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chaos using a cohomogeneity-1 string ansatz. We then turn to turbulent behaviors

of the classical strings when the spatial dependence of the string world-sheet is in-

cluded. Sensitivity to initial conditions in chaotic systems suggests that the string

under chaos tends to stretch in the AdS soliton spacetime in a Lyapunov timescale.

In this process, the orbital angular momentum transfers to internal spin due to the

turbulence on the string. It follows that the string stays around the tip of the AdS

soliton with a jumbled profile. We evaluate the spectra of conserved quantities and

discuss their universal power-law scalings in the turbulent behaviors.

Keywords: Sigma Models, AdS-CFT Correspondence, Gauge-gravity correspon-

dence, Confinement

mailto:takaaki.ishii@colorado.edu
mailto:keiju@phys-h.keio.ac.jp
mailto:kyoshida@gauge.scphys.kyoto-u.ac.jp


1 Introduction

The gauge/string duality is one of the most fascinating subjects in string theory.

A typical example is the conjectured equivalence between type IIB superstring the-

ory on the AdS5 × S5 spacetime and N = 4 SU(N) 4D super Yang-Mills theory

at large N [1–3]. Generalization has also been considered to the dualities between

string theories in asymptotically AdS spacetimes and their dual field theories. The

gauge/string duality brings a strong motivation and importance to understand dy-

namics of fundamental strings in asymptotically AdS spacetimes.

Nowadays, it has been well recognized that an integrable structure exists behind

the AdS/CFT correspondence (for a big review, see [4]). In particular, the supercoset

structure of AdS5 × S5 is really crucial for showing the classical integrability in

the string-theory side [5]. The integrability enables us to use powerful techniques

in studying the conjectured relations non-perturbatively. An enormous number of

studies have been done along this direction.

This nice property is, however, exceptional, and in general the dualities between

string theories and gauge theories do not enjoy the integrability. Most theories are

not integrable, and they exhibit chaos. For example, it is known that classical strings

in AdS soliton spacetime [6], which is given just by an one-parameter deformation

of the pure AdS spacetime, admit the chaos [7]. One can also find chaotic strings in

various background geometries including AdS5×T 1,1 spacetime1 and black hole back-

grounds [11–18].2 These are examples of non-integrable background geometries. In

the preceding works on chaotic strings, only cohomogeneity-1 strings have been con-

sidered, i.e., some symmetries were imposed on string profiles. The string equations

of motion are then reduced to geodesic equations for particles in effective geome-

tries [23]. Since the reduced equations of motion are given in ordinary differential

equations, one can show the presence of chaos using standard techniques in the field

of non-linear dynamics such as Poincaré sections and Lyapunov spectra.

Here, we raise a simple question: What happens to the string dynamics if such

symmetries are not imposed? Without symmetry protection, it is necessary to take

into account nonlinear fluctuations along the string, and further dynamics is in-

troduced to the study of the chaotic strings. We are interested in strings in non-

integrable geometries because the strings are considered to be non-integrable in most

of the asymptotically AdS spacetimes. As an example of non-integrable background

geometries, in this paper, we focus on the 5D AdS soliton spacetime.3 We solve the

full string equations of motion, given as partial differential equations. As a result,

1The T 1,1 is a 5D Sasaki-Einstein manifold [8] and the AdS5 × T 1,1 background is dual to a 4D

superconformal field theory [9]. The coset construction of T 1,1 has been refined in [10].
2Very recently, by applying Melnikov’s method [19, 20], it has been shown in [21] that chaotic

string solutions exist even on brane-wave deformed backgrounds found in [22].
3Other options include AdS5 × T 1,1 or Schwartzshild-AdS spacetimes.
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we will find (strong) turbulence on the string worldsheet. In analyzing particle’s

chaos, dynamical variables depend only on time, but here the spatial dependence of

the strings adds complexity to analysis. The strings will show chaos in the infinite-

dimensional phase space arising from the string’s spatial direction. We will refer such

infinite-dimensional chaos as the turbulence in this paper.

There are also related works on the chaos and turbulence in string theory. The

dynamics of D0-branes can be described by matrix models [24, 25]. Their chaotic

motions have been shown in [26–28] by following the procedure in classical Yang-

Mills systems [29, 30]. In the case of D7-branes, one can consider a holographic

QCD setup and their chaotic behavior is closely related to the chiral condensate on

the dual gauge-theory side [31]. Since the classical chaos on the string-theory side

corresponds to the quantum nature on the gauge-theory side, this result may imply

a quantum analogue of the butterfly effect.

As well as chaotic behaviors, weak turbulence on classical strings and D7 branes

has also been studied in Refs. [32–35]. In this paper, our study includes strong turbu-

lence. Weak and strong turbulence are classified by the strength of mode couplings or

nonlinearity. In these previous works, small-but-finite perturbations were considered

around static configurations of strings and D-branes, and long time accumulation

of the small nonlinearity caused energy cascade in spectra. In this paper, we will

find the appearance of strong turbulence resulting in large nonlinearity. Late time

solutions then become quite different from initial reference ones that are perturbed

slightly. We will quantify such difference using conserved quantities in the string’s

dynamics.

This paper is organized as follows. In section 2, we introduce an AdS soliton

background with the regular coordinates and derive the equations of motion for clas-

sical strings in a conformal gauge. In section 3, we use a cohomogeneity-1 string

ansatz and revisit classical chaos on the AdS soliton background, which has been

studied in Ref. [7]. In section 4, we include nontrivial dependence on the spatial

direction of the string world-sheet and study the string’s motion and turbulent be-

haviour. Section 5 is devoted to summary and discussion. Appendices explain some

details on discretized numerical calculations.

2 Strings in AdS soliton

In this section, we shall start from introducing an AdS soliton background [6] which

we use as a non-integrable geometry and derive the classical action to describe a

string propagating in this background. The background is explicitly written down

with certain coordinates for our use.
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2.1 AdS soliton spacetime

Let us consider a five-dimensional AdS soliton solution [6]. This can be regarded

as a one-parameter deformation of the original AdS5 geometry. The metric part is

given by4

ds2 =
R2

z2

[

−dt2 +
dz2

f(z)
+ f(z)dx2 + d~y 2

]

, ~y = (y1, y2) , (2.1)

f(z) ≡ 1−
(

z

z0

)4

,

where R is the AdS radius, the AdS boundary is at z = 0, and the tip of the AdS

soliton is located at z = z0. The x coordinate is compactified on a circle S1 with a

periodicity x ≃ x+ πz0 in order to avoid a conical singularity at the tip. The metric

(2.1), however, still has a coordinate singularity at z = z0 and may not be suitable

for numerical calculations of the string dynamics.

To use a regular metric, we introduce the following polar coordinates in the

(z, x)-plane:

r = exp

[

−arctanh

(

z

z0

)

− arctan

(

z

z0

)]

, θ =
2

z0
x . (2.2)

The range of r is 0 ≤ r < 1, where r = 0 and r = 1 correspond to the tip (z = z0) and

the boundary (z = 0), respectively. Note here that z can be expressed as a function

of r by inverting the coordinate transformation (2.2). (We do this numerically in our

calculations.) In terms of the new coordinates, the metric (2.1) can be rewritten as

ds2 =
R2

z2

[

−dt2 +
z2
0
f(z)

4r2
(dr2 + r2dθ2) + d~y 2

]

. (2.3)

In this expression, the (r, θ) part of the metric is conformally flat and its conformal

factor, which is proportional to f(z)/r2, is regular at the tip because r ∼ (1−z/z0)
1/2

at z ∼ z0. The domain of θ is 0 ≤ θ < 2π and the conical singularity is avoided.

From the metric (2.3), it is clear that the topology of the AdS soliton is given by

Rt ×R2 ×D2 where D2 is a two-dimensional disc parametrized by (r, θ).

Since the metric (2.3) still has a coordinate singularity at the origin of the polar

coordinates r = 0, we introduce the following “Cartesian” coordinates on the two-

dimensional disc:

χ1 = r cos θ , χ2 = r sin θ . (2.4)

In terms of χ = (χ1, χ2), the metric can be expressed as5

R−2ds2 = F (χ2)(−dt2 + d~y 2) +G(χ2)dχ2 , (2.5)

4Here the Ramond-Ramond (R-R) five-form field strength is not written down because we will

concentrate on the classical dynamics of the bosonic part of type IIB superstring theory and the

R-R sector is not relevant to our analysis.
5 We use bold and arrow notations for vectors in (χ1, χ2)- and (y1, y2)-planes, respectively.
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where we have introduced two scalar functions defined as

F (χ2) =
1

z2
, G(χ2) =

z2
0
f(z)

4z2|χ|2 . (2.6)

Note here that z should be regarded as a function of r = |χ| by inverting the

coordinate transformation (2.2).

In numerical calculations, we will work in units in which z0 = 1. This dimen-

sionful parameter z0 can be easily retrieved in results whenever we want.

2.2 The classical string action

Let us introduce the classical action of a string propagating in the AdS soliton back-

ground. The classical dynamics of the fundamental string is described with the

Nambu-Goto action,

S = − 1

2πα′

∫

d2σ
√
−h , h ≡ det(hab) , (2.7)

where hab is the induced metric on the string. The prefactor corresponds to the string

tension T = 1/(2πα′).

Let u and v denote the world-sheet coordinates. Then the string in the target

space is parametrized as

t = t(u, v) , χ = χ(u, v) , ~y = ~y(u, v) . (2.8)

Plugging them in the metric (2.5), the components of the induced metric hab are

evaluated as

R−2huu = F (χ2)(−t2,u + ~y 2

,u) +G(χ2)χ2

,u , (2.9)

R−2hvv = F (χ2)(−t2,v + ~y 2

,v) +G(χ2)χ2

,v , (2.10)

R−2huv = F (χ2)(−t,ut,v + ~y,u~y,v) +G(χ2)χ,u · χ,v . (2.11)

Using the reparametrization freedom of the world-sheet coordinates, we impose the

double null condition on the induced metric as follows:

C1 ≡ huu = 0 , C2 ≡ hvv = 0 . (2.12)

Under the double null condition, the Nambu-Goto action (2.7) can be rewritten as

S = − 1

2πα′

∫

dudv
√

h2
uv − huuhvv

=

√
λ

2π

∫

dudv

[

F (χ2)(−t,ut,v + ~y,u~y,v) +G(χ2)χ,u · χ,v

]

,

(2.13)

where in the second equality the double null condition (2.12) and huv < 0 have been

utilized. Also, the ’t Hooft coupling is defined by λ ≡ R4/α′2.
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By taking the variations of the classical action, one can derive the string equa-

tions of motion:

t,uv = −F ′

F
[(χ · χ,v)t,u + (χ · χ,u)t,v] , (2.14)

~y,uv = −F ′

F
[(χ ·χ,v)~y,u + (χ · χ,u)~y,v] , (2.15)

χ,uv = −G′

G
[(χ · χ,v)χ,u + (χ ·χ,u)χ,v − (χ,u · χ,v)χ]

+
F ′

G
(−t,ut,v + ~y,u~y,v)χ , (2.16)

where F ′ ≡ dF/d(χ2) and G′ ≡ dG/d(χ2). It is easy to check that the constraint

equations (2.12) are conserved in time evolution: ∂vC1 = ∂uC2 = 0.

The evolution equations in the form of (2.14-2.16) are actually numerically un-

stable under time evolution. To realize stable evolution, we solve the constraints

huu = hvv = 0 for t,u and t,v and choose the positive signature for the quadratic

equations:

t,u =
√

~y 2
,u +H(χ2)χ2

,u , (2.17)

t,v =
√

~y 2
,v +H(χ2)χ2

,v , (2.18)

where H ≡ G/F . Taking the positive signature specifies that ∂u and ∂v are future

directed null vectors. We use these conditions in (2.14-2.16).

In the following, it is often convenient to use orthogonal coordinates (τ, σ) defined

by

τ = u+ v , σ = u− v . (2.19)

In these coordinates, the string action (2.13) becomes6

S = −
√
λ

4π

∫

dτdσ ηab
[

F (χ2)(−t,at,b + ~y,a~y,b) +G(χ2)χ,a · χ,b

]

, (2.21)

where ηab = diag(−1, 1) and a, b = τ, σ. The evolution and constraint equations can

also be rewritten in terms of (τ, σ) if we replace the derivatives as ∂u = ∂τ + ∂σ and

∂v = ∂τ − ∂σ. Hereafter, we use ∂τ ≡ · and ∂σ ≡ ′ for τ and σ derivatives.

6 When the double null condition is imposed, the Nambu-Goto action (2.13) takes the form of

a gauge-fixed Polyakov action. The Polyakov action is given by

S =
1

4πα′

∫

d2σ
√−γ γab ∂aX

µ∂bX
νgµν , (2.20)

where γ and g are the worldsheet and spacetime metrics. The expressions (2.13) and (2.21) are

reproduced when we utilize the worldsheet metric γabdσ
adσb = −2dudv = (−dτ2 + dσ2)/2.
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Figure 1. A profile of the cohomogeneity-1 string in the (χ1, χ2)- and (y1, y2)-planes. The

string position/configuration is shown in red.

The above action is invariant under t → t + c1 and χ1 + iχ2 → eic2(χ1 + iχ2)

where c1,2 are real constants. The Noether charges associated with these symmetries

are given by

E =

∫

2π

0

dσ

2π
pt , J =

∫

2π

0

dσ

2π
χ× pχ , (2.22)

where pt = F ṫ and pχ = G χ̇ are the conjugate momenta of t and χ, respectively.

These correspond to the energy and (χ1, χ2)-plane’s angular momentum, respec-

tively.7 Note that in the above expressions of the Noether charges the prefactor
√
λ

has been dropped for notational simplicity.

3 Chaos in cohomogeneity-1 strings

The preceding work [7] studied the classical dynamics of strings in an AdS soliton

background using an ansatz under which the string equations of motion reduced

to a set of ordinary differential equations. Then it was shown that the reduced

system exhibited chaos. In this section, we revisit this classical chaos using a regular

coordinate system introduced in the previous section.

3.1 Cohomogeneity-1 string in AdS soliton

Let us consider the following ansatz [7]:

t = t(τ) , χ = χ(τ) , y1 = ρ(τ) cosσ , y2 = ρ(τ) sin σ . (3.1)

We will refer to string solutions with this ansatz as cohomogeneity-1 strings, following

the terminology utilized in [23]. The string profile is schematically shown in Fig. 1.

7 From the translation symmetry in the (y1, y2)-plane, we can also obtain other conserved quan-

tities: ~P =
∫ 2π

0
dσ/(2π) ~py where ~py = F~̇y.
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With this ansatz, the string action (2.21) can be rewritten as

S =
√
λ

∫

dτ

[

1

2
F (χ2)(−ṫ2 + ρ̇2 − ρ2) +

1

2
G(χ2)χ̇2

]

. (3.2)

In the following, we drop the overall factor of
√
λ for notational simplicity. Our study

is at the leading order in the large
√
λ limit, and this overall factor can be easily

recovered.

The equations of motion can be derived as Hamilton equations. The energy and

the angular momentum are given by

E = F (χ2) ṫ , J = χ× pχ . (3.3)

Then, after appropriate Legendre transformation of the Lagrangian (3.2), we can

eliminate ṫ using the energy conservation and obtain a modified Lagrangian as

L =
1

2
F (χ2)(ρ̇2 − ρ2) +

1

2
G(χ2)χ̇2 +

E2

2F
. (3.4)

If we use the polar coordinates (r, θ), instead of (χ1, χ2), θ(τ) becomes cyclic. Hence

θ(τ) can also be eliminated due to the conservation of J . However, the resultant

equations become singular at r = 0 and would not be suitable for numerical calcu-

lations if the string reaches r = 0. Therefore, instead of eliminating θ(τ), we regard

χ1(τ) and χ2(τ) as independent variables. We introduce the conjugate momenta of

ρ and χ,

pρ = F ρ̇ , pχ = Gχ̇ . (3.5)

The Hamiltonian is obtained as

H =
p2ρ − E2

2F (χ2)
+

p2

χ

2G(χ2)
+

1

2
F (χ2)ρ2 . (3.6)

The Hamilton equations are given by

ṗρ = −Fρ , ṗχ =

[

F ′

F 2
(p2ρ − E2) +

G′

G2
p2

χ − F ′ρ2
]

χ , (3.7)

together with the conjugate momenta (3.5). The constraints (2.12) lead to the Hamil-

tonian constraint H = 0, and this should be imposed on initial conditions.

3.2 Poincaré section and Lyapunov exponent

For initial conditions to solve the Hamilton equations, we set χ2 = pρ = pχ1
= 0 for

simplicity and regard (E, J, χ1) as free parameters. Using the constraint H = 0 and

the second equation in (3.3), the initial values of ρ and pχ2
can be expressed in terms

of (E, J, χ1) as

pχ2
=

J

χ1

, ρ2 =
1

F (χ2
1
)2

(

E2 − F (χ2

1
)

χ2
1
G(χ2

1
)
J2

)

. (3.8)
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Figure 2. Poincaré sections (ρ = 0). The horizontal and vertical axes are r and pr,

respectively. Different colors correspond to different initial values of χ1. As the energy

increases, the chaotic region dominates the phase space.

Note that the positivity of the second equation also gives a constraint among possible

combinations of (E, J, χ1). After solving the equations of motion in terms of χ, ρ, pχ

and pρ, we can compute the radial coordinate r = |χ| and its conjugate momentum

pr ≡ Gṙ. As explained in the previous subsection, the angular variable θ(τ) is

reducible. Therefore, the phase space of the current system is 4 dimensions spanned

by (ρ, pρ, r, pr). Once we fix the initial conditions, the string motion in the phase

space is constrained in a three-dimensional subspace satisfying the constraint H = 0.

Starting from such initial conditions, we solve Eqs. (3.5) and (3.7) by using

the fourth order Runge-Kutta method. We then look at a Poincaré section ρ = 0

to demonstrate chaotic motion. In Figs. 2(a)-2(d), we show (r, pr)-plane plots of

intersecting points of the phase space orbit and the Poincaré section. In each figure,

E and J are fixed and the initial χ1 is varied. Points with different colors correspond

to different initial χ1. From Fig. 2(a) to 2(d), we increase the energy while the

angular momentum is fixed to J = 0.5. For the E = 1.05 case, only Kolmogorov-

Arnold-Moser (KAM) tori [36–38] appear and there is no sign of chaos. At E = 1.1,

however, the KAM tori are destroyed gradually. With E = 1.2, most of the KAM

tori are destroyed and there appears the sea of chaos containing the surviving KAM
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Figure 3. (a) Convergence of the Lyapunov spectrum for E = 4 and J = 0.5. (b) The

maximal Lyapunov exponents as functions of E for J = 0.5, 1, 2. In these figures, we set

χ1 = 0.4 and χ2 = pχ1
= pρ = 0 in the initial conditions.

tori as small islands. With E = 4, the phase space is completely dominated by the

chaotic motion. We have checked that, in E & 2, the Poincaré section is qualitatively

similar to the E = 4 case. These results rule out the integrability of the string motion

in the 5D AdS soliton.

We also compute Lyapunov exponents to evaluate the strength of the chaos. We

denote by X = (χ, ρ,pχ, pρ) a solution in the phase space and consider its linear

perturbation: X → X(τ) + δ(τ). If X(τ) is a chaotic solution, the perturbation

grows exponentially as |δ(τ)| ∝ eLτ , where the exponent L is called the Lyapunov

exponent. This growth reflects the sensitivity of the time evolution to initial con-

ditions in chaotic systems. In N -dimensional phase space, there are N Lyapunov

exponents depending on perturbations for δ, and the set of the Lyapunov exponents

{L1, L2, · · · , LN} is called the Lyapunov spectrum. The largest one in the spectrum

is called the maximal Lyapunov exponent. In Fig. 3(a), we show the Lyapunov

spectrum as functions of τ : Lk ∼ ln |δ(τ)|/τ . We have used the Shimada-Nagashima

method [39], which is a standard numerical method to obtain the Lyapunov spectrum

(See also the appendix to Ref. [28]). We see that one of the exponents approaches a

positive value L = 0.473. The Lyapunov exponents actually depend on energy, and

we also examine this. In Fig. 3(b), we show the maximal Lyapunov exponents as

functions of E for J = 0.5, 1, 2. We set χ1 = 0.4 and χ2 = pχ1
= pρ = 0 in the initial

conditions. The maximal Lyapunov exponents approach a linear function of lnE

in large E. The slope does not seem to depend on J . Fitting the plots, we obtain

L ≃ 0.31 lnE. These results explicitly demonstrate that the string dynamics in the

AdS soliton background admits sensitivity to initial conditions.
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4 Turbulent string condensation

In the previous section, an ansatz has been used to remove the σ-coordinate depen-

dence from the string dynamics, and the string equations of motion were reduced

to ODEs. In this section, we do not use such an ansatz but solve the full evolution

equations given as partial differential equations. Our aim is to consider how a sys-

tem depending on more than one variables inherits the particle chaos studied in the

previous section. We will argue it is the turbulent behaviour in the string dynamics

that becomes relevant.

4.1 String motion

Let us solve the string’s evolution equations (2.14-2.16) with initial data that involves

general dynamics of the string. In the previous section, the string was pointlike in

the (χ1, χ2)-plane. Here, we consider an initial configuration in which the string is

extended to a small circle as

χ1|τ=0 = r0 + ǫ cosσ , χ2|τ=0 = ǫ sin σ . (4.1)

We set the other variables to the same initial profile as the cohomogeneity-1 string:

t|τ=0 = 0 , y1|τ=0 = ρ0 cosσ , y2|τ=0 = ρ0 sin σ . (4.2)

One can find an example of the initial string profile at the t = 0 configuration in

Fig. 4(a). The initial velocity is taken as follows:

χ̇1|τ=0 = −ωχ2|τ=0 , χ̇2|τ=0 = ωχ1|τ=0 . (4.3)

That is, we give an initial angular velocity to the string in the (χ1, χ2)-plane while

keeping the circular configuration in Eq. (4.1). Note that, while the initial data

is given in this way, the exact circular configuration is not preserved in the time

evolution. The initial ṫ, ẏ1 and ẏ2 are determined by solving the constraint equations.

See Appendix A for details of the initial data construction. The initial data is

specified by four parameters ǫ, r0, ω and ρ0. As a numerical scheme to solve the

evolution equations, we use the method developed in Refs. [32, 40, 41].

We start from considering a parameter set corresponding to a chaotic situa-

tion. In the previous section, we found that the cohomogeneity-1 string with E = 4

and J = 0.5 was chaotic (See Figs. 2(d) and 3(a)). Here, we set the parameters

as (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.7939). Then from (2.22), the energy and the

angular momentum are E = 4.00 and J = 0.500.

Figure 4 shows snapshots of the string in the (χ1, χ2)-plane at several stages

of the time evolution. In the beginning 0 ≤ t ≤ 3.6, the string motion is similar

to that of the cohomogeneity-1 string. The string size is as small as the initial

configuration in the χ-plane. In intermediate times 7.8 ≤ t ≤ 10.6, the string size
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Figure 4. Time evolution of the string in (χ1, χ2)-plane for 0 ≤ t ≤ 3.6, 7.8 ≤ t ≤
10.6, and 50 ≤ t ≤ 52.4. We set the parameters in the initial data as (ǫ, r0, ω, ρ0) =

(0.02, 0.4, 0.4289, 0.7939) and took z0 = 1.

gets larger. This behaviour is naturally understood from the chaos found in Sec. 3:

Time evolution in chaotic systems is sensitive to a tiny difference in initial conditions,

and because of this nature the trajectories of each string segment (expanded initially

by ǫ) tend to spread in the Lyapunov timescale. It seems interesting that the string

has the horseshoe-like profile in the χ-plane. This would be reflecting the baker’s

transformation in chaotic systems. Different from the cohomogeneity-1 strings, the

expanded string is affected by its tension in the χ-plane. In later time, 50 ≤ t ≤ 52.4,

the expansion of the string is saturated by its tension, and the string profile is jumbled

up. Once the string configuration reaches this stage, it does not seem to come back

to “smooth” configurations appeared in early times.

We can schematically understand that this behaviour stems from the finite size

string without symmetry protection. Once the string has a finite size in the χ-

plane, it can have “internal spin.” “Orbital angular momentum” can decrease if it

is transferred to “spin angular momentum” (We will define and discuss the spin and

orbital angular momenta shortly in Sec. 4.3). Losing the orbital angular momentum,

the string tends to stay around the center of the χ-plane. In the rest of this section,

we will study in detail that the mechanism causing this transfer is the turbulence

phenomenon on the string [32]. For this reason, we will refer this behaviour of the

string as turbulent string condensation.

4.2 Lyapunov exponents toward turbulent string condensation

We go on to quantitatively discuss the string behavior observed in Fig. 4. In Sec. 3.2,

we have evaluated the Lyapunov exponents of the cohomogeneity-1 string, where a

symmetry was imposed as Eq. (3.1). Let us consider here Lyapunov exponents in a

more general situation in which fluctuations that do not respect that symmetry is

introduced. If any symmetry on the string dynamics is not imposed, the phase space

concerned with us is infinite dimensional, and the Shimada-Nagashima method [39]
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may not be suitable. Instead of it, we will use a short-cut method to roughly estimate

the Lyapunov exponents as follows.

Let us consider slightly different initial conditions I and II given by

I. (ǫ, r0, ω, ρ0) = (0, 0.4, 0.4289, 0.7939)

II. (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.7939)

With the initial condition I, the string is cohomogeneity-1 and point-like in the χ-

plane. The condition II is the same as that for Fig. 4, and we find that this case

results in the turbulent string condensation. Let χI(τ) and χII(τ, σ) denote the string

solutions in the χ-plane for the initial conditions I and II, respectively (Note that

the cohomogeneity-1 solution χI does not depend on σ). Let us consider Fourier

transformation of χII(τ, σ) along the σ-direction as

χII(τ, σ) =

∞
∑

n=−∞

χII

n (τ)e
inσ , (4.4)

and define δn(τ) (n = 0, 1, 2, · · · ) as

δ0(τ) ≡ |χII

0
(τ)− χI(τ)| , δn(τ) ≡ |χII

n (τ)| (n ≥ 1) . (4.5)

That is, δ0(τ) measures the deviation of the “bulk motion” from the cohomogeneity-1

case, and δn≥1(τ) the growth of the “internal structure” of the string.

Characteristic behaviour of δn(τ) in the case of the turbulent string condensation

can be found in Fig. 5(a), where δn (n = 0, 1, 2, 3) is shown as functions of τ .

In early times δn increase exponentially, and around at τ = 10 their magnitude

get saturated due to non-linear effects. For the n = 0 mode, the initial increase

indicates the deviation between the trajectory of the initial condition I and that of

the average string position of the condition II, while for n ≥ 1, δn measures the

excitation of modes on the string. Fitting δn(τ) with ∼ exp(Lnt) in 5 ≤ τ ≤ 10,

we obtain the (local) Lyapunov exponents as L0 = 0.66, L1 = 0.47, L2 = 0.55, and

L3 = 0.75. These non-zero Lyapunov exponents of the symmetry breaking modes can

be regarded as the origin of the turbulent string condensation. That is, the chaotic

nature known in the case of the cohomogeneity-1 string appears as the exponential

growth of the symmetry breaking n ≥ 1 modes in general string dynamics (that is

not reduced to the ODEs).

In non-chaotic cases, in contrast, we do not find such exponential behaviours in

δn(τ). Choosing the input parameters as (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.06) leads

to E = 1.11 and J = 0.5. The corresponding cohomogeneity-1 string is not in the

chaotic region (See Fig. 2(b)). The string in the (χ1, χ2)-plane travels with keeping

its initial size and does not jumble. In Fig. 5(b), δn are plotted in a log-log scale. It

is also found that δn grows with power law. This behaviour continues until τ ∼ 20
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Figure 5. Sensitivity to initial conditions of each Fourier mode.

and then δn is saturated. For n ≥ 2 modes, the envelope of δn(τ) in τ < 20 behaves

as ∼ τ 1.4. For the n = 1 mode, we find ∼ τ 0.7, but apparently this smaller exponent

is due to the initial condition (4.1) where δ1(τ = 0) is already of the size of ǫ.

4.3 Angular momentum distribution

We shall study the turbulent behaviour in the string condensation quantitatively

using the angular momentum spectrum defined in the following.

Let us first decompose χ and pχ into Fourier modes along the σ-direction as

χ(τ, σ) =

∞
∑

n=−∞

χn(τ)e
inσ , pχ(τ, σ) =

∞
∑

n=−∞

pn(τ)e
inσ . (4.6)

By substituting the above expressions into Eq. (2.22), the angular momentum spec-

trum Jn can be obtained as

J =
∞
∑

n=0

Jn , J0 = χ0 × p0 , Jn = 2Re(χn × p∗
n) (n ≥ 1) . (4.7)

The spectrum is divided into the orbital angular momentum L and the spin angular

momentum S as

L = J0 , S =
∞
∑

n=1

Jn . (4.8)

In the case of the cohomogeneity-1 string, the spin angular momentum is zero because

χ does not depend on σ.

In Fig. 6, we plot the τ -dependence of L and S for two different initial data.

Figure 6(a) corresponds to the string solution shown in Fig. 4. Initially, the total

angular momentum is dominated by the the orbital angular momentum inherited
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Figure 6. Time evolution of L and S. In the left panel, the initial data is the same as

that for Fig. 4. In the right panel, we set (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.06).

from the initial configuration as seen in the string motion in Fig. 4(a). At late times,

we see that the spin contribution becomes large and eventually dominates the total

angular momentum. It may be possible to regard the spin angular momentum as an

order parameter for the turbulent string condensation. Figure 6(b) is for a smaller

energy without chaotic behaviour: E = 1.11 and J = 0.50. The parameter choice is

(ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.06) and this has also been considered at the end of

the last subsection. We find that the angular momentum is always dominated by the

orbital one. There is no turbulent string condensation in this case. The behaviours

of L and S thus show apparent difference between the cases with and without the

turbulent string condensation.

Furthermore, the angular momentum spectrum can be utilized to show the pres-

ence of the turbulent behaviour. In Fig. 7, the spectrum is plotted for several values

of τ for the same parameters used in Fig. 6. Figure 7(a) exhibits the angular momen-

tum flow from lower to higher modes. This behaviour is consistent with the fact that

the spin part dominates the total angular momentum in the turbulent string con-

densation. Eventually, the spectrum becomes power law. In Fig. 7(b), in contrast,

the exponential spectrum is always indicated even in late times (Note here that the

right figure is plotted at the semi-log scale).

Does the late time power law in the spectrum of the angular momenta exhibit

a universal scaling? To check if there is universality, let us consider the following

different initial data (i)-(iv):

(i) (E, J) = (4.0, 0.5): (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.7939)

(ii) (E, J) = (2.0, 0.5): (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 0.3522)

(iii) (E, J) = (6.0, 0.5): (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.4289, 1.2140)
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Figure 7. Angular momentum spectrum for several values of τ . The parameters for these

figures are the same as those in Fig. 6. The left and right panels are shown in log-log and

semi-log scales, respectively.

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

1 10 100

Figure 8. Angular momentum spectra at late time. We see the universal power law for

the turbulent string condensation.

(iv) (E, J) = (4.0, 0.25): (ǫ, r0, ω, ρ0) = (0.02, 0.4, 0.2145, 0.8144)

The initial data (i) is the same as the initial condition II used in Sec. 4.2. We

have checked that these four choices resulted in the turbulent string condensation,

while the timescales to reach the power law scaling are different depending on the

parameters. In Fig. 8, we show the angular momentum spectra at late times: τ =

99.7, 299.1, 39.9, 99.7 for (i)-(iv), respectively. For visibility, we multiplied 10−2, 10−6,

10−8 to the spectra of (ii)-(iv), respectively. These plots seem to have a universal

scaling. In fact, fitting the late time spectra with ∝ (n+1)−a in 10 ≤ n+1 ≤ 400, we

obtain a = 2.12, 1.94, 2.09, 1.85 for (i)-(iv), respectively. These results might indicate

there is a universal scaling in the spectra given by |Jn| ∝ n−2.
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4.4 Energy distribution

We also study the energy spectrum defined as follows. Let us consider the Fourier

transformation of
√
pt as

√

pt(τ, σ) =
∞
∑

n=−∞

cn(τ)e
inσ . (4.9)

Substituting this into the first equation of (2.22), we obtain

E =
∞
∑

n=0

En , E0 ≡ |c0|2 , En ≡ |cn|2 + |c−n|2 . (4.10)

In Fig. 9(a), the energy spectra are plotted for several values of τ in the case of the

initial condition (i) introduced in the previous subsection. Again, one can observe the

energy flow from large to small scales, and eventually the spectrum obeys a power

law. In Fig. 9(b), the energy spectra for the conditions (i)-(iv) are shown at late

times: τ = 99.7, 299.1, 39.9, 99.7 for (i)-(iv), respectively. For visibility, the factors

10−2, 10−4, 10−6 have been multiplied to the spectra of (ii)-(iv), respectively. By

sight, the power law exponents seem universal. Fitting the late time spectra with

∝ (n + 1)−a in 10 ≤ n + 1 ≤ 400, we obtain a = 1.28, 1.31, 1.63, 1.13 for (i)-(iv),

respectively.8 From these fits, it would not be apparent to identify the universality

of the power unlike the case of the spectrum of the angular momenta. At least, it

would be promising that the power is not strongly altered by the parameters. (Note

that the energy of (ii) is three times larger than that of (iii)).

5 Summary and discussion

We have shown the classical turbulence of closed strings moving in the 5D AdS

soliton spacetime. First, we revisited classical chaos on this background with a

cohomogeneity-1 string ansatz. We computed Poincaré sections and a Lyapunov

spectrum and found chaos in this system. Then, we considered classical strings

including the dependence on the spatial direction of the string world-sheet. In the

chaotic parameter regime, we found that the string tends to stay around the tip of

the AdS soliton with a completely jumbled profile. Because of the chaos, trajectories

of each string segment (expanded initially with a radius ǫ = 0.02) spread at the

Lyapunov timescale, and the string extends in the target space at this timescale.

This can be indeed explained by considering the Fourier transform of the string along

the spatial direction, where higher mode coefficients grow exponentially in time. We

8 If we change the fitting region, the power is slightly changed: For the initial condition (i),

the power is given by 1.22 and 1.62 for fitting regions 1 ≤ n + 1 ≤ 400 and 100 ≤ n + 1 ≤ 400,

respectively.
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Figure 9. (a) Energy spectrum at several time slices for E = 4.0 and J = 0.5. The

spectrum is power law at late time. (b) Energy spectra at late time for several parameters.

The power does not depend on the parameters so much.

also studied the time dependence of the orbital angular momentum and internal spin

of the string. At the early stage of the time evolution, the total angular momentum

is dominated by the orbital one that the initial configuration has. However, it is

transferred to the internal spin, and eventually the internal spin exceeds the orbital

angular momentum. We also studied the angular momentum and energy spectra

and found turbulent behaviour: At late times, the spectra realize universal power-

law scalings. The angular momentum transfer due to the turbulence is responsible

for reaching the jumbled profile, and we referred this behaviour as the turbulent

string condensation.

There are a lot of open questions. So far, we have considered classical solutions

of strings whose shapes are not strictly protected by symmetries. These should

correspond to certain composite operators according to the AdS/CFT dictionary

and it should be possible to identify the correspondence. Unfortunately, we have

not gotten a definite answer to this question yet. A naive candidate is a composite

operator in which fields are aligned in a complex way and the complexity would

be closely related to the fractal structure of the classical chaos on the string-theory

side. Also, this randomness implies dynamical information loss and it should be

related to the production of the Kolmogorov-Sinai entropy at least in a chaotic

parameter region, in which Pesin’s equality holds and our Lyapunov exponents should

be concerned with this direction.

We can consider similar process as the turbulent string condensation in black

hole dynamics. Let us think about a black hole formed near the AdS boundary.

Such black hole would be falling into the IR region of the spacetime: the tip of AdS

soliton. Then, its kinetic energy and orbital angular momentum are absorbed into

the black hole horizon and, as the result, the black hole settles down to a stationary

configuration, which is known as the holographic plasma ball solution [42–44]. This
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process is very similar to what we found in the string dynamics. Roughly speaking, a

close string in confining geometries can be regarded as a glueball. Thus, the turbulent

string condensation may be interpreted as thermalization of a gluball into a plasma

ball.9

It would be interesting to study the cascading process of the turbulent strings in

more detail. When the deformation parameter in this confined geometry vanishes,

the original AdS5 background is reproduced, which is known to be integrable. Hence

it would be interesting to study and distinguish the long-time behaviours between

the confined geometry and the AdS5. This will lead to help understand more about

non-integrable and integrable behaviours in the string dynamics.10

We can also consider open strings in the AdS soliton space time. The open string

hanging from the AdS boundary corresponds to a confined quark-antiquark pair in

the dual gauge theory. Such an open string would show the turbulent behaviour once

we take into account its time dependence. It would be interesting to study how the

turbulence affects the quark-antiquark pair in the confining phase.

Our results suggest that strings in non-integrable background geometries expand

and form jumbled profiles. This behaviour reminds us of the fuzzball conjecture:

Bound states of D-branes forming BPS black holes expand to a size that depends on

their degeneracy [45, 46]. In this picture, the black hole horizons are replaced by a

fuzz of fluctuating strings or D-branes. It would be intriguing to consider a relation

between the turbulent string condensation and the fuzzball-like interpretation.11

We hope that our results on turbulent strings would shed light on the associated

interpretation on the gauge-theory side.
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Appendix

A Initial data construction

In this appendix, we explain how to construct initial data satisfying the constraint

equations (2.12). To give the data, we use the polar coordinates on the (y1, y2)-plane:

y1 = ρ cosφ and y2 = ρ sinφ. Then the constraints are rewritten as

− t2,u + ρ2,u + ρ2φ2

,u +H(χ2)χ2

,u = 0 , (A.1)

− t2,v + ρ2,v + ρ2φ2

,v +H(χ2)χ2

,v = 0 , (A.2)

where H ≡ G/F .

In Fig. 10, we show the numerical domain on the string worldsheet, where a

uniform grid is taken with the spacing h along the double null coordinates u and

v. Since the closed string is considered, the periodic boundary condition should

be imposed: σ ∼ σ + 2π. (The orthogonal coordinates (τ, σ) are introduced in

Eq. (2.19).) The evolution and constraint equations are discretized on this lattice.

We specify initial data at τ = 0 and τ = h, which are shown in black (•) and

white points (◦) in the figure. At the black points (τ = 0), the initial data is given

as in Eqs. (4.1) and (4.2). At the white points (τ = h), we rotate the string in the

(χ1, χ2)-plane keeping the configuration in Eq. (4.1) as

(χ1 + iχ2)|τ=h = eiωh(χ1 + iχ2)|τ=0 , (A.3)

where ω represents the initial angular velocity of the string in the χ-plane (in terms

of the worldsheet time coordinate τ). In the ~y-plane, we consider the circular string

with the same radius as that at τ = 0: ρ|τ=h = ρ0.
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Other variables t|τ=h and φ|τ=h are determined by the constraint equations. Now,

we focus on points N, E, W, R, and L in Fig. 10, where R(L) are located in the middle

of N and E(W). Using the discretized data at N, E and W, we evaluate the constraint

equations (A.1) and (A.2) at R and L respectively:

− t2N + ρ2
0
(φN − φE)

2 +H(χ2

R)(χN − χE)
2 = 0 , (A.4)

− t2N + ρ2
0
(φN − φW )2 +H(χ2

L)(χN − χW )2 = 0 , (A.5)

where we have used second order central finite differentials for the derivatives, tE =

tW = 0, and ρN = ρW = ρE = ρ0 and also defined χR = (χN + χE)/2 and

χL = (χN + χW )/2. Note that χN,E,W and φE,W are already given by Eqs. (4.1),

(4.2) and (A.3). Only tN and φN are unknown in (A.4) and (A.5). From these, we

obtain

φN =
1

2

[

φW + φE +
H(χ2

L)(χN − χW )2 −H(χ2

R)(χN − χE)
2

ρ2
0
(φW − φE)

]

. (A.6)

Substituting the above equation into Eq. (A.4) leads to tN .

B Error analysis

In this section, let us estimate discretization numerical errors using constraint viola-

tion. The constraint equations (2.12) can be rewritten as

C̃1 = −t2,u + ~y 2

,u +H(χ2)χ2

,u = 0 , C̃2 = −t2,v + ~y 2

,v +H(χ2)χ2

,v = 0 . (B.1)

We define a normalized constraint as

C(τ, σ) =
|C̃1|+ |C̃2|

t2,u + ~y 2
,u +H(χ2)χ2

,u + t2,v + ~y 2
,v +H(χ2)χ2

,v

. (B.2)

This is a function of two variables τ and σ. For convenience in evaluating the

constraint violation, the maximum value of C(τ, σ) on each τ -slice is taken as

Cmax(τ) = max
0≤σ<2π

C(τ, σ) . (B.3)

This is a function of a single variable τ .

In Fig. 11, Cmax(τ) is plotted at several resolutionsN = 210, 212, 214 with (ǫ, r0, ω, ρ0) =

(0.02, 0.4, 0.4289, 0.7939) which are the same parameters as those used in Fig. 4.

Here, N is the number of grid points along the σ-direction (The numbers of black

and white points in Fig. 10 are N + 1 and N , respectively). One can find that the

constraint violation is certainly small (Cmax < 10−3 for N = 214 and τ ≤ 60). We

use a second-order discretization scheme, and the scaling Cmax ∝ 1/N2 is consistent

with this. In the paper, we work with N = 214 as a typical value of N .
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Figure 11. Constraint violation at several resolutions, N = 210, 212, 214. The parameters

are the same as those used in Fig. 4.
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