉 =

Q

2

1− x̄

x̄
|h̄(p̄n̄, σ

′)〉 (90)

〈h(pn, σ)|∂̂0 = 〈h(pn, σ)|
Q

2

1− x

x
. (91)

Thus the hadronic structure function is reduced to

W eff = |C(Q;µq;µ)|
2δn̄·pn,Qδn·p̄n̄,Q

1

Nc

∫

dy0
2Q

e−
i
2
Q 1−x

x
y0e−

i
2
Q 1−x̄

x̄
y0

1

Nc
〈0|T̄ [Y †

n̄ Ȳn](y0)T [Ȳ
†
nYn̄](0)|0〉

×
1

2

∑

σ

〈h(pn, σ)|χ̄n̄e
−i∂̂0y0

/n

2
χn̄|h(pn, σ)〉

1

2

∑

σ′

〈h̄(p̄n̄, σ
′)|χ̄ne

i∂̂0y0
/̄n

2
χn|h̄(p̄n̄, σ

′)〉 . (92)

As in DIS, we define a hard coefficient H(Q;µ) = |C(Q;µq, µ)|2, and two collinear functions

1

2

∑

σ

δn̄·pn,Q〈h(pn, σ)|χ̄n̄e
−i∂̂0y0

/n

2
χn̄|h(pn, σ)〉 ≡

∫

dre−iry0Cn̄(Q + r;µ), (93)

1

2

∑

σ′

δn·p̄n̄,Q〈h̄(p̄n̄, σ
′)|χ̄ne

i∂̂0y0
/̄n

2
χn|h̄(p̄n̄, σ

′)〉 ≡

∫

dr̄eir̄y0Cn(Q + r̄;µ) . (94)

The SCET hadronic structure function can then be expressed as

W eff =
H(Q,µ)

2QNc

∫

dy0 e
− i

2
Q(1−τ)y0

∫

drdr̄ e−irye−ir̄yCn̄(Q+ r;µ)Cn(Q+ r̄;µ)

×
1

Nc
〈0|T̄ [Y †

n̄ Ȳn](y0)T [Ȳ
†
nYn̄](0)|0〉, (95)

where µ is the arbitrary energy scale brought in by matching QCD onto SCET, and its dependence in the hard coeffi-
cient H(Q;µ) introduced by this matching process, is canceled by the dependence in the product of the two collinear
functions and one soft function. The collinear functions become collinear factors because momentum conservation
forbids collinear radiation into the final state. This then requires an additional rapidity scale ν to separate soft from
collinear modes. Including the rapidity scale dependence,

Cn̄(Q+ r;µ) → Cn̄(Q+ r;µ, ν) = Zn̄(µ, ν)δ(r)δn̄·pn,Q, (96)

Cn(Q+ r̄;µ) → Cn(Q+ r̄;µ, ν) = Zn(µ, ν)δ(r̄)δn·p̄n̄,Q . (97)

As in DIS, these functions are proportional to δ functions in r, r̄ because there is no real gluon emission into the final
state from either proton.

We redefine the soft Wilson lines analogously to the collinear fields in Eq. (88), so that

〈0|T̄ [Y †
n̄ Ȳn](y)T [Ȳ

†
nYn̄](0)|0〉 = 〈0|T̄ [Y †

n̄ Ȳn](0)e
i∂̂0y0T [Ȳ †

nYn̄](0)|0〉 . (98)
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Integrating over r, r̄ in Eq. (95) we obtain

W eff =H(Q;µ)
1

2QNc
Zn̄(µ, ν)δn̄·pn,QZn(µ, ν)δn·p̄n̄,Q

×

∫

dy0
1

Nc
〈0|T̄ [Y †

n̄ Ȳn](0)e
i(∂̂0−

Q
2
(1−τ))y0T [Ȳ †

nYn̄](0)|0〉. (99)

We define the DY soft function in momentum space to be:

S(DY)(1− τ ;µ, ν) =
1

Nc
〈0|trT̄ [Y †

n̄ Ȳn](0)δ
(

2∂̂0 −Q(1− τ)
)

T [Ȳ †
nYn̄](0)|0〉 . (100)

The hadronic structure function becomes

W eff =
2π

QNc
H(Q;µ)Zn̄(µ, ν)δn̄·pn,QZn(µ, ν)δn·p̄n̄,QS

(DY)(1− τ ;µ, ν), (101)

and the differential cross section is
(

dσ

dQ2

)

eff

=
2α2

3Q2s

2π

Nc
H(Q;µ)Zn̄(µ, ν)δn̄·pn,QZn(µ, ν)δn·p̄n̄,Q

1

Q
S(DY)(1 − τ ;µ, ν). (102)

The soft function and the collinear functions run to the common rapidity scale ν in the endpoint region, suggesting
the soft radiation contains information from both incoming protons. Since the n direction and n̄ direction collinear
functions are each connected to this soft function at low momenta by the rapidity scale ν, they are coupled to each
other through the soft radiation. Therefore, in the endpoint region, it does not suffice to identify the PDF of each
proton with just the n- and n̄-collinear functions.

We introduce a luminosity function that defines the n-collinear, n̄-collinear and soft functions all together:

L
nn̄s(1− τ ;µ) = δn̄·pn,QZn(µ, ν) δn·p̄n̄,QZn̄(µ, ν)S

(DY)(1− τ ;µ, ν) . (103)

On the right hand side, the ν dependence of the n-collinear, n̄-collinear and soft functions cancels between the three
factors. In order to relate the Drell-Yan luminosity function in Eq. (103) to the definition of the PDF in DIS, we can
express L

nn̄s as:

L
nn̄s(1 − τ ;µ) =

∫

dxdx̄ f n̄s
q (

1− x

x
;µ)fns

q′ (
1− x̄

x̄
;µ)I

(DY)
τ→1 (1− τ −

1− x

x
−

1− x̄

x̄
;µ), (104)

where the two PDFs are defined in Eq. (61), and I
(DY)
τ→1 (1 − τ ;µ) is an interference factor, independent of ν, which

represents the effect of the two protons interfering with each other at the DY endpoint.
With this interference function, the SCETII hadronic structure function is

W eff =
2π

QNc
H(Q;µ) (105)

×

∫

dxdx̄ f n̄s
q (

1− x

x
;µ)fns

q′ (
1− x̄

x̄
;µ)I

(DY)
τ→1 (1− τ −

1− x

x
−

1− x̄

x̄
;µ) .

C. Renormalization and Resummation with Rapidity

In this section we study the renormalization at one-loop of the collinear and soft functions appearing in the Drell-
Yan hadronic structure function in the endpoint region: Cn(Q+ r̄;µ, ν), Cn̄(Q+ r;µ, ν) and S(1− τ ;µ, ν). As in DIS,
we use the η regulator to render rapidity divergences finite.

1. Collinear and Soft Functions to O(αs) for DY

It is easy to show that the collinear functions in DIS and DY are equal. As in DIS, Fig.1 shows the O(α0
s) Feynman

diagram for the collinear function. The n-direction collinear function tree level structure calculated from that diagram
is

CDY
n (Q+ r̄)(0) = CDIS(0)

n = δn̄·pn,Qδ(r̄)m
(0)
n , (106)
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where mn is

m(0)
n =

1

2

∑

σ

ξ̄σn
n̄/

2
ξσn . (107)

The n̄-direction collinear function at leading order is

CDY
n̄ (Q + r̄)(0) = δn·p̄n̄,Qδ(r)m

(0)
n̄ , (108)

where

m
(0)
n̄ =

1

2

∑

σ

ξ̄σn̄
n/

2
ξσn̄ . (109)

The O(αs) n-collinear function Feynman diagrams are shown in Fig. 2. As discussed in the DIS section, Fig. 2(a) is
the one-loop virtual correction to the collinear function, while Fig. 2(b) and Fig. 2(c) are real corrections. We add the
diagrams of Fig. 2(a) and Fig. 2(b) with the mirror diagrams, multiply it by the quark wave function renormalization
to obtain

CDY
n (Q+ r̄;µ, ν)(1) = CDIS(1)

n

= C(0)
n (Q+ r̄;µ, ν)

αsCF

π
w2

{

eǫγEΓ(ǫ)

η

(

µ2

m2
g

)ǫ

+
1

ǫ

[

3

4
+ ln

ν

n̄ · p

]

+ ln
µ2

m2
g

ln
ν

n̄ · p
+

3

4
ln
µ2

m2
g

+
3

4
−
π2

6

}

. (110)

For the O(αs) n̄-collinear function, we repeat the whole procedure and get

CDY
n̄ (Q+ r;µ, ν)(1) = C(0)

n (Q+ r;µ, ν)
αsCF

π
w2

{

eǫγEΓ(ǫ)

η

(

µ2

m2
g

)ǫ

+
1

ǫ

[

3

4
+ ln

ν

n · p̄

]

+ ln
µ2

m2
g

ln
ν

n · p̄
+

3

4
ln
µ2

m2
g

+
3

4
−
π2

6

}

. (111)

Next we turn our attention to the soft function. The tree level result is trivial:

S(1− τ)(0) =
δ(1 − τ)

Q
. (112)

The O(αs) soft function Feynman diagrams are shown in Fig. 3 (mirror diagrams are not shown). The soft Wilson lines
in Eq. (87) are defined in (84). Comparing these to the soft Wilson lines in DIS in Eq. (11), we find the n̄-direction
gluons are changed from outgoing to incoming. Ref. [41] however shows that up to O(α2

s), the dijet hemisphere soft
function in DIS and DY are equal, so the virtual DY soft function at O(αs) is the same as in DIS

SDY
v = δ(1− τ)

2αsCF

πQ
w2
[

−
eǫγEΓ(ǫ)

η

(

µ

mg

)2ǫ

+
1

2ǫ2
+

1

ǫ
ln
µ

ν
+ ln2

µ

mg
− ln

µ2

m2
g

ln
ν

mg
−
π2

24

]

. (113)

The naive contribution to the O(αs) real DY soft function shown in Fig. 3(b) is

S̃DY
r =− 4CF g

2µ2ǫνη
∫

dDk

(2π)D−1
δ(k2 −m2

g)δ(ℓ0 − (k+ + k−))
|2k3|−η

k+k−
(114)

=

(

−
αsCF

2πQ

)

{

2

(

ln
m2

g

Q2

)

(

1

1− τ

)

+

− 4

(

ln 1− τ

1− τ

)

+

−

(

1

2
ln2

Q2

m2
g

)

δ(1− τ)

}

, (115)

where ℓ0 = Q(1 − τ). The measurement δ-function at the endpoint region of Drell-Yan process requires the soft
momentum ℓ to be the symmetric sum of n and n̄ gluon momenta, ℓ0 = k+ + k−, which has the consequence that
there are neither rapidity divergences nor ultra-violet divergences. In Appendix B, we show that the kinematic
constraints in DY imply that no collinear modes overlap with the soft momentum region. However, applying the
zero-bin subtraction prescription we used in DIS would require both an n-collinear and an n̄-collinear subtraction,
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while the prescription in Ref. [29] has no collinear zero-bin in the DY soft function. Thus the approach of Ref. [29] is
consistent while our approach is not. Thus,

SDY
r = 2S̃DY

r . (116)

The O(αs) expression of the soft function is given by adding virtual and soft pieces with their mirror amplitudes:

S(1− τ ;µ, ν)(1) =
αsCF

πQ
w2

[(

−
2Γ(ǫ)eγE

η

(

µ

mg

)2ǫ

+
1

ǫ2
+

2

ǫ
ln
µ

ν

+ 2 ln2
µ

mg
− 2 ln

µ2

m2
g

ln
ν

mg
−
π2

12
+

1

2
ln2

m2
g

Q2

)

δ(1− τ)

+ 4

(

ln 1− τ

1− τ

)

+

− 2

(

ln
m2

g

Q2

)

(

1

1− τ

)

+

]

. (117)

Comparing this result with the O(αs) n and n̄ collinear functions given in Eq. (110) and Eq. (111), we see that the
ν-dependence cancels in the cross section at O(αs). Forming the ratio of the DY soft function to the product of the n
and n̄ DIS soft functions gives an interference factor Eq. (104) that is independent of ν to this order (and presumably
to all orders).

2. Anomalous Dimensions for Collinear and Soft Functions

The divergences in UV and rapidity in the collinear and soft functions Eq. (110), Eq. (111) and Eq. (117) can be
subtracted by counter-terms in textbook fashion. We define the relations between the renormalized and the bare
functions as

Cn(Q + r̄)R = Z−1
n Cn(Q+ r̄)B ,

Cn̄(Q + r)R = Z−1
n̄ Cn̄(Q+ r)B ,

S(1− τ)R = −

∫

dτ ′Zs(τ
′ − τ)−1S(1− τ ′)B . (118)

Thus, Eqs. (110), (111) and (117) yield for the O(αs) collinear and soft renormalization factors

Zn = 1 +
αsCF

π
w2

[

Γ(ǫ)

η

(

µ

mg

)2ǫ

+
1

ǫ

(

3

4
+ ln

ν

n̄ · p

)

]

, (119)

Zn̄ = 1 +
αsCF

π
w2

[

Γ(ǫ)

η

(

µ

mg

)2ǫ

+
1

ǫ

(

3

4
+ ln

ν

n · p

)

]

, (120)

Zs = δ(1 − τ) +
αsCF

π
w2

[

−
2Γ(ǫ)

η

(

µ

mg

)2ǫ

+
1

ǫ2
+

2

ǫ
ln
ν

µ

]

δ(1− τ) . (121)

These obey the consistency condition for Drell-Yan at the limits x, x̄→ 1 and hence τ → 1

ZHδ(1− τ) = Z−1
n̄ Z−1

n Z−1
s , (122)

where ZH is given in Eq. (44). The logarithms in the collinear function are minimized by setting νc ∼ Q, while in
the soft function νs ∼ µ ∼ ΛQCD. Therefore we must resume these logarithms both in µ and ν. From Eq. (119) to
Eq. (121) we also can extract the O(αs) anomalous dimensions. The µ anomalous dimensions are

γµn(µ, νc) =
2αsCF

π

(

3

4
+ ln

νc
n̄ · p

)

,

γµn̄(µ, νc) =
2αsCF

π

(

3

4
+ ln

νc
n · p̄

)

,

γµs (µ, νs) =
4αsCF

π
ln
µ

νs
δ(1− τ) . (123)
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As in DIS, the sum γµn(µ, ν)δ(1− τ) + γµn̄(µ, ν)δ(1− τ) + γµs (µ, ν) is independent of the rapidity scale ν, as expected.
However, the sum contains a large logarithm of (n̄ · p)(n · p̄) ∼ Q2. The ν anomalous dimensions are

γνn(µ, νc) =
αsCF

π
ln
µ2

m2
g

,

γνn̄(µ, νc) =
αsCF

π
ln
µ2

m2
g

,

γνs (µ, νs) = −
2αsCF

π
ln
µ2

m2
g

δ(1 − τ) . (124)

Unsurprisingly, γνn(µ, ν)δ(1− τ)+ γνn̄(µ, ν)δ(1− τ)+ γνs (µ, ν) = 0 when νc = νs in the limits x, x̄→ 1 and τ → 1. The
presence of mg suggests the same IR sensitivity as occurred in DIS. As we will see in next section, this IR dependence
in anomalous dimensions also shows up in the Delta regulator scheme for the divergences in the endpoint region.

From the µ anomalous dimensions in Eq.(123), we can see the soft function runs to the scale ν common also to
the collinear functions as we have already seen in DIS case. This is problematic because it means the two collinear
functions, which are traditionally identified with the proton PDFs, are not independent from each other. At moderate
x, these scales would not run to the same point and the two collinear functions can be separated. Thus at large
x the two collinear functions cannot be separated and we do not have a unique way to define independent (and so
universal) PDFs for the colliding protons. Preserving the conventional description of the colliding protons in terms of
n-collinear, n̄-collinear and soft functions, we arrive at the luminosity function in Eq. (103), and at large x the two
collinear pieces and one soft piece are related by the common rapidity scale ν.

Now we connect the running and the resummation results in DY with those in DIS by solving the renormalization
equation of the interference factor IDY we defined in Eq. (104). Using the newly introduced PDF definition in Eq. (15),
we can write the PDF for the n-direction incoming proton as

fns
q (

1− x

x
;µ) =

δ(1− x)

Q

+
αsCF

πQ

(

[

ln
µ2

m2
g

ln
νn
νs

+
3

4
ln
µ2

m2
g

+
3

4
−
π2

6

]

δ(1− x) + ln
µ2

m2
g

(

1

1− x

)

+

)

, (125)

where νn is the n-direction incoming proton near endpoint rapidity scale. Changing νn to νn̄ and x to x̄, we have the
n̄-direction incoming proton PDF

fns
q′ (

1− x̄

x̄
;µ) =

δ(1− x̄)

Q

+
αsCF

πQ

(

[

ln
µ2

m2
g

ln
νn̄
νs

+
3

4
ln
µ2

m2
g

+
3

4
−
π2

6

]

δ(1− x̄) + ln
µ2

m2
g

(

1

1− x̄

)

+

)

. (126)

Expanding the interference factor in Eq. (104) in powers of αs,

I
(DY )
τ→1 (1 − τ ;µ) = I

(DY )
0 + I

(DY )
1 + ... (127)

Plugging Eqs. (125), (126) and (127) into Eq. (104), we extract

I
(DY )
0 = 2Qδ(1− τ), (128)

and the unrenormalized order-αs interference function

I
(DY )
1 (1− τ ;µ) = 2Q

αsCF

π

(

[

1

ǫ2
+

1

ǫ
ln
µ2

Q2
+ 2 ln2

µ

Q
−
π2

12

]

δ(1− τ)

+ 4

(

ln 1− τ

1− τ

)

+

− 2

(

ln
µ2

Q2

)(

1

1− τ

)

+

−
2

ǫ

(

1

1− τ

)

+

)

, (129)

which is independent of rapidity scale ν. This result is independent of any infrared scales and is consistent with the
DY soft function defined in Ref. [12], Eq. (45). The counter-term is

ZDY
I = δ(1 − τ) +

αsCF

π

{[

1

ǫ2
+

1

ǫ
ln
µ2

Q2

]

δ(1 − τ)−
2

ǫ

(

1

1− τ

)

+

}

, (130)



21

and the µ anomalous dimension is

γDY
I (1 − τ ;µ) =

4αsCF

π

[

ln
µ

Q
δ(1− τ)−

(

1

1− τ

)

+

]

, (131)

through which we can resum the logarithms brought in by the interference effect between the two protons. This
anomalous dimension is consistent with Eq. (43) of Ref. [12]. Note the appearance of the cusp in γDY

I , which resums
Sudakov double logarithms. To O(αs), the renormalized interference factor is

I(DY )(1 − τ ;µ) = 2Qδ(1− τ) + 2Q
αsCF

π

([

1

2
ln2

µ2

Q2
−
π2

12

]

δ(1− τ)

+ 4

(

ln(1− τ)

1− τ

)

+

+ 2 ln
Q2

µ2

(

1

1− τ

)

+

)

. (132)

3. Comparing to perturbative QCD results

The hard function HDY we extract from Ref. [12] is

HDY(Q,µ) = 1 +
αsCF

π

(

−
1

2
ln2 µ

2

Q2
−

3

2
ln
µ2

Q2
− 4 +

7π2

12

)

. (133)

Taking Nc = 3, and inserting the Drell-Yan collinear and soft functions with Eq. (133) into Eq. (106), we find at O(αs)
SCET Drell-Yan cross section is,

(

dσ

dQ2

)

eff

= m2
0δn·p̄n̄,Qδn̄·pn,Q

(

4πα2

9Q4

)

αsCF

π

{[

3

2
ln
Q2

m2
g

−
5

2
−
π2

6

]

δ(1 − τ) (134)

+ 4

(

ln(1 − τ)

(1− τ)

)

+

+ 2 ln
Q2

m2
g

(

1

1− τ

)

+

}

.

To O(αs) in QCD, the quark contribution to the DY cross section is [31]

dσ

dQ2
= m2

0δn·p̄n̄,Qδn̄·pn,Q
4π

9

α2

Q4

∫ 1

τ

dxa
xa

∫ 1

τ/xa

dxb
xb

{

G(0)
p→q(xa)G

(0)
p→q(xb)

×

(

σDY
tot

σ0
δ(1− z) +

αs

π
Pq→qg(z) ln

Q2

m2
g

+ 2αsf
q DY(z)

)}

, (135)

where z = τ/(xaxb), G
(0)
p→q(xa), G

(0)
p→q(xb) are zero-order PDFs, and

Pq→qg(τ) = CF

(

1 + z2

(1 − z)+
+

3

2
δ(1− z)

)

αsf
q DY(τ) =

αsCF

π

{

(1 + z2)

(

ln(1 − z)

1− z

)

+

−

(

1 + z2

1− z

)

ln z

− (1− z)−
π2

3
δ(1 − z)

}

,

σtot

σ0
= 1 +

(

8π

9
−

7

3π

)

αs + . . . (136)

In the endpoint, z → 1 the perturbative QCD Drell-Yan cross section at O(αs) becomes

dσ

dQ2
= m2

0δn·p̄n̄,Qδn̄·pn,Q

(

4πα2

9Q4

)

αsCF

π

{[

3

2
ln
Q2

m2
g

−
7

4

]

δ(1− τ) + 4

+ 4

(

ln(1− τ)

1− τ

)

+

+ 2 ln
Q2

m2
g

(

1

1− τ

)

+

}

. (137)

Comparing Eq.(137) and Eq.(134), we arrive at the same conclusion as for DIS, that the SCETII hadronic structure
function reproduces all the low energy physics of the perturbative QCD results in the endpoint region up to constant
coefficients of δ(1 − τ), which is regularization scheme dependent. As in DIS, this discrepancy is expected since the
SCET and QCD calculations use different regularization schemes.
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IV. DIS AND DY AT ENDPOINT WITH DELTA REGULATOR

The method of the Delta regulator was introduced to implement a proper zero-bin subtraction sector so as to remove
the overlap between the collinear and soft functions and restore the SCET factorization theorem. In this sense it
serves a similar role as the η rapidity regulator, except that the latter is gauge invariant and associated with a rapidity
scale making resummation in the rapidity region possible. To exhibit the origin of this fact, we repeat our calculations
in the previous two sections using the Delta regulator, and note the pros and cons of these two regularization schemes
line by line.

A. Wilson lines and factorization with delta regulator

We define the Delta regulator, by adding a constant in the propagator denominators as in Ref. [45],

1

(pi + k)2 −m2
i

→
1

(pi + k)2 −m2
i −∆i

. (138)

The subscript i denotes the particle i. The form of Eq. (138) makes the ∆ regulator behave like a mass shift for the
particle i. Correspondingly, the collinear Wilson lines are

Wn =
∑

perm

exp

[

−
g

n̄ · P − δ1
n̄ · An

]

,

W †
n̄ =

∑

perm

exp

[

−
g

n · P − δ2
n · An̄

]

, (139)

while the soft Wilson lines for DIS are

Ỹ †
n̄ =

∑

perm

exp

[

−
g

n · Ps − δ2 + iǫ
n̄ ·As

]

,

Yn =
∑

perm

exp

[

−
g

n̄ · Ps − δ1 − iǫ
n ·As

]

, (140)

and for DY are

Ỹ †
n̄ =

∑

perm

exp

[

−
g

n · Ps − δ2 − iǫ
n̄ ·As

]

,

Yn =
∑

perm

exp

[

−
g

n̄ · Ps − δ1 − iǫ
n ·As

]

, (141)

where δ1 = ∆1/p
+ and δ2 = ∆2/p

−, with p+ or p− the collinear momentum in the n or n̄ direction.
Now we repeat the factorization procedure for semi-inclusive DIS and DY using these delta-regulated Wilson lines.

Separating the hard collision scale and decoupling soft degrees of freedom from collinear degrees, we reach the same
expressions for the SCETI hardonic tensor for DIS Eq. (8) and for DY Eq. (95). Then we match the DIS and DY
hadronic tensors from SCETI to SCETII, and separate soft and collinear modes with an explicit zero-bin subtraction.
Adopting all the definitions for the soft function S(l, µ) in Eq. (10), jet function in Eq. (9) and collinear sectors as in
Eq. (13), we have the DIS hadronic tensor in SCETII with the Delta regulator

(Wµν)
eff
∆−DIS = −gµν⊥ H(Q,µ)

∫

φ

dℓJn̄(r;µ)S(ℓ;µ; δ2,m
2
g)Cn(Q − r − ℓ;µ; δ2,m

2
g) . (142)

Likewise with the soft function S(ℓ+, ℓ̄−;µ, ν) in Eq. (100) and two collinear functions in Eq. (96) and Eq. (97), the
DY hadronic structure function in SCETII with Delta regulator is

(W )eff∆−DY =
2π

QNc
H(Q;µq, µ)Cn(Q;µ; δ2,m

2
g)Cn̄(Q;µ; δ1,m

2
g)

1

Q
S(1− τ ;µ; δ1, δ2,m

2
g) . (143)

The notation φ on the integral emphasizes the need to remove the overlap of the zero-bins of each function.
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B. Renormalization and Running with the Delta Regulator

1. DIS Collinear and Soft Functions

For DIS, the naive virtual n-collinear function shown in Fig.2(a) is

C̃v
n =(2ig2CF )δ(k

−)µ2ǫ

∫

ddq

(2π)d
1

−q− + δ1 + iǫ

p− + q−

(p− + q−)q+ − q2⊥ −∆2 + iǫ

1

q−q+ − q2⊥ −m2
q + iǫ

=

(

−
αsCF

2π

)

δ(k−)

(

1

ǫ

(

− ln
δ1
p−

− 1

)

− ln
µ2

m2
g

(

ln
δ1
p−

+ 1

)

−



ln

(

1−
∆2

m2
g

)

ln
∆2

m2
g

+ 1−
∆2/m

2
g

∆2

m2
g
− 1

ln
∆2

m2
g

+ Li2

(

∆2

m2
g

)

−
π2

6





)

. (144)

We see that ∆2 is the infrared regulator for the quark propagator, which effectively is the quark mass in the loop
integral. The zero-bin amplitude for this virtual function is

Cvφ
n = (−2ig2CF )δ(k

−)µ2ǫ

∫

ddq

(2π)d
1

q− − δ1 + iǫ

1

q+ − δ2 + iǫ

1

q2 −m2
g + iǫ

=

(

−αsCF

2π

)

δ(k−)

(

1

ǫ2
+

1

ǫ
ln

µ2

δ1δ2

+ ln

(

µ2

m2
g

)

ln
µ2

δ1δ2
−

1

2
ln2

µ2

m2
g

− Li2

(

1−
δ1δ2
m2

g

)

+
π2

12

)

. (145)

For the real collinear function, the naive real collinear amplitudes only get contributions from the soft momentum
region, which are their exact zero-bin subtraction amplitudes. Thus, after the zero-bin subtractions, the real collinear
function amplitudes shown in Fig. 2(b) and (c) vanish,

C̃r
n = Crφ

n ⇒ Cr
n = C̃r

n − Crφ
n = 0 . (146)

After multiplying the calculated amplitudes in Eq. (144) and Eq. (145) by 2 for their mirror images, we have the
collinear function with quark wavefunction renormalization in semi-inclusive DIS with the Delta regulator

Cv
n =2(C̃v

n − C̃vφ
n )

=2

(

−αsCF

2π

)

δ(k−)

(

−
1

ǫ2
−

1

ǫ

(

ln
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∆2
+

3

4

)

+
π2

12
−

3

4
+

1

2
ln2

µ2

m2
g

− ln
µ2

m2
g

(

ln
µ2

∆2
+

3

4

)

+ Li2

(

1−
δ1δ2
m2

g

)

− Li2

(

∆2

m2
g

)

+ ln
∆2

m2
g





∆2/m
2
g

∆2

m2
g
− 1

− ln

(

1−
∆2

m2
g

)





)

. (147)

The infrared part of final result of the n-collinear function is independent of δ1, which is the infrared regulator of the
n-direction Wilson Line. In contrast, using the rapidity η-regulator exhibited rapidity divergences in the n-collinear
function in Eq. (28) brought in by the n-direction Wilson line. The naive virtual soft function for DIS shown in
Fig. 3(a) is the same as the zero-bin of the virtual collinear function, since the momentum contributing to that
integral comes from the same soft region

S̃v =

(

−
αsCF

2π

)

δ(l)
{ 1

ǫ2
+

1

ǫ
ln

µ2

δ1δ2
+ ln

µ2

m2
g

ln
µ2

δ1δ2
−

1

2
ln2

µ2

m2
g

− Li2

(

1−
δ1δ2
m2

g

)

+
π2

12

}

. (148)

The naive real soft function shown in Fig. 3(b) is

S̃r =(4πg2CF )µ
2ǫ

∫

d4−2ǫk

(2π)4−2ǫ
δ(k2 −m2

g)δ(l − k−)θ(k0)
1

k+ − δ2

1

k− − δ1

=

(

αsCF

2π

)

1

Q

(

−
1

ǫ
δ(z) ln

−δ1
Q

+

(

1

z

)

+

(

1

ǫ
+ ln

−µ2

δ2Q

)

− δ(z) ln

(

−
δ1
Q

)

ln
−µ2

δ2Q

)

, (149)
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where zQ = l, and z is dimensionless. We omit the term proportional to ln(1− z)
(

1
z

)

+
, which contributes a constant

in the endpoint limit z → 0. The Delta regulator restricts the integrals leading to Eq. (148) and Eq. (149) to the
soft momentum region, so we do not need to subtract the collinear overlap. This differs from the prescription with
the η-regulator, which serves as a smooth step function in the loop integral and may leave residual overlap with the
collinear function that must be eliminated by subtracting. Multiplying Eq. (148) and Eq. (149) by 2 for their mirror
images, we get the soft function with the Delta regulator

S =2(S̃v + S̃r)

=2

(

−
αsCF

2πQ

)

(

+
1

ǫ2
δ(z) +

1

ǫ

[

δ(z) ln
µ2

δ1δ2
+ δ(z) ln(−

δ1
Q
)−

(

1

z

)

+

]

−

(

1

z

)

+

ln
−µ2

δ2Q

+ ln(−
δ1
Q
) ln

−µ2

∆2
δ(z)−

π2

12
δ(z) + ln

µ2

m2
g

ln
µQ

δ1mg
δ(z)− Li2

(

1−
δ1δ2
m2

g

)

δ(z)

)

. (150)

Introducing κ to make the arguments of the logarithms dimensionless as in Eq. (150) and choosing −δ2Q = m2
g, we

can recombine logarithms to show that the infrared divergence in the soft function is independent of δ1. We can make
this choice to relate the regulators, because in the soft function one of the three infrared Delta regulators, δ1, δ2 and
m2

g is redundant, and the system is under-constrained. Again this is very different from what we obtain by using the
η-regulator in Eq. (40), where we separate rapidity divergences from infrared divergences and get a result containing
both rapidity and IR divergences, each with an appropriate regulator, η and m2

g. The counter-terms that renormalize
the soft and collinear functions in Eq. (150) and Eq. (147) are

Zn = 1 +
αsCF

π

[

1

ǫ2
+

1

ǫ

(

3

4
+ ln

µ2

∆2

)]

(151)

Zs = δ(z)−
αsCF

π

[

1

ǫ2
δ(z) +

1

ǫ

[

−

(

1

z

)

+

+ ln
µ2

δ1δ2
δ(z) + δ(z) ln(−

δ1
Q
)

]]

. (152)

The result Eq. (150) is consistent with perturbative QCD in the endpoint limit, as we show later in this section;
however, it differs from Eq. (A.5) of Ref. [24] which is also performed in the Delta-regulator scheme. The last term
of Eq. (A.5) in Ref. [24] is not shown in the body of the paper, as it should not be included in the combined result
to be consistent with QCD.

To check our results with the DIS consistency condition Eq. (43), we must first calculate the counter-term of the
jet function with the Delta regulator. The calculation is carried out in Appendix A. The result is

ZJ = δ(z) +
αsCF

2π

(

1

ǫ2
δ(z) +

1

ǫ

(

δ(z)

(

3

4
+ ln

µ2

∆1
+ ln

−∆1

n · p

)

−

(

1

z

)

+

))

. (153)

Combining this with Eqs. (151) and (152), we verify the consistency condition Eq. (43). The anomalous dimensions
are

γµn =
2αsCF

π

1

ǫ

(

3

4
+ ln

µ2

∆2

)

(154)

γµs =−
2αsCF

π

(

1

ǫ2
δ(z) +

1

ǫ

(

−

(

1

z

)

+

+ δ(z) ln
µ2

−∆2

))

. (155)

Analogous to Eq.(47) and Eq.(50), we can see that: (1) Because we only treat the rapidity divergences in the
semi-inclusive region as one type of infrared divergence, we cannot separate and resum it using the dimensional
regularization scale µ. (2) Similar to η-regulator, the sum of the anomalous dimensions γµ = γµnδ(z) + γµs from
Eqs. (154) and (155) is independent of the additional scale ∆2. However, the presence of ∆2 means the running of
both the collinear and soft functions is non-perturbative. Since the Delta regulator and η regulator both exhibit
nonperturbative running, our calculations suggest that the dependence on the infrared physics is independent of the
regulator. As a consequence, combining the collinear and soft functions into the new definition of the PDF in Eq. (61)
is justified as a regulator-independent choice.

With the counter-terms given in Eq. (151) and Eq. (152), we choose −δ2Q = m2
g, subtract them along with the wave-

function renormalization given in Eq. (A12) from the collinear function in Eq. (147) and soft function in Eq. (150),
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and let δ1 → 0 to obtain the renormalized collinear and soft functions

CR
n =

(

−
αsCF

π

)

δ(k−)

[

π2

12
−

3

4
−

1

2
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4
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(156)

SR =

(

−
αsCF

πQ

)

[
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(

1

z
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+

ln
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g

−
π2

4
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1

2
ln2
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g

δ(z)

]

. (157)

We insert Eq. (158), Eq. (157), renormalized final-jet function Eq. (A15) and the hard function Eq. (66) into the
hadronic tensor Eq. (142) and replace z with (1− x) to obtain

(Wµν)
eff
∆−DIS = 2m0δn̄·p̃,Q

{

δ(1 − x) +
αsCF

π

[
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−
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+
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+
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+
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+

+
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15

8
−
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12

)

δ(1 − x)

]}

. (158)

Again, we reproduced the perturbative QCD result except for the constant coefficient of δ(1−x) term, which depends
on the regularization scheme we choose.

2. DY Collinear and Soft Functions

The virtual and real collinear functions of DY are the same as in DIS, with the n̄-collinear function regulated by
∆1 and the n-collinear function regulated by ∆2:

CDY
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, (159)
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The virtual soft function for DY is also the same as in DIS

SDY
v = 2
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The real piece of the DY soft function is,

SDY
r = −2(2πg2CF )
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We obtain the above result by setting δ1, δ2 to zero, which has the exact form of the real contribution to the soft
function in the η-regulator scheme Eq.(114). This is reasonable because the δi do not regulate any divergences in the
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integral and the infrared divergence is regulated by m2
g. Since there is only one infrared divergence, the regulators

δ1, δ2 are redundant, similar to the DIS case. The soft function for DY is

SDY = SDY
v + SDY

r

=
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1
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+
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Therefore, the counter-terms for the DY collinear and soft functions are
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which are regulator dependent and satisfy the consistency condition at x, x̄→ 1 and τ → 1. The anomalous dimensions
for the DY collinear and soft functions are

γµn =
2αsCF

π

(

3

4
+ ln
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)
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)

γµs = −
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π
ln
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δ1δ2
δ(1 − τ) . (165)

The Delta regulators cancel in the sum of the anomalous dimensions in the endpoint region, and a large logarithm
in (n · p)(n̄ · p̄) ∼ −Q2 remains. Similar to the DIS case, each piece of the collinear and soft functions is dependent
on the infrared physics regardless of the regularization scheme. As a result, combining the soft and two collinear
functions to define the new luminosity function as in Eq. (103) is a regulator-independent choice. The renormalized
n- and n̄-collinear functions are
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CDY−R
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The renormalized soft function is

SDY−R =
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Inserting Eq. (166), Eq. (167) and Eq. (168) with the hard function Eq. (134) into the DY hadronic structure function
Eq. (143), we obtain

(Wµν)effDY−∆ =
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. (169)

We can clearly see that Eq.(169) reproduces the perturbative QCD result up to the constant coefficient of δ(1 − τ)
which is due to the regularization scheme.

We can also compute the interference factor defined in Eq. (104) with the soft functions in DIS Eq. (152) and DY
Eq. (163) as,

IDY = 2Qδ(1− τ) + 2Q
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. (170)

In relating the DY and DIS soft functions, we exploit the redundancy of our IR regulators and set δ1δ2 = m2
g in

the virtual contribution to the DY soft function. Except for the constant coefficient of δ(z), we have the exact same
interference factor as Eq. (129) obtained using rapidity regulator.

V. CONCLUSIONS

In this paper, we have studied the deep inelastic scattering and Drell-Yan processes in the endpoint x→ 1 (τ → 1)
region using both the η rapidity regulator and the ∆-regulator. In this region, both DIS and DY exhibit a large
Sudakov logarithm, arising as the collinear and soft degrees of freedom approach the same invariant mass scale, which
becomes much smaller than the collision center-of-mass scale. Using soft collinear effective theory and the covariant
rapidity regulator to separate collinear and soft degrees of freedom, we see this large logarithm as a logarithm of the
ratio of collinear and soft rapidity scales. We had previously resummed this endpoint-region rapidity logarithm in
DIS using the rapidity renormalization group, and here we additionally showed how the logarithm of rapidity scales
corresponds to the well-known threshold logarithm by transforming the result to Mellin space where it is seen as a
divergence going as lnN forN ≫ 1. We also confirmed our previous results for DIS by comparing the same calculations
in the ∆ regulator scheme and verified agreement with the perturbative QCD result in the limit x → 1. However,
it is notable that the ∆ regulator does not provide a convenient mechanism to resum the logarithmic enhancements,
which have been argued to be operative even well away from the true endpoint.

Although separating the parton distribution function in the endpoint region into collinear and soft factors brings
in dependence on an infrared scale, the rapidity factorization is rigorous, as proven by its successfully reproducing
the standard results. Indeed, the factorization cures the problematic large logarithm, which would otherwise spoil the
convergence of the effective theory expansion in the threshold region. From this point of view, rapidity factorization
(and summation) is necessary, even if the running must at some point be re-absorbed into the function chosen to
model the PDF at the hadronic scale. We remark that our definition of the PDF smoothly goes over to the traditional
definition away from the endpoint, and we will undertake fitting the experimentally-determined PDF to our factorized
form in a future publication. The tangible gain from our analysis is that the running in rapidity we identify may help
explain the steep fall off in the PDFs near the endpoint.

We demonstrated that this rapidity factorization works more generally by performing the same analysis on DY
processes. We resummed the single large rapidity logarithm and compared the resulting factorized collinear functions
to the definition of the endpoint-region PDF we obtained in DIS. Morevoer, we verified the results by calculating
again in ∆-regulator scheme and by comparing to the perturbative QCD result. The success of the resummation
establishes that rapidity factorization of the PDF is valid also in DY processes, and the parton luminosity function
can be related to the PDFs measured in DIS.

An interesting outcome of separating the DY collinear functions into soft and collinear factors is that the soft
radiation necessarily couples to both incoming n and n̄ protons. Consequently there is only a single soft function and
the n and n̄ parton distribution functions can only be exhibited as separate factors by defining an interference factor.
The hadronic structure function in SCETII has the form

W eff =
2π

QNc
H(Q;µ)

∫

dxdx̄ f n̄s
q (

1− x

x
;µ)fns

q′ (
1 − x̄

x̄
;µ)I

(DY)
τ→1 (1− τ ;µ) , (171)
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in which each φ(q;m) is a PDF defined to be identical to the PDF determined from DIS in the endpoint region, and

I
(DY)
τ→1 (1−τ ;µ) is the interference factor, whose renormalized form is given in Eq. (132). Calculating its running proves

that I
(DY)
τ→1 is a nontrivial function and is independent of the rapidity scale. The running of the interference factor

sums Sudakov logarithms associated with the threshold region, but does not bring in any infrared scale dependence.
Understanding it more thoroughly thus appears a promising route to understanding the transition to the elastic limit
of hadron-hadron scattering.
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Appendix A: DIS final jet function to O(αs) with delta regulator

In this section, we calculate the DIS jet function with the Delta regulator. The final jet function is defined in
Eq. (9) and has been previously calculated to O(αs) in Refs. [22, 24, 42–44] with different regulators. Here we use the
Delta-regulator prescription introduced in Ref. [45] with m2

g in the gluon propagator and two Delta regulators for two
Wilson lines. The Delta regulators are added to the collinear and soft Wilson lines the same way as in Sec. 4. The
O(αs) Feynman diagrams for the DIS jet function are shown in Fig. 4 where we omit the mirror images of Fig. 4(a)
and (b).

FIG. 4. O(αs) Feynman diagrams for the n̄ jet function

The naive amplitude for virtual gluon emission in Fig. 4(a) is

M̂ jet
a =(2ig2CF )µ

2ǫδ(r)

∫
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(2π)D
n · (p− q)

(q2 −m2
g + iǫ

1

(p− q)2 −∆1 + iǫ

1

n · q + δ2 + iǫ
, (A1)

where pX is the DIS final jet momentum. We let pµX = (p+X , p
−
x , pX⊥) = (Q, r, 0) and Eq. (A1) becomes
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, (A2)

which has the same form as the naive amplitude of the DIS n-collinear function Fig. 2(a). The zero-bin for Fig. 4(a)
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is

M̂ jet
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which, as expected, has the same form as the zero-bin amplitude of DIS n-collinear function Fig. 2(a). Including the
mirror image diagram, the amplitude of final jet function for virtual gluon emission is
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The naive amplitude for the real gluon emission in Fig. 4(b) is

M̂ jet
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where we use ∆1 to regulate n̄-direction final jets. Carrying out the integral, we have
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The zero bin for this amplitude is,

M̂ jet
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Including the mirror image diagram, the amplitude of final jet function for real gluon emission in Fig. 4(b) is

M jet
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The naive amplitude for real gluon emission in Fig. 4(c) is
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The zero bin for this diagram is

M̂ jet
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There is no mirror image for Fig. 4(c), so

M jet
c = M̂ jet

c . (A11)

The wavefunction contribution to the final jet function is

M jet
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Combining all the results above, the O(αs) expression for the final jet function up to O(αs) is
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This result is independent of δ2 for the same reason the n-collinear function in Eq. (147) is independent of δ1. The
counter-term for the final jet function is

Z jet
n̄ = δ(z) +
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With the choice of −δ1Q = m2
g, we have the renormalized jet function,
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Appendix B: Kinematic Constraints of the Zero-bin Subtraction with the Rapidity Regulator

The gauge-invariant rapidity regulator automatically ensures the zero-bins of the following forms of integrals are
scaleless:

1. The integrals in virtual diagrams;

2. The integrals in real diagrams with measurement functions only involving ~k⊥ .

However, in this paper, we encounter integrals for both DIS and DY real soft functions that are not included in the
above cases. As a result, we must examine the zero-bin subtraction prescriptions for each of these soft functions
carefully to determine whether or not any momenta run into the collinear region.
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After integrating over the perpendicular momentum, the real soft functions for DIS and DY have the following
forms respectively

IDY =

∫ ∞

0

dk+
∫ ∞

0

dk−
|k+k− −m2

g|
−ǫ

k+k−
θ(k+k− −m2

g)|k
+ − k−|−ηδ(l − k+ − k−) (B1)
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∫ ∞

0

dk+
∫ ∞

0

dk−
|k+k− −m2

g|
−ǫ

k+k−
θ(k+k− −m2

g)|k
+ − k−|−ηδ(l − k−) (B2)

In order to illustrate the origins of the rapidity divergences and the zero bins, we choose a different set of the variables,

k+ = reϕ, k− = re−ϕ (B3)

so that

IDY =
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IDIS =

∫ ∞

−∞

dϕ

∫ ∞

mg

dr
21−η

r1+η

|r2 −m2
g|

−ǫ

| sinhϕ|η
δ (r − leϕ) eϕ . (B5)

As we can see in Eq. (B1) and Eq. (B2), |k+ − k−| → ∞ can bring in both a rapidity divergence and an ultraviolet
divergence. We separate these two types of divergences by working with the r and ϕ variables, because the rapidity
divergence is only brought in by | sinhϕ| → ∞, and the infrared regulator m2

g distinguishes an infrared divergence
from a rapidity divergence. We illustrate the relations of these two sets of variables in Fig. 5. The hyperbolas show
the on-shell condition k+k− = k2⊥ +m2

g, and the zero bins are the rapidity regions k+ ≫ k−, k− ≫ k+, or ϕ ≫ 0,
which is also known as the collinear contribution to the soft function.

FIG. 5. The integration area of k+, k− and r,ϕ

FIG. 6. The kinematic constraints for DY real soft function. (A) is kinematic constraint in (k+, k−) space; (B) is kinematic
constraint in (r,ϕ) space.

The kinematic constraints are shown in Fig. 6 and Fig. 7. In Fig. 6, the (red) shaded part is the integration area,
which is constrained by the infrared regulator m2

g. The black lines are the constraints brought in by the measurement

function. In Fig. 6(A), while l becomes large, it is difficult to tell whether the zero bins k+ ≫ k− or k− ≫ k+
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contribute to the naive soft function integral. However, in Fig. 6(B), it is very clear that when integratig over the
black curve r coshϕ = l, r2 = m2

g cuts off all the collinear contributions from ϕ→ +∞ or ϕ→ −∞.
Therefore, we can conclude that there is no rapidity divergence in the DY real soft function. Interestingly because of

the constraint from the measurement function, r is always bounded by l, which suggests we do not have the ultraviolet
divergence for this function either.

FIG. 7. The kinematic constraints for DIS real soft function. (A) is kinematic constraint in (k+, k−) space; (B) is kinematic
constraint in (r,ϕ) space.

We analyze the DIS real function in a similar manner in Fig. 7. Because the infrared regulator does not exclude
the region ϕ→ ∞, collinear momenta contribute to the integral, which brings in the rapidity divergence and requires
the zero-bin subtraction.

Carrying out the integrals for the DY and DIS real soft functions

IDY =

∫ arccosh(l/mg)

−arccosh(l/mg)

1

2ηl1+η

coshη ϕ

| sinhϕ|η

∣

∣

∣

∣

l2

cosh2 ϕ
−m2

g

∣

∣

∣

∣

−ǫ

dϕ

=
Γ(ǫ)Γ(1− ǫ)

2η(m2
g)

ǫ

1

(l2 −m2
g)

1+η
2

−
Γ(1− ǫ)Γ((1 − η)/2)

2ηǫΓ
(

1−2ǫ−η
2

)

1

(l2 −m2
g)

1+2ǫ+η
2

+O

(

l2

a2
− 1

)−3/2

(B6)

IDIS =

∫ ∞

ln(mg/l)

21−η

l1+η

eϕ

eϕ(1+η)

|l2e2ϕ −m2
g|

ǫ

| sinhϕ|η
dϕ

=
2−η

l1+η(m2
g)

ǫ
Γ(ǫ) . (B7)

For DY, Eq. (B6) shows that the ǫ ultraviolet poles cancel between the two terms, and η and ǫ do not regulate l in
the factors (l2−m2

g)
−(1+η)/2 and (l2−m2

g)
−(1+2ǫ+η)/2. However for DIS, we can extract both rapidity and ultraviolet

poles in Eq. (B7). This analysis clearly shows that the zero bin subtraction is required only in the presence of the
rapidity divergences.

The kinematic constraints seen in Fig. 7 actually produce two distinct zero-bin subtractions in DIS: the first is the
“intuitive” collinear area in which k− ≫ k+ with l fixed. This case corresponds to φ→ −∞ with r fixed. The second
collinear area occurs when k+ ≫ k−, because l is large and the measurement function δ(l − k+) fixes k+ = l. In
DY, we cannot separate the limits k+ ≫ k− and k− ≫ k+ in the integrand of Eq. (B6) because this requires letting
l become large, which opens up phase space at both φ large and positive and φ large and negative, see Fig 6(B).
Therefore DY does not have distinct k+ ≫ k− and k− ≫ k+ areas, which is equivalent to the statement that there
is no zero bin subtraction.
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