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Raúl A. Briceño,1, 2, ∗ Jozef J. Dudek,1, 2 Robert G. Edwards,1

Christian J. Shultz,2 Christopher E. Thomas,3 and David J. Wilson3

(for the Hadron Spectrum Collaboration)
1Thomas Jefferson National Accelerator Facility,

12000 Jefferson Avenue, Newport News, VA 23606, USA
2Department of Physics, Old Dominion University, Norfolk, VA 23529, USA

3Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

We present a determination of the P -wave ππ → πγ? transition amplitude from lattice quantum
chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from
three-point correlation functions, and from these we determine the infinite-volume amplitude using
a generalization of the Lellouch-Lüscher formalism. We determine the amplitude for a range of
discrete values of the ππ energy and virtuality of the photon, and observe the expected dynamical
enhancement due to the ρ resonance. Describing the energy dependence of the amplitude, we are
able to analytically continue into the complex energy plane and from the residue at the ρ pole
extract the ρ → πγ? transition form factor. This calculation, at mπ ≈ 400 MeV, is the first to
determine the form factor of an unstable hadron within a first principles approach to QCD.

I. INTRODUCTION

The study of hadron resonances is entering a new era:
for the first time since the identification of quantum chro-
modynamics (QCD) as the fundamental theory of the
strong interactions, one can realistically study resonances
and their properties directly from QCD by taking advan-
tage of numerical computations of the theory within the
framework of lattice QCD.

Hadron resonances emerge as pole singularities in the
scattering-matrix, or S-matrix, at complex values of the
scattering energy. On the other hand, lattice QCD cal-
culations being performed in a finite Euclidean volume
results in a discrete real-valued spectrum, and this obser-
vation might lead one to conclude that resonances cannot
be directly studied using lattice QCD. The way around
this is to recognize that the spectrum of states in a finite-
volume is determined by the infinite-volume S-matrix el-
ements in a way that is known [1–13], so that knowledge
of the discrete spectrum can lead to a determination of
the S-matrix at real values of the energy. From this the
extension to complex values of the energy can proceed, as
in the experimental case, using parameterizations of the
energy dependence analytically continued into the com-
plex plane. The resonant structure follows from the pole
singularities of the S-matrix. This methodology has been
applied in order to determine the masses and widths of
resonances that couple to two-body elastic [14–23] and
inelastic systems [24–27].

Hadron resonances can also appear in processes fea-
turing electroweak currents, and recently the formal-
ism required to study these in a finite-volume has been
presented both for transitions [28–31] and elastic form
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factors [32, 33]. These ideas generalize the existing
framework for the study of K → ππ decays, which
was first proposed in the seminal work by Lellouch and
Lüscher [34], and whose numerical implementations have
reached an impressive level of maturity [35–40]. In this
study we follow the procedure presented in Refs. [28–30]
to obtain the electromagnetic form factor of a hadronic
resonance for the first time in QCD.

The quantity we determine is the πγ? → ππ ampli-
tude, Hµππ,πγ? . To first order in QED interactions, this
can be defined in terms of the electromagnetic current,
J µ = 2

3 ūγ
µu− 1

3 d̄γ
µd, where u and d denote the annihi-

lation up and down–quark fields 1 , as

Hµππ,πγ? =
〈
π, Pπ

∣∣J µ(0)
∣∣ππ, Pππ, ` = 1

〉
. (1)

where |ππ, Pππ, ` = 1〉 is an incoming P -wave ππ state
with four-momentum Pππ and 〈π, Pπ| is an outgoing
π state with four-momentum Pπ. We will obtain this
amplitude from corresponding finite-volume matrix ele-
ments computed using lattice QCD applying the non-
perturbative mapping prescribed in Ref. [29]. The am-
plitude is determined at a number of ππ energies and
photon virtualities. Using these to constrain parameter-
izations of the Eππ and Q2 dependence, we analytically
continue to the pole in the complex energy plane corre-
sponding to the ρ resonance and obtain the residue of the
amplitude, which contains the ρ → πγ? transition form
factor.

In addition to serving as a stepping stone towards the
study of more complicated and computationally taxing
resonant processes, πγ? → ππ plays a significant role in
the determination of various phenomenologically inter-

1 The position space current is denoted as J µ(t, x), and its Fourier

transform will be labeled as J̃ µ(t,Q).
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(a)

(L/as)
3 × (T/at) Ncfgs Ntsrcs Nvecs

203 × 128 603 4 128

(b)

atmπ 0.06906(13)
atmK 0.09698(9)
atmη 0.10406(56)
atmω 0.15678(41)
atmΩ 0.2951(22)
ξ 3.444(6)

TABLE I: (a) The volume ((L/as)
3 × (T/at)), number of

gauge configuration (Ncfgs), number of sources (Ntsrcs) and
distillation vectors (Nvecs) used in this calculation. (b) Some
previously-determined low-lying hadron masses.

esting observables. These include the anomalous mag-
netic moment of the muon [41, 42] and the Wess-Zumino-
Witten anomaly [43, 44] among others.

This first exploratory study is performed using a single
value of degenerate u, d quark masses, corresponding to
mπ ≈ 400 MeV. In this paper we expand upon the de-
tails of the calculation that appeared in summary form
in Ref. [45]. We make use of the technology laid out in
Ref. [46] for the computation of three-point correlation
functions, and the results for the ππ elastic scattering
phase shift determined from the lattice QCD spectrum
in Ref. [14].

This work is presented as follows. In Sect. II we review
the set up of the lattice calculation and the extraction of
finite-volume matrix elements from correlation functions.
We review the formalism needed to obtain the infinite-
volume transition amplitude from the finite-volume ma-
trix elements in Sect. III. Section IV discusses the proce-
dure used in fitting the transition amplitude and contains
the main results of this work, the ππ → πγ? transition
amplitude and the ρ→ πγ? form factor extracted at the

ρ pole. We present the πγ → ππ cross section in Sect. V
and then summarize the findings and implications of this
work in Sect. VI.

II. THREE-POINT FUNCTIONS AND MATRIX
ELEMENTS

The results presented in this calculation used an en-
semble of gauge configurations with a Symanzik im-
proved gauge action and a Clover fermion action with
Nf = 2 + 1 dynamical fermions. The quark masses are
chosen so that mπ ≈ 400 MeV [47, 48]. We use a space-
time volume of (L/as)

3 × (T/at) = 203 × 128, where
the spatial lattice spacing is as ≈ 0.12 fm and the tem-
poral lattice spacing, at, is smaller with an anisotropy
ξ = as/at ≈ 3.5. We set the lattice scale using a
procedure where at = atmΩ

mphys
Ω

, using the Ω baryon mass

determined on this lattice (see Table I) and the physi-
cal Ω baryon mass. The spatial and temporal extents,
mπL ≈ 4.7 and mπT ≈ 8.8, are such that finite-volume
and finite-temperature effects for single-hadron observ-
ables lie well below the percent level of precision and can
be safely ignored, as demonstrated in Ref. [49]. This also
ensures that all finite-volume corrections associated with
the ππ → πγ? matrix elements are those addressed in
Refs. [28, 29] which are corrected nonperturbatively. We
use the “distillation” technique [50] in the construction
of both two-point and three-point correlation functions.
Some details of the calculation and the size of the dis-
tillation basis, along with the masses of some low-lying
hadrons, are summarized in Table I.

We can extract the desired matrix elements from three-
point correlation functions of the form

C(3)
ππ,µ,π(Pπ,Pππ; ∆t, t) =

〈
0
∣∣O[Λπ ]

π (∆t,Pπ) J̃µ(t,Pπ−Pππ) O[Λππ ]†
ππ (0,Pππ)

∣∣0〉, (2)

where J̃µ(t,Pπ −Pππ) is the Fourier transform of the
position-space current appearing in Eq. 1. In this expres-

sion O[Λπ ]
π (∆t,Pπ) is a composite QCD operator having

the quantum numbers of a pion with three-momentum
Pπ, evaluated at Euclidean time, ∆t. The relevant irre-
ducible representations, Λπ, of the appropriate symmetry
group are A+

1 for a pion at rest and A2 for a pion with
any of the non-zero momenta we consider [51]. The oper-

ator O[Λππ ]
ππ (0,Pππ) is constructed to have the quantum

numbers of two pions with isospin=1 and total three-
momentum Pππ in irreps Λππ containing a subduction of
the ` = 1 partial wave – these irreps are listed in Ta-

ble II. The vector current, J̃µ(t,Pπ−Pππ), is inserted at
all times, t, between 0 and ∆t.

Time-evolving the operators and inserting complete
sets of discrete finite-volume eigenstates of QCD leads
to a spectral representation of the form

∑
n,m

e−(∆t−t)Eπ,m e−t Eππ,n
〈
0
∣∣Oπ|π,m;L

〉 〈
π,m;L

∣∣J̃µ∣∣ππ, n;L
〉〈
ππ, n;L

∣∣O†ππ∣∣0〉, (3)
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which features contributions from transitions between
all eigenstates with the correct quantum numbers.
The finite-volume energy eigenstates which feature
in this expression are defined with a normalization〈
ππ, n;L

∣∣ππ, n;L
〉

= 1 and obvious orthogonalities be-
tween different momenta and irreps (see Appendix A).
For an arbitrary choice of operators, Oπ,Oππ, this leads
to pollution from excited states when trying to deter-
mine the ground-state transition, and it proves to be the
case that excited states are not determined well by fit-
ting their subleading time-dependence. A solution to this
problem comes by using operators which optimally inter-
polate particular states in the spectrum, with minimal
amplitude to produce any other state. Such operators
can be constructed as linear superpositions in a basis of
operators by ‘diagonalising’ a matrix of two-point corre-
lation functions,

C
(2)
ab (t) =

〈
0
∣∣Oa(t)O†b(0)

∣∣0〉. (4)

Solving the generalized eigenvalue problem,
C(t)vn = λn(t)C(t0)vn, the operator which optimally
produces state n can be constructed as

Ω†n = e−
1
2Ent0

∑
a
(vn)aO†a. (5)

These operators can be used in the construction of the
relevant three-point functions to isolate the contributions
of particular states. This technique was previously ex-
plored in Ref. [46] for the case of transitions between
stable single-meson states with pseudoscalar and vector
quantum numbers, where it was found to reduce excited
state contributions to the ground-state transitions and to
allow access to excited state transitions.

A basis of operators appropriate to form an opti-
mized operator for a single pion can be constructed
from quark bilinears with gauge-covariant derivatives,

q̄Γ
←→
D . . .

←→
D q – what we will refer to as “q̄q-like” op-

erators, as was previously explored in Refs.[49, 51–58].
In the case of operators with the quantum numbers of
two pions, in Refs. [14, 24] it was found that the cor-
responding discrete spectrum of states can be efficiently
obtained using a basis of operators including both con-
structions built from the product of two optimal pion op-
erators,

∑
P̂1,P̂2

C(Pππ;P1,P2) Ωπ(t,P1) Ωπ(t,P2), and

“q̄q-like” operators with the appropriate quantum num-
bers. The optimized operators in this channel prove to
be superpositions featuring both forms.

Using optimized operators in three-point functions,

C(3)
ππn,µ,π(Pπ,Pππ; ∆t, t) =

〈
0
∣∣Ω[Λπ ]
π (∆t,Pπ) J̃µ(t,Pπ −Pππ) Ω[Λππ,n]†

ππ (0,Pππ)
∣∣0〉

= e−(Eππ,n−Eπ)t e−Eπ∆t
〈
π;L

∣∣J̃µ∣∣ππ, n;L
〉

+ . . . , (6)

where the ellipsis should feature only modest contribu-
tions from states other than the single pion and the
selected nth ππ state. The optimal operators are con-
structed as linear superpositions in the basis outlined in
Table II, and further details can be found in Ref. [14].

Just as the operators, the finite volume states depend
on the momentum of the system and irrep of the corre-
sponding symmetry group, but we have suppressed these
dependencies above. To avoid notational clutter, in the
remainder of the text we highlight the dependencies of
the states that play an important role in the subsequent
equations. Given that we are only interested in the
ground state with the quantum numbers of the π, we
have dropped any labels which indicate so. Similarly, in
the following discussion it will always be evident which
ππ state is under consideration, and as a result, we will
remove the label “n”.

In order to compute these three-point correlation func-
tions it is necessary to combine quark propagators in the
arrangements shown in Figure 1. While we evaluate the
diagrams of type A, B, and C, we set equal to zero the
contribution of “disconnected current” diagrams of types
D and E. These diagrams, which feature quark propaga-
tion to and from all points on the lattice, are compu-

tationally costly, and in the case we are considering we
expect them to make only a small contribution. At the
SU(3)F point, where up, down and strange quarks are
mass degenerate, these contributions exactly cancel [46],
and there are phenomenological reasons to expect that
they do not become large as we reduce the light quark
mass down from this point.

The correlation functions are computed using the spa-
tial component of the vector current; we use the tree-level
improved Euclidean current to remove O(a) discretiza-
tion effects on our anisotropic lattice [46],

J̃k = ZsV

(
q̄γkq + 1

4 (1− as/at) at∂4

(
q̄σ4kq

))
, (7)

where γk are the standard Euclidean-space gamma-
matrices and σ4k = i[γ4, γk]/2. The vector current renor-
malization factor, ZsV = 0.833(9), is determined nonper-
turbatively by requiring the π form factor, Fπ(Q2), to
be equal to one at Q2 = 0. Fig. 2 shows unrenormalised
values of the inverse of the form factor at four values of
Pπ, along with an appropriate average that leads to our
value of ZsV .

In Ref. [14] it was demonstrated that I = 1 ππ elas-
tic scattering below KK threshold is dominated by the
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FIG. 1: Wick contractions that appear in the evaluation of three-point functions, C
(3)
ππ,µ,π, defined in Eq. (6). In this work we

do not evaluate types D and E which feature a disconnected current insertion.

P LG(P) State Λ(P ) Operators

[0, 0, 0] OD
h

π A−1 12 “q̄q”
ππ T−1 2 “ππ”, 26 “q̄q”

[0, 0, 1] Dic4

π A2 20 “q̄q”
ππ A1 3 “ππ”, 27 “q̄q”
ππ E2 2 “ππ”, 29 “q̄q”

[0, 1, 1] Dic2

π A2 31 “q̄q”
ππ A1 3 “ππ”, 27 “q̄q”
ππ B1 3 “ππ”, 28 “q̄q”

[1, 1, 1] Dic3

π A2 21 “q̄q”
ππ A1 3 “ππ”, 21 “q̄q”
ππ E2 2 “ππ”, 35 “q̄q”

TABLE II: The momenta, P (given in units of 2π/L), with

corresponding symmetry groups, LG(P), and irreps, Λ(P ),
used to study the π and ππ finite-volume states. For each
irrep, the numbers of “q̄q”-like fermion bilinear and “ππ”-like
operators used to construct optimal operators are shown. In
the case of ππ we consider only those irreps which feature a
subduction of ` = 1. Further details appear in Refs. [14, 51].

1

0.82

0.86

0.833(9)

2 3 4

FIG. 2: Inverse of the unrenormalised π form factor atQ2 = 0,
extracted using a spatially directed current insertion, as a
function of the momentum of the source and sink pion. This
corresponds to the vector current renormalization factor, ZsV .

P -wave where the ρ resonance resides, and as a result,
it is expected that the ππ → πγ? process in this energy
region will be dominated by the ` = 1 contribution. The
infinite-volume matrix element

〈
π,Pπ

∣∣J µ(0)
∣∣ππ,Pππ〉

with the ππ system having ` = 1, can be Lorentz de-

composed in the following way,〈
π,Pπ

∣∣J µ(0)
∣∣ππ,Pππ〉

= εµνρσ(Pπ)ν (Pππ)ρ εσ(λππ,Pππ)
2

mπ
Aππ,πγ?(E?ππ, Q

2),

(8)

where εσ(λππ,Pππ) is a polarization vector describ-
ing the ` = 1 ππ system with helicity λππ, and
Aππ,πγ?(E?ππ, Q

2) is a reduced amplitude depending
upon the ππ cm-frame energy and the virtuality of the
photon, Q2 = −(Pππ − Pπ)2. In Appendix D we show
that this decomposition of the transition amplitude is
equivalent to another commonly used form.

Infinite-volume one-hadron states have the standard
relativistic normalization (see Eq. A1) and have dimen-
sions of [MeV]−1. Two-hadron states constructed as
products of two one-hadron states, have dimensions of
[MeV]−2, and in position space, the current has units of
[MeV]−3. Thus the left-hand side of Eq. 8 and Aππ,πγ?
have dimensions of [MeV]0 and [MeV]−1, respectively.

A reasonable extension of the above decomposition to
the L× L× L finite-volume case is〈

π,Pπ;L
∣∣J µ(0)

∣∣ππ,Pππ;L
〉

=
1

L3

〈
π,Pπ;L

∣∣J̃ µ(0,Pπ−Pππ)
∣∣ππ,Pππ;L

〉
= 1√

4EπEππ

1
L3 ε

µνρσ(Pπ)ν (Pππ)ρ εσ(λππ,Pππ)

× 2

mπ
Ã(E?ππ, Q

2;L), (9)

where we have allowed the reduced amplitude,
Ã(E?ππ, Q

2;L), to be volume dependent. In Appendix B,
we discuss the implications of neglecting contributions
due to partial waves higher than ` = 1.

Performing a similar dimensional analysis as above
and recognizing that one- and two-particle finite-volume
states are unit-normalized, one finds that Ã is dimen-
sionless. The precise relationship between the quantity
we can extract from finite-volume three-point functions,
Ã(E?ππ, Q

2;L), and the desired infinite-volume quantity,
Aππ,πγ?(E?ππ, Q

2), will be described in Section III B,
where it will be shown to depend upon the elastic ππ
scattering amplitude.
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FIG. 3: Example of matrix elements determined from three-
point correlators, as described in the text, with source-sink
separations ∆t/at = 24 (left) and ∆t/at = 32 (right). Corre-
lated fits to the time-dependence give values that are statis-
tically compatible.

α
[00n]
20,A1

= 2√
5

α
[nn0]
20,A1

= − 1√
5

α
[nnn]
22,A1

= −2i
√

6
5

α
[00n]
20,E2

= − 1√
5
α

[nn0]
22,A1

= −i
√

6
5
α

[nnn]
22,E2

= i
√

6
5

α
[nn0]
20,B1

= − 1√
5

α
[nn0]
22,B1

= i
√

6
5

α
[nn0]
20,B2

= 2√
5

TABLE III: Nonzero values of αP
20,Λ and αP

22,Λ, featuring in
the expression for the pseudo-phase, Eq. (12).

Three-point functions were evaluated with two differ-
ent time separations between source and sink operators,
∆t = 24at and 32at. Figure 3 illustrates an example of
the matrix elements that we obtain on each timeslice af-
ter dividing out the leading exponential time-dependence
in Eq. 6 and the kinematic prefactor in Eq. 9. There are
clearly plateau regions for both ∆t. We fit the time-
dependence using a form a + b e−δE1(∆t−t) + c e−δE2t

that allows for residual excited state contributions from
source and sink, and then a gives the extracted value of
Ã(E?ππ, Q

2;L). We find for all our matrix elements that
the results for the two time separations are statistically
compatible and in what follows we conservatively choose
to use the ∆t = 32at results with their larger statistical
uncertainties.

We computed around 500 matrix elements with various
combinations of Pπ, Pππ, irrep rows, and insertion direc-
tion, and from combinations of these we obtain 42 inde-
pendent non-zero values of Ã(E?ππ, Q

2, L) corresponding
to 8 ππ energies and a range of Q2 between −3m2

π and
+7m2

π. In Fig. 4 we give one example for each ππ irrep to
illustrate the statistical quality of the determined matrix
elements. The bottom right panel of Fig. 4 corresponds
to the first excited state in the B1 irrep with Pππ = [011].
This extraction is made possible by the use of an opera-
tor optimized to overlap with the first-excited state. In
all cases more residual excited state contribution is seen
to arise from the ππ source at t = 0 than from the π
source at t = ∆t, but both are seen to be modest and
can be described using subleading exponentials in a fit to
the time-dependence.

III. RELATING FINITE AND INFINITE
VOLUME QUANTITIES

Having obtained the discrete spectrum of states and
transition matrix elements in a finite volume, our task
is to obtain the corresponding infinite volume scattering
and transition amplitudes. The extraction of the ππ P -
wave elastic scattering amplitude, expressed in terms of
the phase shift, δ1(E?ππ), from the spectrum information
was carried out in Ref. [14], and we briefly summarize
the method here.

A. The ππ spectrum and the P -wave scattering
phase shift

For energy levels above the lowest two-particle thresh-
old, but below the lowest relevant three or four-particle
threshold, there exists a relation between the finite-
volume spectrum and the infinite-volume scattering am-
plitudes, M, [1–5], that may be written,

det[F−1(P,L) +M(P )] = 0 , (10)

where F−1(P,L) is a function which in general depends
on the geometry and size of the spatially periodic vol-
ume, and the two-particle four-momentum, P . Both
F and M are matrices in the space of partial-waves `
and of open scattering channels, and the determinant
is evaluated over this space. The ` values which fea-
ture are those subduced into the relevant irrep of the re-
duced rotational symmetry group. Having obtained the
finite-volume spectrum from lattice QCD computation,
F (P,L) is determined, which in turn allows one to con-
strain the scattering matrix.

For sufficiently low energies, partial waves above
the lowest one appearing in the relevant irrep are
expected to be kinematically suppressed by the an-
gular momentum barrier at threshold which ensures
that M` = 16π

ρ(E?)
1

cot δ`−i ∼ q
?2`, where the phase-space

ρ(E?) = 2 q?/E?.
For the isotriplet ππ system below the KK threshold,

we expect the scattering amplitude to be dominated by
the ` = 1 channel, where the ρ-resonance resides, with
contributions to the spectrum from ` ≥ 3 partial waves
being negligible (and indeed this was shown explicitly in
Ref. [14]). In this case the determinant condition above
reduces to a simple one-to-one mapping between the
spectrum and the P -wave scattering phase shift, δ1(E?ππ),

cot δ1(E?ππ) + cotφP,Λ(E?ππ) = 0, (11)

where the pseudo-phase factor cotφP,Λ(E?ππ) is given by

cotφP,Λ(E?ππ) ≡ cotφP00 + αP
20,Λ cotφP20 + αP

22,Λ cotφP22,

(12)

and the constants αP
2m,Λ are presented in Ref. [29] and

reproduced in Table III. We have introduced the func-
tions φP`m(E?ππ), which can be written in terms of the
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FIG. 4: Each panel shows the extracted matrix element as a function of time from a particular level in a ππ irrep. The red
circles show the points used in the fit of time-dependence described in the text, while the blue points are not used. The red
band is the time-dependent fit, the orange line and band show the central value of Ã extracted from the fit and one standard
deviation on either side. The label for each panel indicates, from left to right, the momentum and irrep of the ππ operator, the
current insertion (subduced into an irrep, see [46]) and the π operator.
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FIG. 5: Phase-shift values determined with Eq. 11 using en-
ergy levels from 203 and 243 lattices [14]. Parameterized de-
scriptions using Breit-Wigner (Eq. 14) and K-matrix (Eq. 15)
forms are depicted by the overlaid blue and red bands, respec-
tively. The lower panels show the corresponding description
of the finite-volume energy levels (black points) predicted us-
ing Breit-Wigner (blue) and K-matrix (red) parametrizations
of the scattering phase shift.

generalized Zeta functions (see e.g. [3]),

cotφP`m = − (4π)3/2

q?`+1
ππ γ L3

(
2π

L

)`−2

ZP
`m

[
1; (q?ππL/2π)2

]
.

(13)

In Figure 5 we show the phase-shifts which result from
application of Eq. 11 to the finite-volume spectra ob-
tained from 203 and 243 lattices [14]2. A clear resonant
behavior is observed, and two parameterizations of the
elastic scattering amplitude which describe this spectrum
well are the relativistic elastic Breit-Wigner,

tan δ1(E?ππ) =
E?ππ ΓBW(E?ππ)

m2
BW − E?2ππ

,

ΓBW(E?ππ) =
g2

BW

6π

q?3ππ
E2
ππ

, (14)

with parameters mBW/mπ = 2.1780(29), gBW = 5.82(8)
and parameter correlation +0.7, and a single-channel

2 For the current study the relevant two-point correlation func-
tions were analysed independently with respect to Ref. [14], and
in some cases changes in choice of operator basis, choice of t0,
etc, led to a spectrum that is not identical to that presented in
Ref. [14]. However, all determined levels agree up to shifts at the
level of statistical fluctuations.

Chew-Mandelstam K-matrix pole form,

tan δ1(E?ππ) =
E?ππ ΓKM(E?ππ)

m2
KM − E?2ππ + g2

KM δI(E?ππ)
,

ΓKM(E?ππ) = 8 g2
KM

q?3ππ
E2
ππ

,

δI(E?ππ) =
ρ(E?ππ)

π
log

[
ρ(E?ππ) + 1

ρ(E?ππ)− 1

]
− ρ(mKM)

π
log

[
ρ(mKM) + 1

ρ(mKM)− 1

]
, (15)

with parameters mKM/mπ = 2.1790(39), gKM = 0.465(8)
and parameter correlation −0.04.

B. Transition amplitude

The process we are considering, ππ → πγ?, is an exam-
ple of a “2→ 1” transition induced by the vector current.
The relationship between a finite-volume 2 → 1 matrix
element and an infinite-volume transition amplitude was
first given by Lellouch and Lüscher [34] for the case of
K → ππ decays induced by the weak current, where only
the ππ S-wave could contribute. In our case, ππ → πγ?,
the infinite-volume transition amplitude exists for many
partial waves – with ππ having I = 1, all odd values of `
exist.

As was the case for the spectrum, the reduced rota-
tional symmetry of the cubic volume leads to infinitely
many partial waves featuring in the relation between
finite-volume matrix elements and infinite-volume tran-
sition amplitudes. This was first pointed out by Meyer
in the context of bound state photodisintegration [59],
and later revisited for generic 2 → 1 transitions in
Refs. [28, 29], where it was shown that one can write a
relation between a generic finite-volume matrix element,
〈1;L|J µ(0)|2;L〉, and the corresponding infinite-volume
transition amplitude, Hµ2,1 = 〈1|J µ(0)|2〉. This relation-

ship can be written3

∣∣∣〈1;L|J µ(0)|2;L〉
∣∣∣ =

√(
Hµ1,2

)
R
(
Hµ2,1

)
L3
√

2E1

, (16)

where R is the finite-volume residue of the fully-dressed
two-hadron propagator defined as

R(E2,P) ≡ lim
P0→E2

[
(P0 − E2)

F−1(P,L) +M(P )

]
, (17)

where F and M are the same objects appearing in the
quantization condition above, Eq. (10). R is a matrix in

3 A factor of L3 difference between what appears here and what is
presented in Ref. [29] is due to the fact that we are defining here
the vector current in position space, rather than in momentum
space, as was done there.
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FIG. 6: The top line shows a diagrammatic representa-
tion [29] of Aππ,πγ? . Intermediate ππ propagators between
the Bethe-Salpeter kernels (grey circles) are fully dressed, and
the crossed circle is the fully-interacting vertex coupling π
to ππ in the presence of the external current. The vertex
and the Bethe-Salpeter kernels are defined in the second and
third lines, respectively. The rescattering series in the top
line results in Aππ,πγ? , which depends on the ππ scattering
phase shift, and we see that, even for zero ππ rescattering,
the amplitude need not be zero due to the initial production
amplitude.

the space of partial waves and open channels, and it can
be constrained using the calculated finite-volume spec-
trum. Similarly,

(
Hµ2,1

)
and

(
Hµ1,2

)
are column and row

vectors, respectively, in this same space.
This relationship exactly accounts, in a relativistic and

model-independent way, for the strong interactions be-
tween hadrons in QCD up to corrections which scale like
O(e−mπL). The use of a single insertion of the vector
current is accurate to first order of perturbation theory
in QED.

Similarly to the quantization condition, Eq. 10, this re-
lation reduces to a simple form when the lowest subduced
partial wave is dominant. In Ref. [14] it was demon-
strated that the ππ → ππ scattering amplitudes with
` ≥ 3 are negligibly small in the elastic scattering re-
gion. It does not necessarily follow from this that the
transition amplitudes

(
Hµππ,π

)
`≥3

are negligibly small –

as illustrated in Figure 6, there is a term due to the
‘production’ amplitude which remains even in the case
of no ππ rescattering. It can be argued though that we
expect such production amplitudes for ` ≥ 3 to be kine-
matically suppressed at low-energy by a threshold barrier
∼ q?`, and to be suppressed relative to the ` = 1 ampli-
tude which is dynamically enhanced by the resonant ρ.
We will proceed assuming that only the ` = 1 transition
plays a significant role – see Appendix B for a discussion
of the role a non-negligible ` = 3 amplitude might play.

Under the assumption of dominance of the ` = 1 am-
plitude, we have

∣∣Hµππ,π∣∣ = L3

√
2Eπ
R

∣∣∣〈π,Λπ;L
∣∣J µ(0)

∣∣ππ,Λππ;L
〉∣∣∣,

(18)

where R is now a scalar given by

2Eπ
R

= 32π
EπEππ
q?ππ

cos2 δ1

× ∂

∂P ?0,ππ

(
tan δ1 + tanφPππ,Λππ

)∣∣∣∣
P?0,ππ=E?ππ

= 32π
EπEππ
q?ππ

(
δ′1 + rφ′

)
, (19)

where φPππ,Λππ was defined in Eq. (12) and

r ≡ cos2δ1 / cos2φPππ,Λππ ,

δ′1 ≡ ∂δ1/∂P
?
0,ππ

∣∣
P?0,ππ=E?ππ

,

φ′ ≡ ∂φPππ,Λππ/∂P ?0,ππ
∣∣
P?0,ππ=E?ππ

. (20)

The quantization condition, Eq. (11), implies that r = 1,
but we retain the form above when propagating statis-
tical uncertainties on the spectrum energies though the
calculation. These equations assume the hadrons in the
“2” state are distinguishable, as is appropriate for the
process π+π0 → π+γ? – we discuss this further in Ap-
pendix C.

These expressions, which depend only on the kinemat-
ics and dynamics of the ππ state, effectively leading to
a proportionality between the finite and infinite-volume
states, closely resemble the result for the S-wave derived
by Lellouch and Lüscher in their pioneering work, and as
such we will refer to the inverse of R as the “LL-factor”.
As is evident, the LL-factor only depends on the nature
of the finite-volume ππ state and is not particular to this
production process. As a result, the LL-factor appear-
ing here is the same as would appear in, for example,
γ? → ππ [28, 31]. 4

Since
(
Hµππ,π

)
`=1

has the Lorentz decomposition given
in Eq. 8, using Eq. 18 we can relate the finite-volume
amplitude, Ã, in Eq. 9, to the infinite-volume amplitude,
Aππ,πγ? , by

∣∣Aππ,πγ?(E?ππ, Q
2)
∣∣ =
Ã(E?ππ, Q

2;L)√
R 2Eππ

. (21)

We could determine the infinite-volume amplitude us-
ing this relation directly, but it proves to be more con-
venient in this case, which features a narrow ρ resonance
and its corresponding rapid E?ππ behavior, to proceed
through an intermediate step where we write

Aππ,πγ?(E?ππ, Q
2) =

F (E?ππ, Q
2)√

2E?ππ Kππ(E?ππ)
eiδ1(E?ππ). (22)

In this expression we have made an, at this stage, arbi-
trary division of the E?ππ behavior into two real functions,

4 We point the reader to Refs. [60, 61] for recent numerical studies
of this reaction.
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F (E?ππ, Q
2) and Kππ(E?ππ), and although only the magni-

tude appears in Eq. 21 we have included for completeness
the phase factor required to satisfy Watson’s theorem.

We choose to parameterize Kππ(E?ππ) in a way which
accounts for the sharply peaked resonance structure of
the ρ, and in doing so we would expect F (E?ππ, Q

2) to
have only a modest residual E?ππ dependence in the region
of the ρ resonance. We may write [28],

1√
2E?ππ Kππ(E?ππ)

= sin δ1(E?ππ)

√
16π

q?ππ Γ(E?ππ)
, (23)

and we presented earlier two parameterizations, a Breit-
Wigner form, Eq. 14 and a K-matrix form, Eq. 15, that
can each describe the P -wave phase-shift in the elastic
scattering region. It follows that

F (E?ππ, Q
2) = Ã(E?ππ, Q

2;L)

√
Kππ
R

, (24)

and we find that while Kππ and R each change rapidly
with E?ππ in the ρ resonance region, their ratio shows only
modest dependence on E?ππ, and the strong correlation
between their statistical fluctuations is reduced – this is
illustrated in Figures 7 and 8.

The decomposition in Eq. 23 is such that in the limit
that E?ππ approaches the ρ–pole, F may be associated
with the πρ transition form factor. Using Eq. 23, we
may rewrite Eq. 22 in a manner that makes this evident,

Aππ,πγ?(E?ππ, Q
2) =

(
F (E?ππ, Q

2)

cot δ1(E?ππ)− i

) √
16π

q?ππ Γ(E?ππ)
.

(25)
One observes that Aππ,πγ? has the same energy-
dependent denominator as the elastic ππ scattering am-
plitude, and will have the same pole corresponding to the
ρ. At the resonance pole, the residue of the ππ → πγ?

amplitude factorizes into a product of couplings, ππ → ρ
and ρ→ πγ?, the latter in general being proportional to
F defined here. For larger quark masses, the ρ becomes
a stable hadron and the ρ-pole resides on the real E?ππ-
axis below ππ threshold. In this limit the divergences in
R and Kππ cancel exactly [28, 30]. This is the scenario
considered in, for example, Ref. [46]. For quark-masses
where the ρ is unstable, the pole is complex and F is still
proportional to the residue of the ππ → πγ? amplitude.

Two of our ππ states, (Pππ = [011], B1, n = 0), and
(Pππ = [111], E2, n = 0), are at energies where the phase-
shift is very close to 90◦, whereR shows a large statistical
uncertainty, leading to a disproportionately large uncer-
tainty in KππR (see, for example, the third panel of Fig. 8).
Given that this ratio must be equal to 1 at the resonance
mass, up to corrections of O(Γρ/mρ) ∼ O(10−2) [28],

we set KππR = 1 here, while propagating uncertainties
associated with the determination of the parameters ap-
pearing in Eqs. 14 and 15. This is only a necessary ap-
proximation, applied for this pair of levels, because the

2.0 2.1 2.2 2.3 2.4 2.5
0

90

20

40

180

Breit-Wigner
K-matrix

FIG. 7: Top panel shows mπ/
√

2E?ππKππ as a function of the
ππ energy, as defined in Eq. (22). The two parameterizations
of the phase-shift given in Eqs. 14 and 15 are consistent and
feature the expected enhancement of the transition amplitude
in the vicinity of the ρ. Lower panel shows the ππ scattering
phase shift for comparison.

ρ is barely unstable at this quark mass. As the quark
masses approach the physical point, the ρ will become
broader [24] and this subtlety will disappear. For all
other states we evaluate the LL-factor numerically and
propagate its statistical and systematic uncertainties into
the determination of the infinite-volume form factor and
transition amplitude.

IV. DETERMINATION OF THE INFINITE
VOLUME TRANSITION AMPLITUDE

With Ã(E?ππ, Q
2, L) extracted from finite-volume

three-point correlations functions and the Lellouch-
Lüscher factors evaluated using parameterizations of
δ1(E?ππ) which describe the finite-volume spectra, we
may obtain the infinite volume ππ → πγ? reduced am-
plitude, Aππ,πγ? . In Fig. 9 we give some examples of
Aππ,πγ? , plotted as a function of Q2 for three values of
E?ππ. We observe that this quantity has a strong de-
pendence on E?ππ as expected, with significant increase
in the transition amplitude observed at energies corre-
sponding to the ρ resonance. In the approach that we
have taken, this resonant enhancement is present in the
function Kππ(E?ππ), with the Q2 dependence residing in
the form factor, F (E?ππ, Q

2), which shows only a mild
dependence on E?ππ. The form factor values, extracted
when the K-matrix parameterization of δ1 is used, are
presented in Figure 10 – the values extracted when the
Breit-Wigner parameterization are equivalent within one
standard deviation.

We can combine the kinematic points presented in Fig-
ure 10 by performing a global fit of F (E?ππ, Q

2). We ex-
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FIG. 8: Shown are examples of
√
Kππ/R for three ππ irreps. For the left and middle panels a Breit-Wigner parametrization,

Eq. (14), of the scattering amplitude has been used, while for the right panel the K-matrix parametrization, Eq. (15), has been

used. The bands indicate the value of
√
Kππ/R as a function of the cm energy where the uncertainty is only due to that of

the fit parameters in the phase-shift analysis. The darker regions indicate the position of the discrete finite-volume energies.
Lower panels show the phase shift with the discrete values obtained for the corresponding irrep.

2.2 2.4 2.6 2.82.2 2.4 2.6 2.82.2
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2.4 2.6 2.8
0

90
180

2.0
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6.0

FIG. 9: Shown are three examples of the determined ππ → πγ? transition amplitude, plotted in units of m−1
π . The momentum,

irrep and eigenstate number n are those of the ππ state. These three panels show the dynamical increase of the amplitude as
E?ππ moves through the resonant ρ. The inner and outer errorbars account for the statistical uncertainty on the three-point
correlation functions, and the uncertainties in the ππ phase-shift parameterization parameters respectively. Lower panels show
the phase shift with the discrete values obtained for the corresponding irrep.

plore a flexible functional form,

h[{α,β}](E?ππ, Q
2) =

α1

1 + α2Q2 + β1(E?2ππ −m2
0)

+ α3Q
2 + α4Q

4

+ α5 exp
[
−α6Q

2 − β2(E?2ππ −m2
0)
]

+ β3(E?2ππ −m2
0) + β4(E?4ππ −m4

0), (26)

where the α’s and β’s are real-valued fit parameters,
and m0 is an arbitrary mass scale, which we set to
2.1762(28) mπ to coincide with real part of the ρ res-
onance mass determined earlier.

We consider a large number of fits in which we fix
various α’s and/or β’s to be zero. When all β’s are set to
zero there is no E?ππ behavior. The first term in Eq. 26
allows for the possibility of a pole in Q2 and the form is
flexible enough to allow that pole’s position to vary with
E?ππ. We do not mean to imply any fundamental meaning
to the form of this function, only that it is simple, flexible,
and suitable to interpolate the data in Q2 and E?ππ.

In performing fits, we define the data covariance matrix
as Ctot = Cstat+Csys, where Cstat accounts for the statis-

tical fluctuations over the ensemble of configurations in
this calculation, while Csys accounts for the uncertainty
in the fit parameters used to describe δ1(E?ππ).

The green bands in Figure 10 show the result of global
fits, restricting to fits that provide a good description of
the data (χ2/dof ≤ 1.5). All successful fits are found
to require some E?ππ dependence in F (E?ππ, Q

2). In Fig-
ure 11 we present examples of the results of three different
types of fits: types A, B and C. Type A fits correspond
to using the full set of data points, and restricting the
Q2 pole in Eq. (26) to be independent of E?ππ (β1 = 0).
Type B fits include all data points and do allow for a
pole in Q2 to depend on E?ππ. Type C fits are those
in which we prune the data set by excluding time-like
(Q2 < 0) points. We conclude that we have insufficient
time-like data points to strongly constrain the position
of any possible pole in Q2. The green bands in Figure 10
conservatively encompass the range of behaviors given by
all successful fits of type A, B and C, and it is clear that
this assessment leads to only a moderate overall uncer-
tainty in the space-like region where the form factor is
rather well constrained.
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FIG. 10: F (E?ππ, Q
2) (red circles) for eight discrete E?ππ, extracted from Ã(E?ππ, Q

2;L) using the K-matrix parametrization,

Eq. 15, in
√
Kππ/R . Ã(Eππ, Q

2;L) is also shown (grey squares, displaced in Q2 for visibility) for comparison. The green band
indicates the result of global fits to all F (E?ππ, Q

2) values as described in the text.
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FIG. 11: Shown is a comparison of the fits of type A, B and
C (shades of green/blue), described in the text, that give a
χ2/Ndof ≤ 1.5 for two representative example irreps.

This procedure is repeated for the Breit-Wigner
parametrization of the phase shift leading to very sim-
ilar results – in what follows we account for the small
difference between the two parameterizations in our sys-
tematic uncertainty.

Figure 12 illustrates, for two values of Q2, the mild
E?ππ behavior found for F (E?ππ, Q

2). This suggests that
this function has a very mild dependence on E?ππ for a

0
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2.4 2.6

FIG. 12: F (E?ππ, Q
2) as a function of the ππ cm energy for

two values of a2
t Q

2 = 0, 0.025.
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FIG. 13: The real and imaginary parts of the form factor de-
termined in this work evaluated at the ρ pole (orange). For
comparison we show the form factor obtained in Ref. [46] for a
heavier quark mass, where the ρ is stable (green). Also shown
is the experimentally determined value for the ρπ photocou-
pling [62, 63].

large kinematic region. We have determined this func-
tion for seven energies below E?ππ = 2.3 mπ and another
one at E?ππ = 2.8 mπ. Therefore, it is possible that our
interpolation does not reliably describe this function in
the region between E?ππ = 2.3 mπ and 2.8 mπ, although
there is no reason to expect stronger energy-dependence.

A rigorous way to define the electromagnetic transi-
tion form factor for ρ → πγ? is to take the amplitude
Aππ,πγ?(E?ππ, Q

2), constrained at real values of E?ππ, and
analytically continue it to the pole in the complex plane
at E?ππ = Eρ =

(
2.1762(28) − i0.0150(7)

)
mπ. As made

evident by Eq. 25, the residue of Aππ,πγ? at the pole can
be factorized into a product of couplings of the ρ to ππ
and to πγ? where the second of these will be propor-
tional to F (Eρ, Q

2). In Figure 13 we show this quantity,
where the orange band encompasses all satisfactory fits
described previously using both parameterizations of the
ππ phase-shift. The smallness of the imaginary part is
due to the ρ pole at this quark mass being rather close
to the real energy axis and the energy dependence of
F (E?ππ, Q

2) being rather mild. Figure 13 also shows (in
green) the form factor of the ρ computed with a heavier
light quark mass such that the pion has mass ∼ 700 MeV
and the ρ is a stable hadron [46]. We also compare to
experimental estimates of the real part of the ρπ photo-
coupling [62, 63]. In Eq. E6 we give the relation between
this definition of the form factor and the radiative decay
width of ρ+ → π+γ.

In performing the analytic continuation of Aππ,πγ? as
a function of E?ππ, we have kept the masses of all exter-
nal hadrons fixed at their on-shell values. Furthermore,
we have explored only real virtualities for the photon.
Such an approach mirrors existing determinations [64–
66] of pion photoproduction residues from experimental
measurements of Nγ → N? → πN . We believe this is
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FIG. 14: mπ|Aππ,πγ? | for two values of Q2 as a function of E?ππ along with the elastic ππ P -wave scattering amplitude.
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FIG. 15: Mean value of mπ|Aππ,πγ? | plotted as contours
along with the locations of the points (E?ππ/mπ, Q

2) where
the finite-volume matrix elements were determined. A total
of 42 different kinematic points were used, and 6 of these ap-
pear outside the range plotted here.

a natural choice for general virtualities if one identifies
Q2 = −m2

γ . An alternative extrapolation procedure was
presented in Ref. [30], where the authors suggest deter-
mining Aππ,πγ? for a range of values of E?ππ while fixing
|Q| in the c.m. frame of the πγ? state. One can then ex-
trapolate E?ππ to the ρ pole while keeping |Q| fixed. The
advantage of this procedure is that one does not need to
perform a global fit of the amplitude in terms of the vari-
able Q2. However this procedure has not been described
for the most useful means of accessing a large number

of energy levels in a finite volume, utilized in this pa-
per, namely boosting of the ππ system to non-zero total
momentum.

With a determination of F (E?ππ, Q
2) in hand

we may construct the P -wave reduced amplitude,
Aππ,πγ?(E?ππ, Q

2), using Eqs. (22, 23). Since the phase
of the amplitude is fixed by Watson’s theorem to match
the ππ phase, we only report its magnitude, which we
choose to present in units of m−1

π . In Fig. 14, we show
the result for the transition amplitude as a function of
E?ππ for two values of Q2 along with the elastic ππ scat-
tering amplitude,M`=1

ππ . The bands shown encompass all
the 1σ fluctuations obtained using various different pa-
rameterizations and hence can be considered to include
both statistical and systematic error estimates. Figure 15
makes clear that our determination of the amplitude has
been constrained by points which sample well the entire
relevant region of E?ππ and Q2.

V. π+γ → π+π0 CROSS SECTION

Having obtained the transition amplitude, we can pro-
ceed to determine the dominant P -wave contribution to
the π+γ → π+π0 cross section, which can readily be
compared with phenomenological studies [67, 68]. For
simplicity, we restrict our attention to the process where
the incoming photon is on-shell, Q2 = 0, but all results
generalize to describe the dominant one-photon exchange
contribution to the π+e− → π+π0e− cross section.
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FIG. 16: π+γ → π+π0 cross section as a function of the ππ cm energy along with the ` = 1 elastic ππ scattering cross section.
The ρ resonance is clearly visible in both cross-sections.

In Appendix E we show that,

σ`=1(π+γ → π+π0) = α
q?f q

?
i

m2
π

∣∣Aππ,πγ?(E?ππ, 0)
∣∣2, (27)

where q?i and q?f are the cm-frame momenta in the initial
and final states, respectively. Similarly, the ππ elastic
scattering cross-section due to the P -wave is given by

σ`=1(π+π0 → π+π0) =
12π

q?2
sin2 δ1, (28)

where q? is the cm-frame momentum.
In Fig. 16 we plot both cross-sections for comparison.

We observe both the elastic scattering and the radiative
transition cross sections are dynamically enhanced in the
same region of energy due to the presence of the ρ reso-
nance, and we see the reduction in magnitude expected
for the electromagnetic process relative to the strong pro-
cess.

Comparing σ`=1(π+γ → π+π0) to the phenomenolog-
ical cross-section [67, 68], we find that the peak cross-
section in our calculation with mπ ≈ 400 MeV is nearly
one order of magnitude larger than those in Refs. [67, 68].
This apparent discrepancy can be understood by inves-
tigating the dependence of the peak cross section on the
width of the resonance (see Eq. (E5)),

lim
E?ππ→mρ

σ`=1(π+γ → π+π0) ∝
q?i F

2
πρ(mρ, 0)

m2
π ΓP (mρ)

. (29)

From Fig. 13, we find that q?i F
2
πρ(mρ, 0)/m2

π is approx-
imately 60% of the experimental value. With the two

quark-mass points at our disposal, we can speculate
that the quark-mass dependence of this quantity is rela-
tively mild. Meanwhile, the ρ width is known to depend
strongly on the quark mass and for the quark masses
used here it is around 12 MeV [14], making it an order
of magnitude smaller than experiment [69]. It reasonable
to expect that for calculations performed with decreas-
ing values of the quark masses, the ρ-resonance will be-
come broader (see Ref. [24] for a concrete example at
mπ ≈ 230 MeV), and the π+γ → π+π0 cross section will
decrease significantly.

VI. CONCLUSION AND OUTLOOK

In this paper we have described the first calculation of
the radiative decay of a resonance within a first-principles
approach to QCD. By computing three-point correlation
functions using lattice QCD we determine ππ → πγ? ma-
trix elements in a finite-volume over a range of discrete
kinematic points. These are related to the correspond-
ing infinite-volume transition amplitude using a proce-
dure which features the ππ elastic scattering amplitude
determined from the discrete spectrum of states on the
same lattice configurations. The P -wave amplitude for
ππ → πγ? is found to feature a dynamical enhancement
corresponding to the ρ resonance, and the residue of the
amplitude at the ρ-pole can be used to determine the
ρ→ πγ? transition form factor.

In the present calculation we made a small number
of approximations which will be addressed in subsequent
studies. We used only a single lattice volume, but the
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formalism should give compatible results for any volume
large enough that exponentially suppressed corrections of
the form e−mπL can be neglected. For the ππ spectrum
these corrections have been studied analytically [70, 71]
and demonstrated to be small, but they have not been
explored for transition amplitudes. Future calculations
using multiple volumes will address this.

A recent determination of the P -wave ππ elas-
tic scattering amplitude at a lighter pion mass,
mπ ≈ 230 MeV [24], shows the expected decrease in ρ
mass and increase in decay width, and an application of
the methods outlined in this paper to the same ensemble
of lattice configurations is now warranted.

A possible step once the transition amplitudes are eval-
uated at a few quark masses is to consider a chiral ex-
trapolation of these quantities, in order to make more
direct contact with experimental observables, in advance
of an eventual calculation at the physical pion mass.
Currently, it is not completely clear how such an ex-
trapolation could be performed. The necessary formal-
ism that accommodates resonances and that incorporates
quark-mass dependence in a transition process featuring
an external current is missing, unlike the case of elas-
tic and inelastic meson-meson scattering amplitudes [72–
76] (recently implemented in the analysis of ππ elastic
scattering [23]). One possible method which potentially
may reduce the systematic uncertainty associated with
describing the (Eππ

?, Q2) dependence of the amplitude
and could allow a constrained chiral extrapolation, is to
make use of amplitudes obtained using dispersive tech-
niques [68].

Beyond being a physically interesting process in its
own right, ππ → πγ? serves as the first example of a wide
class of phenomenologically important processes that can
be studied with the techniques applied for the first time
in this paper. The calculation presented here makes it
clear that matrix elements featuring resonating hadronic
systems can be rigorously studied using lattice QCD. Ob-
vious extensions include nucleon resonances like the ∆
in γ?N → ∆ → Nπ [77–79], and heavy flavor decays
which feature resonances, like B → ππ`ν [80]. Moving to
higher mass resonances, the extension into the coupled-
channel case, accommodated by the formalism laid down
in Refs. [28, 29, 32], will eventually allow calculations of
radiative transitions featuring the exotic hybrid mesons
that it is hoped will be photoproduced in the GlueX ex-
periment [81, 82].
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Appendix A: Notational conventions and
normalizations

Quantities associated with a given channel carry a
subscript labelling the channel, for instance the four-
momentum of the “ππ” state is Pππ. Similarly, the total
energy of the “π” state is Eπ. Quantities evaluated in
the cm-frame carry a superscript star, e.g. E?ππ.

While infinite-volume single-hadron states with contin-
uous three-momentum are normalized using the standard
relativistic prescription, namely,〈

π, Pπ
∣∣π, P ′π〉 = 2Eπ δ

3(Pπ −P′π), (A1)

finite-volume states with discrete three-momentum are
normalized to unity,〈

π, Pπ;L
∣∣π, P ′π;L

〉
= δPπ,P′

π
. (A2)

The expansion in partial-waves of infinite-volume two-
pion states follows that of Refs. [28, 29],∣∣Pππ, q̂?ππ〉 =

∑
`,m`

√
4π Y`m`(q̂

?
ππ)

∣∣Pππ, `,m`

〉
, (A3)

and this is the definition used in defining the transition
amplitude given in Eq. (1).

Appendix B: Contamination from ` ≥ 3 partial waves

Although in this first calculation we have not explicitly
determined the contribution of ` ≥ 3 partial waves 5 ,
we can give an analytic expression that describes how

5 Here ` denotes the orbital angular momentum of the ππ state,
which is equal to the total angular momentum, J , of the πγ?

state.
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they appear in the relation between finite and infinite-
volume quantities. As demonstrated in Refs. [28, 29, 59],
due to the reduction of rotational symmetry in a cubic
volume, transition amplitudes involving different partial
waves appear together in finite-volume irreps, leading to
R in Eq. (17) being a matrix in `-space. Expanding the
denominator about E2 we find

R(E2,P) = F (P,L)
adj[M]

tr
[
adj[M] ∂M∂E2

]M(P )−1, (B1)

where

M =M(P )−1 + F (P,L), (B2)

is purely real, and adj[M] is its adjoint (or adjugate).
Since we are simply interested in the mixing due to the
lowest-lying higher partial wave above ` = 1, we will re-
strict our attention to the scenario where we are dealing
with two-dimensional matrices with ` = 1, 3. At low en-
ergy we are justified in neglecting the ` = 3 contribution
to the elastic scattering amplitude (see Ref. [14]) so,

M =

[
M`=1 0

0 M`=3

]
≈
[
M`=1 0

0 0

]
, (B3)

but the finite-volume function F is generally not diagonal
in angular momentum, so

F =

[
F11 F13

F13 F33

]
. (B4)

The adjoint of M is easily evaluated,

adj[M] =

(
M22 −M12

−M21 M11

)
, (B5)

and in the limit that the ` = 3 elastic scattering ampli-
tude is zero, the spectrum satisfiesM−1

`=1 = −F11 and we
obtain

tr

[
adj[M]

∂M
∂E2

]
=M−1

`=3 ×
∂

∂E2

(
M−1

`=1 + F11

)
(B6)

and

F (P,L) adj[M]M(P )−1 =[
F11M−1

`=1 F13M−1
`=1

F13M−1
`=1 −F 2

13

]
×M−1

`=3, (B7)

and M−1
`=3 cancels in the ratio in Eq. B1.

The end result is that allowing a non-zero ` = 3 transi-
tion amplitude but with negligible ` = 3 elastic scattering
amplitude means that Eq. (16) is given by∣∣〈1;L|J µ(0)|2;L〉

∣∣ =
1

L3

1√
2E1

(B8)

×

√√√√c1 (Hµ`=1)
2

+ c2Hµ`=1H
µ
`=3 + c3 (Hµ`=3)

2

∂
∂E2

(M−1
`=1 + F11)

,

(B9)

where c1 = F11M−1
`=1, c2 = F13M−1

`=1 and c3 = −(F13)2.
Equivalently, using the quantization condition, one can
write these as

c1 = −(F11)2 ∝ −(cotφ1 + i)2 = − ei2φ1

sin2 φ1

, (B10)

c2 ∝ −(cotφ1 + i) cotφ13 = −e
iφ1 cotφ13

sinφ1
, (B11)

c3 ∝ − cot2 φ13. (B12)

Note, c1 and c2 are in general complex while c3 is real.
This is consistent with the fact that the term inside of
the square root in Eq. (B8) must be real. According to
Watson’s theorem Hµ`=1 ∝ eiδ1 = e−iφ1 , while Hµ`=3 ∝
eiδ3 = 1 in our approximation of no elastic scattering in
` = 3.

As an example, for the T−1 irrep, one finds [2]

cotφ1 = cotφ000 (B13)

cotφ13 =
4√
21

cotφ040 , (B14)

where the pseudophases, φPlm, are those defined in
Eq. (13).

In order to estimate the contribution due to the ` ≥ 3
transition amplitudes, one could perform calculations of
three-point functions using irreps where the ππ state cou-
ples to ` = 3 but not to the ` = 1 partial wave, for
example the [001]B1 and [001]B2 irreps.

Appendix C: Symmetry factor and identical
particles

In Eq. (19) we gave the definition of the LL-factor for
distinguishable particles. In general one should write the
LL-factor as

2Eπ
R

=
1

ξ
32π

EπEππ
q?ππ

(
δ′1 + rφ′

)
(C1)

where ξ is the ‘symmetry factor’, which is equal to 1/2 if
the particles are indistinguishable and 1 otherwise. For
the system of interest the interpretation of this factor is
a subtle one. Given that the ππ → πγ? transition can
only take place if the initial ππ system is in a parity-
odd state, with the bosonic nature of the π one is lead
to believe that the initial state must be composed of
distinguishable particles, e.g. π+π0, and consequently
this symmetry factor should not appear. In the limit of
perfect isospin symmetry, which we have in this calcula-
tion, the eigenstates of the Hamiltonian are of definite
isospin. Therefore one has a choice whether to eval-
uate matrix elements featuring |π+π0, ` = 1〉 or those
of definite isospin, |ππ, I = 1,mI = +1, ` = 1〉 given by

(|π+π0, ` = 1〉 − |π0π+, ` = 1〉)/
√

2. The presence of the
symmetry factor differs depending on this choice. For ex-
ample, for the elastic scattering amplitude and transition



17

amplitude the choices are related via

M`=1,I=1,mI=+1 = 2 M`=1,π+π0 ,

Hµππ,πγ?,I=1,mI=+1 =
√

2 Hµπ+π0,πγ? . (C2)

The definition of the finite-volume matrix element,
Eq. (16), can be seen to be independent of the symmetry
factor,

∣∣〈1;L|J µ(0)|2;L〉
∣∣ =

√
Hµ1,2 R H

µ
2,1

L3
√

2E1

∝
√
ξ−1/2 ξ ξ−1/2 = 1. (C3)

By not introducing the symmetry factor in Eq. (19), we
are determining the amplitudes using the

∣∣π+π0, ` = 1
〉

basis for asymptotic states. Doing so allows us to more
easily compare phenomenological extractions from exper-
imental data where asymptotic states are not constructed
in the isospin basis.

Appendix D: Lorentz covariant decompositions of
the matrix elements

In this appendix we show that the decomposition of the
P -wave matrix element in Eq. 8 is equivalent to another
common decomposition. The Lorentz invariant transi-
tion amplitude may be obtained by contracting the ma-
trix element of the electromagnetic current with the po-
larization vector of the photon, εµ(q, λγ), where λγ is the
helicity of the photon,

〈ππ|J µ(0)|π〉εµ(q, λγ) =Mλγ . (D1)

A common decomposition for the
γ?(q, λγ)π(p1)→ π(p2)π(p3) amplitude, not projected
into any particular partial wave, is

Mλγ = εµνρσ ε
µ(q, λγ)pν1 p

ρ
2 p

σ
3 T (s, t,Q2) (D2)

where the invariant amplitude, T (s, t,Q2), is a function
of s = (q + p1)2, t = (p1 − p2)2, and the virtuality of the
photon, Q2.

In our case we are interested in the amplitude for the
P -wave, which can be obtained in the standard way [86,
87] by partial-wave expanding Mλγ ,

Mλγ =
∑

J=1,3,...

(2J + 1) d
(J)
λγ ,0

(θ)AJ;λγ (s,Q2), (D3)

where we have chosen the scattering plane to have φ = 0,

and where d
(J)
λγ ,0

(θ) are the reduced Wigner d-functions.

Enforcing parity conservation ensures that AJ;0(s,Q2) =
0 and AJ;−1(s,Q2) = −AJ;1(s,Q2). The contribution of
the P -wave can be isolated,

Mλγ = − 3√
2
λγ sin θ A1;λγ (s,Q2) + · · · , (D4)

with the ellipses denoting the higher partial-wave contri-
butions.

The decomposition in Eq. (D2) is most easily inves-
tigated in the cm-frame. If we let the incoming states
have momenta lying along the ẑ-axis and the outgoing
momenta in the x̂ẑ-plane,

qµ =
(
Eγ , 0, 0, q

)
pµ2 =

(
E′, k sin θ, 0, k cos θ

)
pµ1 =

(
E1, 0, 0,−q

)
pµ3 =

(
E′,−k sin θ, 0,−k cos θ

)
,

with the photon polarization vector being
εµ(q, λγ = ±1) = ∓ 1√

2

(
0, 1,±i, 0

)
. It follows that

Mλγ = −
√

2i T (s, t,Q2) kqE′ sin θ, and the presence of
a single factor of sin θ, as is the case for the P -wave in
Eq. (D4), indicates that the P -wave part of the ampli-
tude must lack any further t-dependence in T (s, t,Q2).
We also note that Mλγ contains explicitly the factors q
and k which describe the P -wave threshold behavior in
the initial and final states. In light of this we can write
an invariant decomposition capable of describing the
P -wave as

M[1]
λγ

= εµνρσ ε
µ(q, λγ)pν1 p

ρ
2 p

σ
3 T1(s,Q2), (D5)

where T1(s,Q2) should not have the ∝ k, ∝ q threshold
behavior and where the superscript “[1]” denotes this is
the first of two decompositions we are relating.

We are now in a place to reconcile this decomposition
with the one used through this work, Eq. 8, which we
rewrite here using the variables defined in this appendix,

M[2]
λγ

= εµνρσε
µ(q, λγ) pν1 ε

ρ∗(P, λ)Pσ A(s,Q2), (D6)

where Pσ = (p2 + p3)σ and ερ∗(P, λ) is the polarization
vector of the ππ system which has been projected in a
P -wave with helicity λ. In this appendix we are consider-
ing the time-reversed process, γ? π → π π which explains
the presence of the complex conjugate of the ππ polar-
ization vector.

The claim is that Eq. D6 is equivalent to Eq. D5, after
the ππ state appearing in the latter has been projected
in a P -wave. To show this, we begin by constructing a
ππ helicity state in the cm-frame,∣∣|k|; J = 1, λ

〉
=

∫
dk̂

Y1λ(k̂)√
4π

∣∣π(k)π(−k)
〉
, (D7)

which we can boost to a frame having momentum P by
first boosting the system along the ẑ-axis and then per-
forming a rotation to the axis of the momentum∣∣P; |k|; J = 1, λ

〉
= U [R(P̂ )]U [ZP ]

∣∣|k|; J = 1, λ
〉
. (D8)

The ẑ-axis boost acting on four-vectors can be ex-
pressed as

[
ZP
]µ
ν

=

 γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 =
1

2ωπ

Eππ 0 0 |P|
0 1 0 0
0 0 1 0
|P| 0 0 Eππ


(D9)
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since γ = Eππ
2ωπ

and βγ = |P|
2ωπ

where ωπ =
√
m2
π + k2.

Then the action of the boost on kµ =
(
ωπ,k

)
and

k̄µ =
(
ωπ,−k

)
is

k′µ =
[
ZP
]µ
ν
kν =


Eππ

2 + |P|
2ωπ

kz
kx
ky

|P|
2 + Eππ

2ωπ
kz

 ,

k̄′µ =
[
ZP
]µ
ν
k̄ν =


Eππ

2 −
|P|
2ωπ

kz
−kx
−ky

|P|
2 −

Eππ
2ωπ

kz

 , (D10)

and as expected, k̄′µ = Pµ − k′µ. It follows that

∣∣P; |k|; J = 1, λ
〉

=

∫
dk̂

Y1λ(k̂)√
4π

∣∣π(Rk′)π(P−Rk′)
〉
.

(D11)
We can write the matrix element〈

P; |k|; J = 1, λ
∣∣J µ(0)

∣∣γ(q, λγ)π(p1)
〉

=∫
dk̂

Y ∗1λ(k̂)√
4π

〈
π(Rk′)π(P−Rk′)

∣∣J µ(0)
∣∣γ(q, λγ)π(p1)

〉
,

(D12)

and substituting in the decomposition in Eq. (D5) we
have

M[1]
λγ

= T1(s,Q2) εµνρσ ε
µ(q, λγ) pν1 P

σ

×
∫
dk̂

Y ∗1λ(k̂)√
4π

(
Rk′)ρ (D13)

which will be equivalent to Eq. (D6) if
∫
dk̂Y ∗1λ(k̂)

(
Rk′)ρ

transforms in the same way as ερ∗(P, λ). Since the ro-
tation can be factored out of the integral, and since
ερ(RPz, λ) =

[
R
]ρ
σ
εσ(Pz, λ), it follows that we just need

to show that Xσ(λ) =
∫
dk̂Y1λ(k̂) k′σ transforms like

εσ(Pz, λ). First we establish that PµX
µ = 0,

PµX
µ =

∫
dk̂Y1λ(k̂)

[
E2
ππ

2
− P 2

2

]
= 0, (D14)

and then we may check that the λ = ±1 components are
what is expected, e.g.,

Xσ(λ = +1) =

∫
dk̂Y1,+1(k̂) k′σ

= −
√

4π

3
|k| 1√

2

0
1
i
0


=

√
4π

3
|k|εσ(Pz, λ = +1), (D15)

and indeed the forms are equivalent. Note the presence of
a factor of |k| = k above, which suggests that A ∼ k T1.

Recalling that T1 does not have the threshold factor for
the final state ππ, we see that in the case that the ρ is
unstable into ππ, the quantity A should behave like k
around the ππ threshold.

Appendix E: Cross-sections

In this appendix we derive the relation given in
Eq. (27) for the cross-section with a real photon. We be-
gin with the standard definition of the differential cross
section,

dσ

dΩ

(
π+γ → (π+π0)λ

)
=

1

64π2

q?f
q?i

1

E?2ππ
e2
∣∣∣M[2]

λ

∣∣∣2 (E1)

where λ is the helicity of the final state andM[2]
λ has been

defined in Eq. (D6). To obtain the total cross-section, we
average over the initial photon helicity and sum over the
helicity of the final ππ state, and this gives

σ(π+γ → π+π0) ≡ 1

2

∑
λ,λγ

∫
dΩ

dσ

dΩ

(
π+γ → (π+π0)λ

)
,

(E2)

which is proportional to

1

2

∑
λ,λγ

∣∣∣M[2]
λ

∣∣∣2
= 1

2

∣∣A(E?ππ, 0)
∣∣∑
λ,λγ

εµνρσε
µ(q, λγ) pν1 ε

ρ∗(P, λ)Pσ

× εµ̄ν̄ρ̄σ̄εµ̄∗(q, λγ) pν̄1 ε
ρ̄(P, λ)P σ̄

= 1
2

∣∣A(E?ππ, 0)
∣∣εµνρσεµ̄ν̄ρ̄σ̄(− gµµ̄)(−gρρ̄ +

P ρP ρ̄

E?2ππ

)
× pν1 pν̄1 Pσ P σ̄

= 1
2

∣∣A(E?ππ, 0)
∣∣εµρνσεµρν̄σ̄ pν1 pν̄1 Pσ P σ̄, (E3)

and evaluating the tensor contraction and writ-
ing in terms of cm-frame quantities this becomes∣∣A(E?ππ, 0)

∣∣2E?2ππ q?2i and for the cross-section we have

σ(π+γ → π+π0) =
e2

4π

q?f q
?
i

m2
π

∣∣A(E?2ππ, 0)
∣∣2. (E4)

The cross section can be expressed in terms of the form
factor, F (E?ππ, Q

2), using Eqs. 22 and 23 as,

σ(π+γ → π+π0) = 16π α
q?i
m2
π

∣∣F (E?ππ, Q
2)
∣∣2 sin2δ1(E?ππ)

Γ(E?ππ)
,

(E5)

from which it is easy to find the peak cross-section by
evaluating when δ1 = 90◦. Comparing to the expression
given in Ref. [63], where the cm energy E?ππ has been
approximated by the real part of the ρ mass, we find a
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definition of the radiative decay width of ρ+ → π+γ in
terms of the form factor,

Γ(ρ+ → π+γ) = α
4

3

q?i
m2
π

∣∣F (mρ, 0)
∣∣2. (E6)

[1] M. Luscher, Commun.Math.Phys. 105, 153 (1986).
[2] M. Luscher, Nucl.Phys. B354, 531 (1991).
[3] K. Rummukainen and S. A. Gottlieb, Nucl. Phys. B450,

397 (1995), hep-lat/9503028.
[4] C. Kim, C. Sachrajda, and S. R. Sharpe, Nucl.Phys.

B727, 218 (2005), hep-lat/0507006.
[5] N. H. Christ, C. Kim, and T. Yamazaki, Phys.Rev. D72,

114506 (2005), hep-lat/0507009.
[6] R. A. Briceno and Z. Davoudi, Phys. Rev. D. 88, 094507,

094507 (2013), 1204.1110.
[7] M. T. Hansen and S. R. Sharpe, Phys.Rev. D86, 016007

(2012), 1204.0826.
[8] R. A. Briceno, Phys.Rev. D89, 074507 (2014), 1401.3312.
[9] M. T. Hansen and S. R. Sharpe, Phys.Rev. D90, 116003

(2014), 1408.5933.
[10] M. T. Hansen and S. R. Sharpe (2015), 1504.04248.
[11] M. T. Hansen and S. R. Sharpe (2015), 1509.07929.
[12] K. Polejaeva and A. Rusetsky, Eur.Phys.J. A48, 67

(2012), 1203.1241.
[13] R. A. Briceno and Z. Davoudi, Phys.Rev. D87, 094507

(2012), 1212.3398.
[14] J. J. Dudek, R. G. Edwards, and C. E. Thomas,

Phys.Rev. D87, 034505 (2013), 1212.0830.
[15] C. Lang, D. Mohler, S. Prelovsek, and M. Vidmar,

Phys.Rev. D84, 054503 (2011), 1105.5636.
[16] C. B. Lang, D. Mohler, S. Prelovsek, and R. M.

Woloshyn, Phys. Lett. B750, 17 (2015), 1501.01646.
[17] C. B. Lang, L. Leskovec, D. Mohler, S. Prelovsek,

and R. M. Woloshyn, Phys. Rev. D90, 034510 (2014),
1403.8103.

[18] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D83,
094505 (2011), 1011.5288.

[19] C. Pelissier and A. Alexandru, Phys.Rev. D87, 014503
(2013), 1211.0092.

[20] S. Prelovsek, L. Leskovec, C. B. Lang, and D. Mohler,
Phys. Rev. D88, 054508 (2013), 1307.0736.

[21] S. Aoki et al. (CS), Phys. Rev. D84, 094505 (2011),
1106.5365.

[22] S. Aoki et al. (CP-PACS Collaboration), Phys.Rev. D76,
094506 (2007), 0708.3705.

[23] D. R. Bolton, R. A. Briceño, and D. J. Wilson (2015),
1507.07928.

[24] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards,
and C. E. Thomas, Phys. Rev. D92, 094502 (2015),
1507.02599.

[25] D. J. Wilson, J. J. Dudek, R. G. Edwards, and C. E.
Thomas, Phys. Rev. D91, 054008 (2015), 1411.2004.

[26] J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J.
Wilson (2014), 1406.4158.

[27] D. J. Wilson, J. J. Dudek, and R. G. Edwards (2015), in
preparation.

[28] R. A. Briceo and M. T. Hansen, Phys. Rev. D92, 074509
(2015), 1502.04314.

[29] R. A. Briceno, M. T. Hansen, and A. Walker-Loud,

Phys.Rev. D91, 034501 (2015), 1406.5965.
[30] A. Agadjanov, V. Bernard, U.-G. Meiner, and A. Ruset-

sky, Nucl.Phys. B886, 1199 (2014), 1405.3476.
[31] H. B. Meyer, Phys. Rev. Lett. 107, 072002 (2011),

1105.1892.
[32] R. A. Briceño and M. T. Hansen (2015), 1509.08507.
[33] V. Bernard, D. Hoja, U.-G. Meissner, and A. Rusetsky,

JHEP 1209, 023 (2012), 1205.4642.
[34] L. Lellouch and M. Luscher, Commun.Math.Phys. 219,

31 (2001), hep-lat/0003023.
[35] Z. Bai, T. Blum, P. Boyle, N. Christ, J. Frison, et al.

(2015), 1505.07863.
[36] N. Ishizuka, K. I. Ishikawa, A. Ukawa, and T. Yoshi, PoS

LATTICE2014, 364 (2014), 1410.8237.
[37] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, et al.,

Phys.Rev. D86, 074513 (2012), 1206.5142.
[38] P. Boyle et al. (RBC, UKQCD), Phys.Rev.Lett. 110,

152001 (2013), 1212.1474.
[39] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, et al.,

Phys.Rev. D84, 114503 (2011), 1106.2714.
[40] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, et al.,

Phys.Rev.Lett. 108, 141601 (2012), 1111.1699.
[41] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,

JHEP 1409, 091 (2014), 1402.7081.
[42] G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, and

P. Stoffer, Phys.Lett. B738, 6 (2014), 1408.2517.
[43] J. Wess and B. Zumino, Phys.Lett. B37, 95 (1971).
[44] E. Witten, Nucl.Phys. B223, 422 (1983).
[45] R. A. Briceno, J. J. Dudek, R. G. Edwards, C. J. Shultz,

C. E. Thomas, and D. J. Wilson (2015), 1507.06622.
[46] C. J. Shultz, J. J. Dudek, and R. G. Edwards, Phys. Rev.

D91, 114501 (2015), 1501.07457.
[47] R. G. Edwards, B. Joo, and H.-W. Lin, Phys. Rev. D78,

054501 (2008), 0803.3960.
[48] H.-W. Lin et al. (Hadron Spectrum Collaboration),

Phys.Rev. D79, 034502 (2009), 0810.3588.
[49] J. J. Dudek, R. G. Edwards, and C. E. Thomas,

Phys.Rev. D86, 034031 (2012), 1203.6041.
[50] M. Peardon et al. (Hadron Spectrum Collaboration),

Phys.Rev. D80, 054506 (2009), 0905.2160.
[51] C. E. Thomas, R. G. Edwards, and J. J. Dudek,

Phys.Rev. D85, 014507 (2012), 1107.1930.
[52] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G.

Richards, and C. E. Thomas, Phys.Rev.Lett. 103, 262001
(2009), 0909.0200.

[53] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G.
Richards, and C. E. Thomas, Phys.Rev. D82, 034508
(2010), 1004.4930.

[54] J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon,
D. G. Richards, et al., Phys.Rev. D83, 111502 (2011),
1102.4299.

[55] L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas,
P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and
D. G. Richards (Hadron Spectrum), JHEP 07, 126



20

(2012), 1204.5425.
[56] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and

L. Liu, JHEP 05, 021 (2013), 1301.7670.
[57] J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas

(Hadron Spectrum), Phys. Rev. D88, 094505 (2013),
1309.2608.

[58] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G.
Richards, and C. E. Thomas, Phys.Rev. D83, 071504
(2011), 1011.6352.

[59] H. B. Meyer (2012), 1202.6675.
[60] X. Feng, S. Aoki, S. Hashimoto, and T. Kaneko (2014),

1412.6319.
[61] J. Bulava, B. Hrz, B. Fahy, K. J. Juge, C. Morn-

ingstar, and C. H. Wong, in Proceedings, 33rd Inter-
national Symposium on Lattice Field Theory (Lattice
2015) (2015), 1511.02351, URL http://inspirehep.

net/record/1403562/files/arXiv:1511.02351.pdf.
[62] J. Huston, D. Berg, C. Chandlee, S. Cihangir, B. Collick,

et al., Phys.Rev. D33, 3199 (1986).
[63] L. Capraro, P. Levy, M. Querrou, B. Van Hecke, M. Ver-

beken, et al., Nucl.Phys. B288, 659 (1987).
[64] R. L. Workman, L. Tiator, and A. Sarantsev, Phys. Rev.

C87, 068201 (2013), 1304.4029.
[65] D. Ronchen, M. Dring, F. Huang, H. Haberzettl,

J. Haidenbauer, C. Hanhart, S. Krewald, U. G. Meiner,
and K. Nakayama, Eur. Phys. J. A50, 101 (2014), [Er-
ratum: Eur. Phys. J.A51,no.5,63(2015)], 1401.0634.

[66] A. Svarc, M. Hadzimehmedovic, H. Osmanovic, J. Sta-
hov, L. Tiator, and R. L. Workman, Phys. Rev. C89,
065208 (2014), 1404.1544.

[67] N. Kaiser and J. Friedrich, Eur.Phys.J. A36, 181 (2008),
0803.0995.

[68] M. Hoferichter, B. Kubis, and D. Sakkas, Phys.Rev. D86,
116009 (2012), 1210.6793.

[69] K. Olive and P. D. Group, Chinese Physics C 38, 090001
(2014), URL http://stacks.iop.org/1674-1137/38/i=

9/a=090001.
[70] M. Albaladejo, G. Rios, J. Oller, and L. Roca (2013),

1307.5169.
[71] P. F. Bedaque, I. Sato, and A. Walker-Loud, Phys.Rev.

D73, 074501 (2006), hep-lat/0601033.
[72] J. A. Oller, E. Oset, and J. Pelaez, Phys.Rev.Lett. 80,

3452 (1998), hep-ph/9803242.
[73] A. Dobado and J. R. Pelaez, Phys. Rev. D56, 3057

(1997), hep-ph/9604416.
[74] J. A. Oller, E. Oset, and J. Pelaez, Phys.Rev. D59,

074001 (1999), hep-ph/9804209.
[75] A. Gomez Nicola and J. Pelaez, Phys.Rev. D65, 054009

(2002), hep-ph/0109056.
[76] J. R. Pelaez and G. Rios, Phys. Rev. Lett. 97, 242002

(2006), hep-ph/0610397.
[77] C. Alexandrou, G. Koutsou, H. Neff, J. W. Negele,

W. Schroers, et al., Phys.Rev. D77, 085012 (2008),
0710.4621.

[78] C. Alexandrou, G. Koutsou, T. Leontiou, J. W.
Negele, and A. Tsapalis, Phys.Rev. D76, 094511 (2007),
0912.0394.

[79] C. Alexandrou, G. Koutsou, J. Negele, Y. Proestos, and
A. Tsapalis, Phys.Rev. D83, 014501 (2011), 1011.3233.

[80] K. Bowler, J. Gill, C. Maynard, and J. Flynn
(UKQCD Collaboration), JHEP 0405, 035 (2004), hep-
lat/0402023.

[81] J. Dudek, R. Ent, R. Essig, K. Kumar, C. Meyer, et al.,
Eur.Phys.J. A48, 187 (2012), 1208.1244.

[82] H. A. Ghoul et al. (GlueX), in 16th International Con-
ference on Hadron Spectroscopy (Hadron 2015) New-
port News, Virginia, USA, September 13-18, 2015
(2015), 1512.03699, URL https://inspirehep.net/

record/1409299/files/arXiv:1512.03699.pdf.
[83] R. G. Edwards and B. Joo (SciDAC, LHPC, UKQCD),

Nucl. Phys. Proc. Suppl. 140, 832 (2005), [,832(2004)],
hep-lat/0409003.

[84] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and
C. Rebbi, Comput. Phys. Commun. 181, 1517 (2010),
0911.3191.

[85] R. Babich, M. A. Clark, and B. Joo, in SC 10 (Supercom-
puting 2010) New Orleans, Louisiana, November 13-19,
2010 (2010), 1011.0024, URL http://dx.doi.org/10.

1109/SC.2010.40.
[86] M. Jacob and G. Wick, Annals Phys. 7, 404 (1959).
[87] I. Danilkin, C. Fernndez-Ramrez, P. Guo, V. Mathieu,

D. Schott, et al. (2014), 1409.7708.

http://inspirehep.net/record/1403562/files/arXiv:1511.02351.pdf
http://inspirehep.net/record/1403562/files/arXiv:1511.02351.pdf
http://stacks.iop.org/1674-1137/38/i=9/a=090001
http://stacks.iop.org/1674-1137/38/i=9/a=090001
https://inspirehep.net/record/1409299/files/arXiv:1512.03699.pdf
https://inspirehep.net/record/1409299/files/arXiv:1512.03699.pdf
http://dx.doi.org/10.1109/SC.2010.40
http://dx.doi.org/10.1109/SC.2010.40

	introduction 
	Three-point functions and matrix elements 
	Relating finite and infinite volume quantities
	The  spectrum and the P-wave scattering phase shift
	Transition amplitude 

	Determination of the infinite volume transition amplitude
	++0 cross section
	Conclusion and outlook 
	Acknowledgments

	Notational conventions and normalizations
	Contamination from 3 partial waves 
	Symmetry factor and identical particles 
	Lorentz covariant decompositions of the matrix elements 
	Cross-sections 
	References

