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Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs
negative at a renormalization scale of about 10'® GeV. We consider a non-supersymmetric SO(10)
grand unification model for which gauge coupling unification is made possible through an intermedi-
ate scale gauge group, Gint = SU(3)c ® SU(2)L ® SU(2)r ® U(1)B—L. Gint is broken by the vacuum
expectation value of a 126 of SO(10) which not only provides for neutrino masses through the see-
saw mechanism, but also preserves a discrete Zs that can account for the stability of a dark matter
candidate, here taken to be the Standard Model singlet component of a bosonic 16. We show that
in addition to these features, the model insures the positivity of the Higgs quartic coupling through
its interactions to the dark matter multiplet and 126. We also show that the Higgs mass-squared
runs negative triggering electroweak symmetry breaking. Thus the vacuum stability is achieved
along with radiative electroweak symmetry breaking and captures two more important elements of
supersymmetric models without low energy supersymmetry. The conditions for perturbativity of
quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower
limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be

probed in future direct detection experiments.

Introduction.—With the discovery of the Higgs boson
at both the ATLAS [1] and CMS [2] detectors, the Stan-
dard Model (SM) of particle physics appears to be very
well established. However, as yet, there is no verified
explanation for neutrino masses, and the nature of dark
matter (DM) remains elusive. Both signal the need for
beyond the SM physics. The experimental value of the
Higgs mass, m;, = 125.09 £+ 0.24 GeV [3], also points to
new physics at some higher energy scale. The Higgs quar-
tic self-coupling, A, runs toward negative values at high
energy. The lower limit on my, to ensure the posititivity
of A out to the Planck scale is 129.4 + 1.8 GeV [4] which
appears to be violated. DM is often introduced in su-
persymmetric extensions of the SM with R-parity [5]. In
supersymmetric models, the problem of vacuum stability
associated with the Higgs quartic coupling is avoided as
the tree level coupling is determined by a combination of
the gauge couplings and is positive definite. In addition,
supersymmetric models offer a mechanism for triggering
electroweak symmetry breaking via radiative effects [6].

In the absence of supersymmetry, the instability in the
Higgs potential occurs at a renormalization scale of about
101% GeV for my, ~ 125 GeV. Therefore one might antici-
pate new physics playing a role at this intermediate scale
or below [7, 8], such as the seesaw mechanism for generat-
ing neutrino masses which has long been associated with
an intermediate scale [9]. This mechanism is very nat-
urally realized in SO(10) grand unified theories (GUTS)
[10, 11] where the right-handed neutrino is included as
the SM singlet component of the 16 of SO(10) and in-
corporates a full generation of matter fields in a single

representation. SO(10) contains several subgroups, Ging
which contain the SM gauge group as a a subgroup and
it is well known that the symmetry breaking scale, M,
of Gint can be determined by requiring that the gauge
couplings unify at a single scale Mgyt > Mipn [11-15].

Stable dark matter can also be incorporated in SO(10)
models in a straightforward way [13-18]. As a rank-
five group, SO(10) includes an additional U(1) symme-
try, which is assumed to be broken at the intermediate
scale. If the Higgs field that breaks this additional U(1)
symmetry belongs to a 126 dimensional representation,
then a discrete Zy symmetry is preserved at low energies
[19]. If we restrict our attention to relatively small rep-
resentations (< 210), the 126 Higgs field leaving a Zs
symmetry is the only possibility for a discrete symmetry
[14, 20]. For example, a scalar dark matter candidate
will be stabilized by the Zy symmetry if it is a member
of either a 16 or 144 representation.

In this letter, we show that the two aforementioned at-
tributes of supersymmetric extensions to the SM, namely,
vacuum stability and radiative electroweak symmetry
breaking, are also natural consequences of SO(10) mod-
els with an intermediate scale gauge group. For definite-
ness, we consider here a SM singlet dark matter candi-
date originating from a single 16 of SO(10) as in model
SA390; in Ref. [15] based on the intermediate gauge group
SU3)c ® SU(2)r, ® SU(2)r @ U(1)g—r. In this model,
the intermediate scale is found to be Miy ~ 10° GeV
and is small enough to allow the couplings of the 126
Higgs field to the SM Higgs to lift the Higgs quartic cou-
pling through the threshold corrections before it turns



negative. The presence of the singlet scalar DM at low
energies also deflects the running of the Higgs quartic
coupling. Moreover, we show that the negative mass-
squared needed for electroweak symmetry breaking runs
positive due the coupling of the Higgs field with the DM
singlet.

The requirement for the radiative electroweak sym-
metry breaking imposes a lower bound on the DM-
Higgs coupling. This then leads to a lower limit on the
DM mass if one assumes that the thermal relic abun-
dance of the DM agrees with the observed DM density
Qpumh? ~ 0.12 [21]. On the other hand, perturbativity
of the couplings in the model gives an upper limit on the
DM-Higgs coupling, and thus on the DM mass. As a
result, a finite DM mass region is allowed by these two
conditions. We find that this mass range can be probed
in the XENONI1T experiment [22].

An exemplary SO(10) model with stable dark matter.—
When one combines the number of possible intermediate
scale gauge groups with the multitude of choices for dark
matter and Higgs representations in an SO(10) model,
one may think that the amount of freedom one has for
model building is enormous. However, in practice when
one imposes the conditions that i) gauge coupling unifi-
cation occurs, ii) that the intermediate scale is found to
be below the GUT scale, and iii) that the GUT scale is
high enough so that the proton lifetime exceeds current
experimental bounds, only a handful of possible mod-
els survive [14, 15]. Furthermore, since any dark matter
candidate must be part of a larger SO(10) representation,
that multiplet must be split, putting further constraints
on the possible choice of field content.

In this letter, we choose one example of a scalar dark
matter model with an intermediate scale gauge group
given by Gint = SU(?))C ® SU(2)L ® SU(Z)R ® U(l)B,L.
We will examine the model labeled SAgso; in [15] for
which the dark matter is a scalar singlet originating in a
16 of SO(10). In addition to SM fields, the model em-
ploys a 45 (or 210) to break SO(10) to Gint when the
(15, 1, 1) component (under SU(4),®SU(2), ®SU(2) )
acquires a vacuum expectation value (vev). The inter-
mediate scale gauge group is subsequently broken when
the color singlet, right-handed triplet sitting in the 126
acquires a vev. All other components of the 126 are
expected to have GUT scale masses. In addition to an
explicit (GUT scale) mass term for the 16, the scalar
multiplet can have mass contributions from its couplings
to the Higgs 45 and 126. An explicit calculation of the
fine-tuning needed to obtain a TeV scale mass for the
singlet scalar dark matter candidate can be found in Ap-
pendix C of [15]. In the example given there, all members
of the 16 are GUT scale except the scalar analog of ep
(ér) which has an intermediate scale mass, and Uz which
has a weak scale mass.

Renormalization group evolution of the Higgs couplings
and masses.—The renormalization group evolution be-
tween the weak scale and intermediate scale is almost
identical to the SM. The only difference comes from
the inclusion of the SM singlet dark matter candidate,
s = Re[vg]. Below the intermediate scale, the scalar po-
tential is relatively simple,

1 A As As
Vin = 12| H P+ pds®+ D1 H |+ S50 H P+ Trst . (1)

In many ways, this resembles the minimal dark mat-
ter model often referred to as the Higgs portal [23, 24].
The mass of our dark matter candidate is given by
mdy = Asgv?/2+p2. Furthermore, fixing the dark mat-
ter mass will also fix Aggy at the weak scale (taken here
to be my) through the relic density (assuming standard
thermal freeze-out): mpy =~ 3.3\sg TeV. In this paper,
we compute the DM relic density using micrOMEGAS [25].
The evolution of the Higgs quartic coupling in the SM
with and without the inclusion of the scalar s is shown
in Fig. 1 by the green solid and dotted curves, respec-
tively. The renormalization group equations (RGE) are
run at the two-loop level’ and one sees that the SM quar-
tic coupling runs negative just above 10 GeV [4] with-
out the scalar contribution. With the scalar contribution,
the running of A\ would remain positive out to the GUT
scale. Note that at the intermediate scale (determined by
the conditions for gauge coupling unification; the running
of the gauge couplings in SA392; is shown by thin black
lines in Fig. 1), My ~ 10° GeV, A > 0. Gauge cou-
pling unification also determines the GUT scale to be
Mgut ~ 1.5 x 10'6 GeV, which is high enough to evade
the proton decay limit. Also shown is the running of A4
(blue dash-dotted) and Agy (brown dashed).

Above the intermediate scale, it is necessary to include
in addition to s, the right-handed doublet x(1,1,2,1)
which contains s, the Higgs triplet A(1,1,3,2) residing
in the 126, two heavy complex fields in addition to the
SM Higgs doublet which all sit in a complex ®(1,2,2,0),
and finally the three right handed neutrinos sitting in the
fermionic 16 matter representations. Above the interme-
diate scale, we write ® = (qbl,ég), b = 0yP*0y (04 are
the Pauli matrices), x = (x*,x°)?, and

B A+/\/§ ATT

where ¢; = (6),67)7 is an SU(2)1, doublet; ¢ = iope*.

79

1 We use the three-loop RGEs for the top Yukawa and Higgs quar-
tic couplings. We also include the two-loop electroweak threshold
corrections according to Ref. [4]. We use the MS scheme up to
the intermediate scale, and switch to the DR scheme at Miy.
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FIG. 1: Running of the quartic couplings of Higgs field, for
selected inputs. The green solid, brown dashed, and blue dash-
dotted lines show the running of A, Asu, and \s, respectively,
while the green dotted curve shows the running of \ in the
SM. The gauge coupling running is also shown in thin black
lines. Above the intermediate scale, the running of ce,cy,
and cya is shown using the matching conditions in (4). The
free parameters are chosen as follows: At Q = my, s = 0
and Asg = 0.46 (which corresponds to mpm =~ 1.5 TeV);
At Mim; Cp = CA = oA = Cxya = Cya = Cho = 0 and
ca = —Coa = —mya/vr = 0.05. The non-zero couplings are
taken so that the low-energy mass spectrum we consider here
is realized.

Then a quartic potential can be written as

/
Vi = 5 (er(ATA))" + er(Aa) tr (ATAT)
+ %‘D (tr(@f®))® + %"tr(éf@)tr(qﬂé)
+ coatr(ATA)tr(®Td) + %|X|4 + cya|x|*tr(2T®)

+exalxPer(ATA) + ax AT, Al
+ cpatr (BTD[AT, A]) —|—C;<¢,XT(I>T(I>X+... . (3)

Note that we have only included those quartic couplings
which can be generated through RGE evolution, with
the exception of the last two; ¢, A is needed to split the
masses of the two-Higgs doublet, ®, while c;(q) is induced
by the ¢, term via RGE effects.

The quartic terms that contain two powers of A, as
well as the cubic coupling (see Eq. (5)) produce non-
trivial tree-level threshold corrections at M., after A

acquires a vev and the heavy fields are integrated out:

(can + cpa)?

A=cp — ——,
CA
Ao = oo (con + copa)[mya + (cxa — S a)VR]
sH xP CAUR )
Myn + vr(Cya — A2
As = 3¢y _ glmxa + onl 2 xa)l : (4)
CAUR

where (A) = vgT_ with T_ = (07 — i02)/2. As is well
known, these threshold effects always go in the direction
of benefiting vacuum stability [7]. The evolution of the
quartic couplings, cs, ¢y, and c,o above the intermediate
scale are also shown in Fig. 1 using the matching condi-
tions in (4). We use the one-loop RGEs for these quartic
couplings. Although we do not explicitly display the run-
ning of all quartic terms above the intermediate scale, we
have checked that although some run negative (notably
cA), we have verified that the couplings satisfy sufficient
conditions which guarantee stability of the vacuum up to
the GUT scale.

The quadratic and cubic parts (which can lead to mass
terms) of the potential can be written as

V;g\’lg) = mi|x|2 + m?{,tr((IJTCI)) + mQAtr(ATA)
+ My ()ZTATx) +h.c., (5)

where we take m,a to be real for simplicity. The relevant
matching conditions with the weak scale mass parameters
are

2 2 / 2
2= 2+ (e — cha) v + 2myar

p*=m + (con + cpa) Vi (6)
where the low energy fields are related to the high energy
fields as ¢; = H and x° = (s +ia)/v/2.

The running of A; receives a large contribution from
AsHy dAs/dIn@Q = 1202 /(47)* + -+ and thus by de-
manding perturbativity of the couplings (\; < 1/6;,
where (; is a relevant beta-function coefficient) up to
the intermediate scale, we can set an upper bound on
Asg < 1.3. However, requiring perturbativity of the ¢;’s
above the intermediate scale places a stronger bound on
As(Mint) S 2.4 which requires Agg(m:) < 0.9. Non-
zero values for other couplings further push the upper
limit to Asg(my) < 0.6 in order to avoid singularities
in the RGEs. Since Asg controls the annihilation cross
section for s: Oannvrel =~ A2y /16mm3,;, and the relic
density is proportional to 1/{Gannvrel), the upper limit
on Agy corresponds to an upper limit to the DM mass
mpm S 2 TeV, similar to that in the minimal dark mat-
ter model [24] without an intermediate scale.

The Higgs mass parameter, ;2, must be negative in or-
der to break the electroweak symmetry, and in the SM,
1% remains negative as it is run up to high energies. The



presence of the dark matter scalar however affects the
running as du?/dInQ = Aggpu?/(4m)% + -+ and causes
p? to run positive at higher renormalization scales [16].
In other words, the dark matter candidate can induce ra-
diative electroweak symmetry similar to the mechanism
in supersymmetric models [6]. As the running of u de-
pends on the combination A4 H,u? we can obtain a min-
imum value for ps (and hence mpy) which is indepen-
dent of the relic density constraint by maximizing Asp.
We find that for Asg = 0.6, uQ > 0 at the intermediate
scale (at 1 TeV) when us 2 360 GeV (1150 GeV), corre-
sponding to mpy = 380 GeV (1160 GeV). Here, we set
As(my) = 0. Taking the limits on Agy from the pertur-
bativity of As; and the limit on pg from the requirement
of radiative electroweak symmetry breaking, we find that
the dark matter mass must lie in a restricted range (when
demanding the more natural choice of symmetry break-
ing at 1 TeV) mpy = 1.2-2 TeV.

When one imposes the constraint from the relic den-
sity, we obtain somewhat stronger bounds on Agz. In
Fig. 2, we show the value of sgn(u?)|u| for Q = My
and 1 TeV as a function of Asg(my). Here again, we set
As(my) = 0. As one can see that when Q = My, we
have Ay (m¢) > 0.2 corresponding to mpym > 670 TeV
and when @ = 1 TeV, we have Asg(m;) > 0.41 corre-
sponding to mpy > 1.35 TeV.
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FIG. 2: The value of sgn(u?)|p| for Q = Min, and 1 TeV as
a function of Asg(m¢). mpwm at the weak scale is determined
from the requirement for the thermal relic abundance using
mpm = 3.3 sy TeV.

The singlet DM candidate in our model can be probed
in DM direct detection experiments. In Fig. 3, we show
the spin-independent (SI) DM-nucleon scattering cross
section og; as a function of the DM mass. Here, we
require the relic density condition to determine Agp.
The lower solid (upper dashed) brown line shows the

result for which we use the nucleon matrix elements
given in Ref. [26] (Ref. [27]). In either case, we obtain
ost ~ 1074 ¢cm?. The gray shaded region is excluded by
the current limit from the LUX experiment [28]. We also
show the projected sensitivity of XENONI1T [22] by the
black dotted line. We find that all of the DM mass range
can be probed at this experiment.
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FIG. 3: The SI DM-nucleon scattering cross section as a func-
tion of mpm. Here, \sp is determined from the relic density
condition.

Summoary.—We have presented an SO(10) model with
gauge coupling unification made possible through an in-
termediate scale at ~ 10° GeV. SO(10) is broken to
Gint = SU3)c ®SU(2), @ SU(2)g ® U(1) g1, when the
right-handed triplet in the 126 obtains a vev. In this
model, the lightest member of a complex scalar 16 is
stable and plays the role of our dark matter candidate,
s. The specific example discussed here can be viewed
as a UV completion of the minimal (scalar) dark matter
model. We have shown that in addition to gauge cou-
pling unification, and a dark matter candidate, unlike the
case in the SM, vacuum stability is achieved up to the
GUT scale, and radiative electroweak symmetry break-
ing is triggered by the interactions of the dark matter
and the SM Higgs. The latter result taken together with
the requirement of perturbative couplings to the GUT
scale limit the DM mass to lie between 1.35-2 TeV. This
mass range should be probed in future direct detection
experiments.
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