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We consider an asymptotically free vectorial SU(Nc) gauge theory with Nf massless fermions in a
representation R, having an infrared fixed point (IRFP) of the renormalization group at αIR in the
conformal non-Abelian Coulomb phase. The cases with R equal to the fundamental, adjoint, and
symmetric rank-2 tensor representation are considered. We present scheme-independent calculations
of the anomalous dimension γψ̄ψ,IR to O(∆4

f ) and β
′

IR to O(∆5

f ) at this IRFP, where ∆f is an Nf -
dependent expansion parameter. Comparisons are made with conventional n-loop calculations and
lattice measurements. As a test of the accuracy of the ∆f expansion, we calculate γψ̄ψ,IR to O(∆3

f )
in N = 1 SU(Nc) supersymmetric quantum chromodynamics and find complete agreement, to this
order, with the exactly known expression. The ∆f expansion also avoids a problem in which an
IRFP may not be manifest as an IR zero of a higher n-loop beta function.

A fundamental problem in quantum field theory con-
cerns the properties at a conformal fixed point of the
renormalization group. A specific question under inten-
sive current investigation concerns the properties of an
asymptotically free (AF) non-Abelian Yang-Mills vecto-
rial gauge theory (in d = 4 spacetime dimensions) with a
set of massless fermions at an IRFP of the renormaliza-
tion group in the Coulomb phase, where it exhibits scale
and conformal invariance [1, 2]. Here we consider a the-
ory of this type, with gauge group G = SU(Nc) and Nf
massless fermions ψj , 1 ≤ j ≤ Nf , in a representation R,
where R is the fundamental (F ), adjoint (adj), or sym-
metric rank-2 tensor (S). The dependence of the gauge
coupling g = g(µ) on the Euclidean momentum scale
µ is described by the beta function, β = dα/dt, where
α(µ) = g(µ)2/(4π) and dt = d lnµ. The IRFP occurs at
an IR zero of β at αIR. At this fixed point, an operator
O for a physical quantity exhibits scaling behavior with
a dimension DO = DO,free − γO, where DO,free is the
free-field dimension and γO is the anomalous dimension.

Two important quantities that characterize the proper-
ties at the IRFP αIR are γψ̄ψ [3] and β′ ≡ dβ/dα, denoted
γψ̄ψ,IR and β′

IR. Here, β′

IR is equivalent to the anoma-
lous dimension of Fa,µνF

µν
a , where Fµνa is the (rescaled)

field-strength tensor [4]. As physical quantities, γψ̄ψ,IR
and β′

IR are scheme-independent (SI) [5]. However, con-
ventional series expansions of these quantities in powers
of α, calculated to a finite order, do not maintain this
scheme-independence beyond the lowest orders. Clearly,
it is very valuable to calculate and analyze series expan-
sions for γψ̄ψ,IR and β′

IR that are scheme-independent at
each order. Some early work was in [6, 7]. A natural
expansion variable is

∆f = Nu −Nf , (1)

where, for a given Nc and R, Nu is the upper (u) limit to
Nf allowed by asymptotic freedom. Scheme-independent

series expansions of γψ̄ψ,IR and β′

IR are [8]

γψ̄ψ,IR =

∞
∑

j=1

κj ∆
j
f (2)

and [9]

β′

IR =

∞
∑

j=1

dj ∆
j
f , (3)

where d1 = 0 for all G and R. For general G and R, the
κj were calculated to order j = 3 in [8] and the dj to
order j = 4 in [9], and for G = SU(3) and R = F , κ4 was
computed in [10] and d5 in [9].
Here we report our calculations of these scheme-

independent expansions of γψ̄ψ,IR and β′

IR to the highest
orders yet achieved, presenting κ4 and d5 for an asymp-
totically free SU(Nc) gauge theory with a conformal IR
fixed point, for R = F, adj, S. We also report our cal-
culation of κ3 for supersymmetric quantum chromody-
namics (SQCD). We believe that our new results are a
substantial advance in the knowledge of conformal field
theory. Our results have the advantage of scheme in-
dependence at each order in ∆f , in contrast to scheme-
dependent (SD) series expansions of γψ̄ψ,IR and β′

IR in
powers of α [11]-[16] and they complement other ap-
proaches to understanding conformal and superconfor-
mal field theory, such as the bootstrap [17] and lattice
simulations [18].
The conventional power-series expansions of β and γψ̄ψ

are

β = −2α

∞
∑

ℓ=1

bℓ

( α

4π

)ℓ

(4)

and

γψ̄ψ =

∞
∑

ℓ=1

cℓ

( α

4π

)ℓ

, (5)
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where bℓ and cℓ are the ℓ-loop coefficients; b1 [19], b2 [20],
and c1 = 6Cf are scheme-independent, while the bℓ with
ℓ ≥ 3 and the cℓ with ℓ ≥ 2 are scheme-dependent, i.e.
they depend on the scheme used for regularization and
renormalization [5]. We denote the n-loop (nℓ) β and
γψ̄ψ as βnℓ and γψ̄ψ,nℓ and the IR zero of βnℓ as αnℓ.
The calculation of κj requires, as inputs, the values of

the bℓ for 1 ≤ ℓ ≤ j + 1 and the cℓ for 1 ≤ ℓ ≤ j. The
calculation of dj requires, as inputs, the values of the bℓ
for 1 ≤ ℓ ≤ j. Thus, importantly, κj does not receive any
corrections from bℓ with ℓ > j + 1 or cℓ with ℓ > j, and
similarly, dj does not receive any corrections from any bℓ
with ℓ > j.
The coefficients κj were calculated in [8] for an (AF

vectorial) supersymmetric gauge theory (SGT) with
gauge group G and Nf pairs of chiral superfields in the
R and R̄ representation, for j = 1, 2. Complete agree-
ment was found, to the order calculated, with the exactly
known result in the conformal non-Abelian Coulomb
phase (NACP) [21–23]

γIR,SGT =

2Tf

3CA
∆f

1−
2Tf

3CA
∆f

. (6)

In this theory, Nu = 3CA/(2Tf), and the conformal
NACP is the interval Nℓ < Nf < Nu, where Nℓ = Nu/2,
so that ∆f varies from 0 to a maximum of (∆f )max =
3CA/(4Tf) in the NACP [24]. Hence, γIR,SGT increases
monotonically from 0 to 1 as Nf decreases from Nu to
Nℓ, saturating the upper bound γψ̄ψ,IR,SGT < 1 from
conformal invariance in this SGT [25].
As a test of the accuracy of the ∆f expansion, we have

now calculated κ3 for SQCD with R = F , using inputs
from [26]. We find κ3 = 1/(3Nc)

3, in perfect agreement,
to this order, with the exact result, Eq. (6). This agree-
ment explicitly illustrates the scheme independence of
the κj , since our calculations in [8] and here used inputs

computed in the DR scheme, while (6) was derived in the
NSVZ scheme [21]. Our new result has a far-reaching im-
plication: it strongly suggests that κj = [2Tf/(3CA)]

j for
all j, so that the expansion (2) for this supersymmetric
gauge theory, calculated to order O(∆p

f ), agrees with the
exact result to the given order for all p.
Because of electric-magnetic duality [22], as Nf → Nℓ

in the NACP, the physics is described by a magnetic the-
ory with coupling strength going to zero, or equivalently,

by an electric theory with divergent αIR. Hence, another
important finding here is that the complete agreement
that we obtain in SQCD to O(∆3

f ) between Eq. (2) and

the exact Eq. (6) holds for arbitrarily strong αIR. Even
apart from the issue of scheme dependence in Eq. (5),
this agreement could not be achieved with the conven-
tional expansion (5) of γψ̄ψ,IR in powers of α.

The ∆f expansion also avoids a problem in which an
IRFP may not be manifest as a physical IR zero of the n-
loop beta function for some n. Indeed, although βnℓ has a
physical αIR,nℓ in SQCD for n = 2, 3 loops [27], we have

analyzed β4ℓ (in the DR scheme), and we find that for a
range of Nf in the NACP, it does not exhibit a physical
αIR,4ℓ. This is analogous to the situation that we found
for αIR,5ℓ in the non-supersymmetric gauge theory [16].
In both cases, the ∆f expansions (2) and (3) circumvent
this problem of a possible unphysical αIR,nℓ that one may
encounter in using the convention expansions (4) and (5).

We next present our results for κ4 and d5 for a (non-
supersymmetric) SU(Nc) gauge theory, making use of the
impressive recent computation of b5 in [28]. (We have ac-
tually calculated κ4 and d5 for general G and R [29], but
only present results here for R = F, adj, S.) The two-
loop beta function has an IR zero (IRZ) in the interval
IIRZ : Nℓ < Nf < Nu, with upper and lower (ℓ) ends at
Nu = 11Nc/(4Tf) andNℓ = 17C2

A/[2Tf(5CA+3Cf )] [24].
The non-Abelian Coulomb phase extends downward in
IIRZ from Nu to a lower value denoted Nf,cr [30]. Since
chiral symmetry is exact in the NACP, one can classify
the bilinear fermion operators according to their flavor
transformation properties. These operators include the
flavor-singlet ψ̄ψ and the flavor-adjoint ψ̄Taψ, where Ta
is a generator of SU(Nf ). These have the same anoma-
lous dimension [31], which we write simply as γψ̄ψ . For
general G and R, the coefficients bℓ were computed up to
loop order ℓ = 4 [32] (checked in [33]) and the cℓ also up
to loop order ℓ = 4 [34], in the widely used MS scheme
[35]. These results were used in [8] to calculate the κj to
order j = 3 and in [9] to calculate dj to order j = 4. For
Nc = 3 and R = F , b5 was computed in [36], and this
was used to calculate κ4 in [10] and d5 in [9] for this case
(see also [16]).

We first report our results for κ4 and d5 for R = F ,
using b5 from [28]. We denote the Riemann zeta function
as ζs =

∑∞

n=1
n−s. We obtain

κ4,F =
4(N2

c − 1)

34N4
c (25N

2
c − 11)7

[

(

263345440N12

c − 673169750N10

c + 256923326N8

c

− 290027700N6

c + 557945201N4

c − 208345544N2

c + 6644352
)

+ 384(25N2

c − 11)
(

4400N10

c − 123201N8

c + 480349N6

c − 486126N4

c + 84051N2

c + 1089
)

ζ3

+ 211200N2

c (25N
2

c − 11)2(N6

c + 3N4

c − 16N2

c + 22)ζ5

]

(7)
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and

d5,F =
25

36N3
c (25N

2
c − 11)7

[

N12

c

(

− 298194551− 423300000ζ3 + 528000000ζ5

)

+ N10

c

(

414681770+ 1541114400ζ3 − 821040000ζ5

)

+N8

c

(

80227411− 4170620256ζ3 + 2052652800ζ5

)

+ N6

c

(

210598856+ 5101712352ζ3 − 4268183040ζ5

)

+N4

c

(

− 442678324− 2250221952ζ3 + 2744628480ζ5

)

+ N2

c

(

129261880+ 304571520ζ3 − 534103680ζ5

)

+ 3716152+ 1022208ζ3

]

, (8)

where the simple factorizations of the denominators have
been indicated. For this R = F case, we find that κ4 > 0,
as was also true of κj with 1 ≤ j ≤ 3 (indeed, κ1 and
κ2 are manifestly positive for any G and R). We also
find the same positivity results for R = adj and R =
S. The property that for all of these representations R,
κj > 0 for 1 ≤ j ≤ 4 and for all Nc implies two important
monotonicity results. First, for these R, and with a fixed
p in the interval 1 ≤ p ≤ 4, γψ̄ψ,IR,∆p

f
is a monotonically

increasing function of ∆f for Nf ∈ IIRZ . Second, for
these R, and with a fixed Nf ∈ IIRZ , γψ̄ψ,IR,∆p

f
is a

monotonically increasing function of p in the range 1 ≤

p ≤ 4. In addition to the manifestly positive κ1 and
κ2, a plausible conjecture is that, for these R, κj > 0
for all j ≥ 3. Note that the exact result (6) for the
supersymmetric gauge theory shows that in that theory,
κj > 0 for all j and for any G and R.

In Figs. 1 and 2 we plot γIR,∆p

f
for R = F , Nc = 2, 3

and 1 ≤ p ≤ 4. In Table I we list values of these γIR,∆p

f

[37]. These all satisfy the upper bound γIR < 2 from
conformal invariance [25]. Below, we will often omit the
ψ̄ψ subscript, writing γψ̄ψ,IR ≡ γIR and γψ̄ψ,IR,∆p

f
≡

γIR,∆p

f
.

For this R = F case we first remark on the compar-
ison of γIR,∆4

f
with calculations of γIR,nℓ from analyses

of power series in α, which were performed to n = 4 loop
level in [11]-[14] using bℓ and cℓ in the MS scheme (with
studies of scheme dependence in [15]) and extended to
n = 5 loop level for Nc = 3 in [16]. We have noted that
β5ℓ does not have a physical αIR,5ℓ for Nf in the lower
part of the interval IIRZ [16]. Although we were able
to surmount this problem via Padé approximants in [16],
these are still scheme-dependent, while the ∆f expansion
has the advantage of being scheme-independent. In gen-
eral, we find that for a given Nc and Nf , the value of
γIR,∆p

f
that we calculate to highest order, namely p = 4,

is somewhat larger than γIR,nℓ calculated to its high-
est order [10, 13]. For example, for Nc = 3, Nf = 12,
γIR,4ℓ = 0.253, γIR,5ℓ ≃ 0.255 (using a value of αIR,5ℓ
from a Padé approximant [10, 16]), while γIR,∆4

f
= 0.338

and an extrapolation yields the estimate 0.400(5) for
γIR = limp→∞ γIR,∆p

f
[10]. Similarly, for Nc = 2 and

Nf = 8, γIR,4ℓ = 0.204, while γIR,∆4

f
= 0.298; and for

FIG. 1: Plot of γψ̄ψ,IR,∆p
f

for R = F , Nc = 2, and 1 ≤

p ≤ 4 as a function of Nf ∈ IIRZ . From bottom to top, the
curves (with colors online) refer to γψ̄ψ,IR,∆f

(red), γψ̄ψ,IR,∆2

f

(green), γψ̄ψ,IR,∆3

f
(blue), and γψ̄ψ,IR,∆4

f
(black).

Nc = 4, Nf = 16, γIR,4ℓ = 0.269, while γIR,∆4

f
= 0.352.

We next compare our new results with lattice mea-
surements, restricting to cases where the lattice stud-
ies are consistent with the theories being IR-conformal
[18, 30]. For Nc = 3, we compared our calculations of
γIR,∆4

f
with lattice measurements for Nf = 12 in [10],

finding general consistency with the range of lattice re-
sults, although our γIR,∆4

f
and extrapolation to the exact

γIR were higher than some of the lattice values. We also
found consistency for the cases Nf = 10 and Nf = 8
[10]. Here, we compare with lattice results for γIR in the
case Nc = 2, Nf = 8. (It is not clear from lattice studies
if the SU(2), R = F , Nf = 6 theory has a conformal
IRFP or not [18, 30, 38].) Following lattice studies of the
SU(2), R = F , Nf = 8 theory by several groups [18, 39],
a recent measurement is γIR = 0.15±0.02 ≡ 0.15(2) [40].
Our value γIR,∆4

f
= 0.298 is somewhat higher than this

lattice result.

We proceed to discuss d5 for R = F . In Fig. 3 we plot
β′

IR,∆
p

f

for R = F , Nc = 3, and 2 ≤ p ≤ 5. In Table II
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FIG. 2: Plot of γψ̄ψ,IR,∆p
f

for R = F , Nc = 3, and 1 ≤

p ≤ 4 as a function of Nf ∈ IIRZ . From bottom to top, the
curves (with colors online) refer to γψ̄ψ,IR,∆f

(red), γψ̄ψ,IR,∆2

f

(green), γψ̄ψ,IR,∆3

f
(blue), and γψ̄ψ,IR,∆4

f
(black).

TABLE I: Values of the scheme-independent anomalous dimension

γIR,∆p
f
with 1 ≤ p ≤ 4 for R = F and Nc = 2, 3.

Nc Nf γIR,∆f
γIR,∆2

f
γIR,∆3

f
γIR,∆4

f

2 6 0.337 0.520 0.596 0.698

2 7 0.270 0.387 0.426 0.467

2 8 0.202 0.268 0.285 0.298

2 9 0.135 0.164 0.169 0.172

2 10 0.0674 0.07475 0.07535 0.0755

3 9 0.374 0.587 0.687 0.804

3 10 0.324 0.484 0.549 0.615

3 11 0.274 0.389 0.428 0.462

3 12 0.224 0.301 0.323 0.338

3 13 0.174 0.221 0.231 0.237

3 14 0.125 0.148 0.152 0.153

3 15 0.0748 0.0833 0.0841 0.0843

3 16 0.0249 0.0259 0.0259 0.0259

we list values of β′

IR,∆
p

f

for R = F , Nc = 2, 3 and 2 ≤

p ≤ 5. For R = F and general Nc, d2 and d3 are positive,
while d4 and d5 are negative. For the case SU(3), Nf =
12, we get β′

IR,∆5

f

= 0.228. The conventional n-loop

calculation yielded β′

IR,3ℓ = 0.2955 and β′

IR,4ℓ = 0.282

[41], so β′

IR,∆5

f

is slightly smaller than β′

IR,4ℓ. A recent

lattice measurement yields β′
IR = 0.26(2) [42], consistent

with both our β′

IR,∆5

f

and β′

IR,4ℓ.

We next discuss the case R = adj, for whichNu = 11/4
and Nℓ = 17/16, so IIRZ includes the single integer value
Nf = 2 (whence ∆f = Nu − 2 = 3/4). Results for this

FIG. 3: Plot of β′

IR,∆
p
f
for R = F , Nc = 3, and 2 ≤ p ≤ 4 as a

function of Nf ∈ IIRZ . From bottom to top, the curves (with
colors online) refer to β′

IR,∆2

f
(red), β′

IR,∆3

f
(green), β′

IR,∆4

f

(blue), β′

ψ̄ψ,IR,∆5

f
(black).

TABLE II: Scheme-independent values of β′

IR,∆
p
f

with 2 ≤ p ≤ 4

for R = F , Nc = 2, 3 as functions of Nf in the respective intervals

IIRZ . The notation ae-n means a× 10−n.

Nc Nf β′

IR,∆2

f
β′

IR,∆3

f
β′

IR,∆4

f
β′

IR,∆5

f

2 6 0.499 0.957 0.734 0.6515

2 7 0.320 0.554 0.463 0.436

2 8 0.180 0.279 0.250 0.243

2 9 0.0799 0.109 0.1035 0.103

2 10 0.0200 0.0236 0.0233 0.0233

3 9 0.467 0.882 0.7355 0.602

3 10 0.351 0.621 0.538 0.473

3 11 0.251 0.415 0.3725 0.344

3 12 0.168 0.258 0.239 0.228

3 13 0.102 0.144 0.137 0.134

3 14 0.0519 0.0673 0.0655 0.0649

3 15 0.0187 0.0220 0.0218 0.0217

3 16 2.08e-3 2.20e-3 2.20e-3 2.20e-3

case were given for κp with 1 ≤ p ≤ 3 in [8] and for dp
with 1 ≤ p ≤ 4 in [9]. Here we find

κ4,adj =
53389393

27 · 314
+

368

310
ζ3

+

(

−
2170

310
+

33952

311
ζ3

)

N−2

c

= 0.0946976+ 0.193637N−2

c (9)

and

d5,adj = −
7141205

23 · 316
+

5504

312
ζ3
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−

(

30928

314
+

465152

313
ζ3

)

N−2

c

= −(0.828739× 10−2)− 0.357173N−2

c .

(10)

We remark on the SU(2), Nf = 2, R = adj theory,
which has been of interest [43]. Extensive lattice studies
of this theory have been performed and are consistent
with IR conformality [18]. We get β′

IR,∆5

f

= 0.147; and

γIR,∆2

f
= 0.465, γIR,∆3

f
= 0.511, and γIR,∆4

f
= 0.556.

These γIR,∆p

f
values are close to our n-loop calcula-

tions in [13] for this theory, namely γIR,3ℓ = 0.543,
γIR,4ℓ = 0.500. Lattice measurements of this theory have
yielded a wide range of values of γIR including, 0.49(13)
[44], 0.22(6) [45], 0.31(6) [46], 0.17(5) [47], 0.20(3) [48],
0.50(26) [49], and 0.15(2) [40] (see references for details
of uncertainty estimates).
Finally, we discuss the case R = S. For SU(2), S =

adj, already discussed above. For SU(3), we focus on the
Nf = 2 theory, for which we find β′

IR,∆5

f

= 0.333; and

γIR,∆2

f
= 0.789, γIR,∆3

f
= 0.960, and γIR,∆4

f
= 1.132

[37]. For comparison, our n-loop results from [13] for
this case are γIR,3ℓ = 0.500 and γIR,4ℓ = 0.470. Lattice
studies of this theory include one that concludes that it
is IR-conformal and gets γIR < 0.45 [50] and another
that concludes that it is not IR-conformal and gets an
effective γIR ≃ 1 [51].

In summary, we have presented calculations of γψ̄ψ,IR
and β′

IR at a conformal IR fixed point of an asymp-
totically free gauge theory with fermions, to the high-
est orders yet achieved. We believe that these results
are of fundamental value for the understanding of con-
formal field theory, especially because they are scheme-
independent.
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