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Abstract

The Fokker action governing the motion of compact binary systems without spins is derived

in harmonic coordinates at the fourth post-Newtonian approximation (4PN) of general relativity.

Dimensional regularization is used for treating the local UV divergences associated with point

particles, followed by a renormalization of the poles into a redefinition of the trajectories of the point

masses. Effects at the 4PN order associated with wave tails propagating at infinity are included

consistently at the level of the action. A finite part procedure based on analytic continuation

deals with the IR divergencies at spatial infinity, which are shown to be fully consistent with

the presence of near zone tails. Our end result at 4PN order is Lorentz invariant and has the

correct self-force limit for the energy of circular orbits. However, we find that it differs from the

recently published result derived within the ADM Hamiltonian formulation of general relativity [T.

Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014)]. More work is needed

to understand this discrepancy.
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I. INTRODUCTION

Gravitational waves emitted by inspiraling and merging compact (neutron stars and/or

black holes) binary systems are likely to be routinely detected by the ground-based network

of advanced laser interferometric detectors [1]. Banks of extremely accurate replica of theo-

retical predictions (templates) are a compulsory ingredient of a successful data analysis for

these detectors — both on-line and off-line. In the early inspiral phase the post-Newtonian

(PN) approximation of general relativity should be pushed to extremely high order [2].

Furthermore high accuracy comparison and matching of PN results are performed with

numerical relativity computations appropriate for the final merger and ringdown phases [3].

With these motivations in mind we tackle the problem of the equations of motion of

compact binaries (without spin) at the fourth post-Newtonian (4PN) order.1 Solving this

problem is also important for various applications (numerical/analytical self-force compar-

isons, last stable circular orbit, effective-one-body calculations [4, 5]) and paves the way to

the problem of radiation and orbital phase evolution at the 4PN order beyond the Einstein

quadrupole formalism — whose solution is needed for building 4PN accurate templates.

Historical works on the PN equations of motion of compact binaries include Lorentz &

Droste [6], Einstein, Infeld & Hoffmann [7], Fock [8, 9], Chandrasekhar and collaborators [10–

12], as well as Otha et al. [13–15]. These works culminated in the 1980s with the derivation

of the equations of motion up to 2.5PN order, where radiation reaction effects appear [16–18]

(see also [19–24] for alternative derivations), and led to the successful analysis of the time

of arrival of the radio pulses from the Hulse-Taylor binary pulsar [25, 26].

In the early 2000s the equations of motion were derived at the 3PN order using different

methods: the ADM Hamiltonian formalism of general relativity [27–32], the PN iteration of

the equations of motion in harmonic coordinates [33–38], some surface-integral method [39–

43], and effective field theory schemes [44]. Furthermore, radiation reaction effects at 3.5PN

order were added [45–49], and spin contributions have been extensively investigated [50–60].

Works in the early 2010s partially obtained the equations of motion at the 4PN order using

the ADM Hamiltonian formalism [61–63] and the effective field theory [64]. More recently,

the important effect of gravitational wave tails at 4PN order [65, 66] was included in the

1 As usual the nPN order refers to the terms of order 1/c2n in the equations of motion beyond the Newtonian

acceleration.

3



ADM Hamiltonian. This permitted to understand the IR divergencies in this calculation

and to complete the 4PN dynamics [67] (see also [68]). Notice however that the latter

work [67] did not perform a full consistent PN analysis but resorted to an auxiliary self-force

calculation [69–71] to fix a last coefficient.

In the present paper we derive the Fokker Lagrangian [72] at the 4PN order in harmonic

coordinates. We combine a dimensional regularization of the UV divergencies associated

with point particles with a finite part regularization based on analytic continuation dealing

with IR divergencies. We show that the IR divergencies are perfectly consistent with the

presence of the tail effect at 4PN order, which is incorporated consistently into the Fokker

action. However, like in [67], we are obliged to introduce an arbitrary coefficient relating the

IR cut-off scale to the a priori different scale present in the tail integral. This coefficient is

determined by using a self-force calculation (both numerical [69, 70] and analytical [71]), so

that our end result for the energy of circular orbits at 4PN order has the correct self-force

limit. We also checked that it is manifestly Lorentz-Poincaré invariant. In a companion

paper [73] we shall study the conserved integrals of the motion, the reduction to the center-

of-mass frame and the dynamics of quasi-circular orbits.

Up to quadratic order in Newton’s constant, our Lagrangian is equivalent to the La-

grangian derived by means of effective field theory techniques [64]. However, trying to relate

our result to the result obtained from the ADM Hamiltonian approach [61–63, 67], we find

a difference with the latter works, occuring at orders G4 and G5 in the Hamiltonian. Part

of the difference is due to the fact that we disagree with the treatment of the tail part of the

Hamiltonian for circular orbits in Ref. [67]. However, even when using our own treatment

of tails in their results, there still remains a discrepancy with the works [61–63, 67] that we

cannot resolve. More work is needed to understand the origin of this remaining difference

and resolve it.

In Sec. II we show how to use the Fokker action in the context of PN approximations. In

particular we split the action into a term depending on the PN field in the near zone and a

term depending on the field in the far zone. The latter term is crucial to control the tails

which are then computed consistently in the action at 4PN order in Sec. III. We explain our

method for iterating the PN approximation of the Fokker action in Sec. IV. In Sec. V, we

present the full-fledged Lagrangian of compact binaries at the 4PN order, both in harmonic

and ADM like coordinates, and we compare with the results [67] obtained for the 4PN ADM
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Hamiltonian in Sec. VC. Finally we explain in Sec. VD our disagreement with Ref. [67]

regarding the treatment of the tail term. The paper ends with several technical Appendices.

II. THE FOKKER ACTION

A. General statements

We consider the complete Einstein-Hilbert gravitation-plus-matter action S = Sg + Sm,

where the gravitational piece Sg takes the Landau-Lifshitz form with the usual harmonic

gauge-fixing term,2

Sg =
c3

16πG

∫

d4x
√
−g

[

gµν
(

Γρ
µλΓ

λ
νρ − Γρ

µνΓ
λ
ρλ

)

− 1

2
gµνΓ

µΓν

]

, (2.1)

with Γµ ≡ gρσΓµ
ρσ, and where Sm denotes the matter piece appropriate for two point particles

(A = 1, 2) without spin nor internal structure,

Sm = −
∑

A

mAc
2

∫

dt
√

−(gµν)A vµAv
ν
A/c

2 . (2.2)

Here mA is the mass of the particles, vµA = dyµA/dt = (c, vA) is the usual coordinate velocity,

yµA = (ct,yA) the usual trajectory, and (gµν)A stands for the metric evaluated at the location

of the particle A following the dimensional regularization scheme.

A closed-form expression for the gravitational action can be written with the help of the

gothic metric g
µν =

√−ggµν and its inverse gµν = gµν/
√−g as

Sg =
c3

32πG

∫

d4x

[

−1

2

(

gµρgνσ −
1

2
gµνgρσ

)

g
λτ∂λg

µν∂τg
ρσ

+ gµν

(

∂ρg
µσ∂σg

νρ − ∂ρg
µρ∂σg

νσ
)

]

. (2.3)

Expanding around Minkowski space-time we pose g
µν = ηµν + hµν which defines the metric

perturbation variable hµν . The action appears then as an infinite non-linear power series in h,

where indices on h and on partial derivatives ∂ are lowered and raised with the Minkowski

metric ηµν = ηµν = diag(−1, 1, 1, 1). The Lagrangian density Lg can take various forms

obtained from each others by integrations by parts. For our purpose the best form starts at

2 We also denote Sg =
∫

dt Lg and Lg =
∫

d3xLg. The Lagrangian Lg is defined modulo a total time

derivative and the Lagrangian density Lg modulo a space-time derivative.
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quadratic order by terms like ∼ h�h, where � = ηρσ∂2
ρσ is the flat d’Alembertian operator.

So the general structure of the Lagrangian we shall use is Lg ∼ h�h+h∂h∂h+h h∂h∂h+· · · .
See (3.1) for the explicit expressions of the quadratic and cubic terms.

The Einstein field equations derived from the harmonic gauge fixed action read

�hµν =
16πG

c4
τµν , (2.4a)

τµν ≡ |g|T µν +
c4

16πG
Σµν [h, ∂h, ∂2h] . (2.4b)

The above quantity τµν denotes the pseudo stress-energy tensor of the matter and gravita-

tional fields, with T µν = 2√−g
δSm/δgµν and with the gravitational source term Σµν , at least

quadratic in h and its first and second derivatives, being given by

Σµν = Λµν −HµHν −Hρ∂ρh
µν − 1

2
g
µν
gρσH

ρHσ + 2gρσg
λ(µ∂λh

ν)ρHσ , (2.5)

where Λµν takes the standard expression valid in harmonic coordinates while the “har-

monicity” is defined by Hµ ≡ ∂νh
µν = −√−g Γµ.3 As we see, the gravitational source term

contains all required harmonicities Hµ, which will not be assumed to be zero in the PN

iteration of the field equations (2.4).

The Fokker action is obtained by inserting back into (2.1)–(2.2) an explicit PN iterated

solution of the field equations (2.4) given as a functional of the particle’s trajectories, i.e.,

an explicit PN metric gµν(x;yB(t), vB(t), · · · ). Here the ellipsis indicate extra variables

coming from the fact that we solve Eqs. (2.4) including all harmonicity terms and without

replacement of accelerations, so that the equations of motion are off-shell at this stage and the

solution for the metric depends also on accelerations aB(t), derivative of accelerations bB(t),

and so on. In particular, the metric in the matter action evaluated at the location of the

particle A will be some (gµν)A = gµν(yA(t);yB(t), vB(t), · · · ). Thus, the Fokker generalized

PN action, depending not only on positions and velocities but also on accelerations and their

derivatives, is given by

SF [yB(t), vB(t), · · · ] =
∫

dt

∫

d3xLg [x;yB(t), vB(t), · · · ]

−
∑

A

mAc
2

∫

dt
√

−gµν (yA(t);yB(t), vB(t), · · · ) vµAvνA/c2 , (2.6)

3 The expression of Λµν is given by Eq. (24) in [2]. Later we shall also need its generalization to d space

dimensions as given by (175) in [2]. The harmonicity terms shown in (2.5) are the same in d dimensions.
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where Lg is the Lagrangian density of the gravitational action (2.3). As is well known, it is

always possible to eliminate from a generalized PN action a contribution that is quadratic in

the accelerations by absorbing it into a “double-zero” term which does not contribute to the

dynamics [21]. The argument can be extended to any term polynomial in the accelerations

(and their derivatives). The PN equations of motion of the particles are obtained as the

generalized Lagrange equations

δSF

δyB
≡ ∂LF

∂yB
− d

dt

(

∂LF

∂vB

)

+ · · · = 0 , (2.7)

where LF is the corresponding Lagrangian (SF =
∫

dt LF). Once they have been constructed,

the equations (2.7) can be order reduced by replacing iteratively all the higher-order accelera-

tions by their expressions coming from the PN equations of motion themselves. The classical

Fokker action should be equivalent, in the “tree-level” approximation, to the effective action

used by the effective field theory [44, 64, 74, 75].

B. Fokker action in the PN approximation

In the Fokker action (2.6) the gravitational term integrates over the whole space a solution

of the Einstein field equations obtained by PN iteration. The problem is that the PN solution

is valid only in the near zone of the source — made here of a system of particles. Let us

denote by h the PN expansion of the full-fledge metric perturbation h.4 Outside the near

zone of the source, h is not expected to agree with h and, in fact, will typically diverge at

infinity.5 On the other hand, the multipole expansion of the metric perturbation, that we

denote by M(h), will agree with h in all the exterior region of the source, but will blow

up when formally extended inside the near zone, and diverge when r → 0. Indeed M(h)

is a vacuum solution of the field equation differing from the true solution inside the matter

source. The PN expansion h and the multipole expansion M(h) are matched together in

their overlapping domain of validity, namely the exterior part of the near zone. Note that

4 We are here dealing with an explicit solution of the Einstein field equations (2.4) for insertion into the

Fokker action [see (2.6)]. Hence the metric perturbation depends on the particles, h(x;yA(t),vA(t), · · · ),
as does its PN expansion h(x;yA(t),vA(t), · · · ) and multipole expansion M(h)(x;yA(t),vA(t), · · · ) con-
sidered below. For simplicity we shall not indicate the dependence on the particles.

5 For instance, we know that h cannot be “asymptotically flat” starting at the 2PN or 3PN order, depending

on the adopted coordinate system [76].
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such overlapping region always exist for PN sources. The equation that realizes this match

states that the near zone expansion (r/c → 0) of the multipole expansion is identical, in a

sense of formal series, to the multipole expansion (a/r → 0, with a being the size of the

source) of the PN expansion. It reads (see [2] for more details)

M(h) = M
(

h
)

. (2.8)

The question we want to answer now is: How to transform the Fokker action (2.6) into an

expression involving integrals over PN expansions that are obtained by formal PN iteration

of the field equations in the near zone and can be computed in practice ? Obviously, the

problem concerns only the gravitational part of the action Sg =
∫

dt
∫

d3xLg. Note that

the PN expansion of the Lagrangian density has the structure Lg ∼ h�h + h∂h∂h + · · · .
Similarly, we can define the multipole expansion of the integrand, which takes the form

M(Lg) ∼ M(h)�M(h) + · · · . We are now in a position to state the following lemma.

Lemma 1: The gravitational part of the Fokker Lagrangian can be written as a space

integral over the looked-for PN Lagrangian density plus an extra contribution involving the

multipole expansion,

Lg = FP
B=0

∫

d3x
( r

r0

)B

Lg + FP
B=0

∫

d3x
( r

r0

)B

M(Lg) . (2.9)

A regulator (r/r0)
B and a finite part (FP) at B = 0, with r0 being an arbitrary constant

and B a complex number, cure the divergencies of the PN expansion when r ≡ |x| → +∞
in the first term while dealing with the singular behaviour of the multipole expansion when

r → 0 in the second term. The constant r0 represents an IR scale in the first term and a

UV scale in the second; it cancels out between the two terms.

This lemma relies on the common general structure of the two sides of the matching equa-

tion (2.8), which implies a similar structure for the gravitational part of the Lagrangian

density, namely (see e.g. [2])

M(Lg) = M(Lg) ∼
∑

n̂L r
a(ln r)bF (t) , (2.10)

where n̂L = STF(nL) denotes an angular factor made of the symmetric-trace-free (STF)

product of unit vectors ni = xi/r, with L = i1 · · · iℓ and nL = ni1 · · ·niℓ . The powers of r
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can take any positive or negative integer values a ∈ Z, while the powers of the logarithm are

positive integers b ∈ N. The functions F (t) denote very complicated multi-linear functionals

of the multipole moments describing the source. The formal structure (2.10) can be either

seen as a near-zone expansion when r → 0 or as a far-zone expansion when r → +∞.

To prove (2.9), we consider the difference between Lg and the second term, namely

∆g ≡ Lg − FP
B=0

∫

d3x
( r

r0

)B

M(Lg) . (2.11)

Since Lg is perfectly convergent, it does not need any regularization; the regulator (r/r0)
B

and the finite part at B = 0 can be inserted into it without altering the result. Hence

∆g = FP
B=0

∫

d3x
( r

r0

)B[

Lg −M(Lg)
]

. (2.12)

Now we remark that the difference between Lg and its multipole expansion M(Lg) is zero

in the exterior region and is therefore of compact support, limited to the PN source, which

is always smaller than the near zone size. Thus, we can replace it by the near-zone or PN

expansion, so that

∆g = FP
B=0

∫

d3x
( r

r0

)B[

Lg −M(Lg)
]

. (2.13)

Finally the integral over a formal near-zone expansion of a multipolar expansion, i.e., an ob-

ject like M(Lg), multiplied by a regulator (r/r0)
B, is always zero by analytic continuation in

B. To see why it is so, we evaluate the integral by inserting the formal structure (2.10). After

angular integration there remains a series of radial integrals of the type
∫ +∞
0

dr rB+a+2(ln r)b

which are all separately zero by analytic continuation in B. Indeed, one may split the pre-

vious integral into near-zone
∫ R
0

and far-zone
∫ +∞
R contributions. The near-zone integral

is computed for ℜ(B) > −a − 3 and analytically continued for any B ∈ C, except for a

multiple pole at B = −a−3. Likewise, the far-zone integral is computed for ℜ(B) < −a−3

and analytically continued for any B ∈ C, except −a − 3. The two analytic continuations

cancel each other and the result is exactly zero for any B ∈ C, without poles (see [2] for

more details). Finally, our lemma is proved,

∆g = FP
B=0

∫

d3x
( r

r0

)B

Lg . (2.14)

We now examine the fate of the second, multipolar term in (2.9) and show that it is

actually negligible at the 4PN order. For this purpose, we shall prove that this term is non-

zero only for “hereditary” terms depending on the whole past history of the source. Recall
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indeed that the multipolar expansion M(h) is constructed from a post-Minkowskian (PM)

algorithm starting from the most general solution of the linear Einstein field equations in

the vacuum region outside the source (see [2] for a review, as well as Appendix A below).

This linear solution is a functional of the multipole moments of the source, i.e., the two

series of mass-type and current-type moments IL(u) and JL(u) that describe the source

(L = i1 · · · iℓ, with ℓ being the multipole order), evaluated at the retarded time of harmonic

coordinates u = t−r/c.6 It is “instantaneous” in the sense that it depends on the state of the

source, characterized by the moments IL and JL, only at time u. The PM iteration of this

solution generates many terms that are likewise instantaneous and many hereditary terms

that involve an integration over the past of the source, say
∫ u

−∞ dv Q(1+ u−v
r
)[IL(v) or JL(v)],

where Q is typically a Legendre function of the second kind [77–79]. One feature of the

instantaneous terms is that, for them, the dependence on u can be factorized out through

some function G(u) which is a multi-linear product of the multipole moments IL(u) or JL(u)

and their derivatives. By contrast, for hereditary terms, such a factorization is in general

impossible.

This motivates our definition of instantaneous terms in the multipole expansion M(Lg)

(supposed to be generated by a PM algorithm) as being those with general structure of type

M(Lg)
∣

∣

inst
=
∑ n̂L

rk
(ln r)q G(u) , (2.15)

where G(u) is any functional of the moments IL(u) or JL(u) and their time-derivatives (or

anti time-derivatives), while k, q are positive integers with k > 2. By contrast the hereditary

terms will have a more complicated structure. For instance, recalling that M(Lg) is highly

non-linear in M(h), the hereditary terms could consist of the interactions between instan-

taneous terms and tail terms producing the so-called “tails-of-tails”. The corresponding

6 The retarded cone in harmonic coordinates differs from a null coordinate cone by the famous logarithmic

deviation, say U = u − 2GM
c3

ln( c2r
2GM

) + O(1
r
). Such logarithmic deviation is taken into account in the

formalism but in the form of a PM expansion, i.e., it is formally expanded when G → 0; it is then

responsible for the appearance of powers of logarithms.
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structure would be7

M(Lg)
∣

∣

hered
=
∑ n̂L

rk
(ln r)q H(u)

∫ u

−∞
dv Q

(

1 +
u− v

r

)

K(v) , (2.16)

where H(u) and K(u) are multi-linear functionals of IL(u) and JL(u). Obviously, more com-

plicated structures are possible. For hereditary terms in the previous sense, the dependence

over u cannot be factorized out independently from r. Now, we have the following lemma.

Lemma 2: The second term in the gravitational part of the Lagrangian (2.9) gives no

contribution to the action for any instantaneous contribution of type (2.15),

∫

dt

∫

d3x
( r

r0

)B

M(Lg)
∣

∣

inst
= 0 . (2.17)

Thus, only hereditary contributions of type (2.16) or more complicated will contribute.

The proof goes on in one line. Plugging (2.15) into the action, changing variable from t to

u and using the factorization of the function G(u), we get after angular integration a series

of radial integrals of the type
∫ +∞
0

dr rB+2−k(ln r)q, which are zero by analytic continuation

in B as before.

We emphasize as a caveat that the object M(Lg), made of instantaneous and hereditary

pieces (2.15) and (2.16), should be carefully distinguished from M(Lg) whose general struc-

ture was given in (2.10). The multipole expansion M(Lg) is defined all over the exterior

zone and can be constructed by means of a PM algorithm. At any PM order and for a given

set of multipole moments IL and JL, M(Lg) is always made of a finite number of terms

like (2.15) or (2.16). On the contrary, M(Lg) represents a formal infinite Taylor series when

r → 0 which, as we have seen from the matching equation (2.8), can also be interpreted

as a formal series M(Lg) when r → +∞. In such a formal sense, M(Lg) is in fact valid

“everywhere”.

Finally we are in a position to show that the multipolar contribution to the action —

i.e., the second term in (2.9) — is negligible at the 4PN order. Indeed, with the choice we

have made to write the original action by starting at quadratic order with terms ∼ h�h

7 In our computation we consider only the conservative part of the dynamics and neglect the usual radiation

reaction terms. Then, in the instantaneous terms (2.15), we should replace the retarded argument by the

advanced one, while in hereditary terms of type (2.16) we should consider an appropriate symmetrization

between retarded and advanced integrals.
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(after suitable integration by parts), we see that the multipole expansion of the Lagrangian

density, which is at least quadratic in M(h), takes the form

M(Lg) ∼ M(h)�M(h) +M(h)∂M(h)∂M(h) + · · · . (2.18)

Furthermore, M(h) is a vacuum solution of the field equations (2.4), physically valid only

in the exterior of the source. Hence �M(h) = M(Σ) with no matter source terms, and this

quantity is therefore of the type

�M(h) ∼ M(h)∂2M(h) + ∂M(h)∂M(h) + · · · . (2.19)

Combining (2.18) and (2.19) we see thatM(Lg) is at least cubic inM(h). In a PM expansion

of M(h) [see (A5) in the Appendix], this term is at least of order O(G3). Now, from (2.17),

we know that M(Lg) must necessarily be made of some multipole interaction involving

hereditary terms, as displayed in (2.16), and these must be cubic. But we know that at

dominant order such terms are the so-called “tails-of-tails”, made of multipole interactions

M ×M × IL(u) or M ×M ×JL(u) (M is the ADM mass), which arise at least at the 5.5PN

order [78, 79]. Therefore, in our calculation limited to 4PN, we are able to completely neglect

the multipolar contribution in the Lagrangian (2.9), which becomes a pure functional of the

PN expansion h of the metric perturbation up to the 4PN order,

Lg = FP
B=0

∫

d3x
( r

r0

)B

Lg . (2.20)

Note that since the constant r0 cancels out from the two terms of (2.9), the term (2.20)

at 4PN order must in fine be independent of that constant. We shall explicitly verify the

independence of our final Lagrangian over the IR cut-off scale r0.

III. THE TAIL EFFECT AT 4PN ORDER

Let us recall that there is an imprint of tails in the local PN dynamics of the source at

the 4PN order. The effect appears as a tail-induced modification of the dissipative radiation

reaction force at the relative 1.5PN order beyond the leading 2.5PN contribution [65, 66].

Associated with it there exists a non dissipative piece that contributes to the conservative

dynamics at the 4PN order. Here we shall show how to consistently include this piece into

the Fokker action, starting from the result (2.20). To this end we first need the explicit
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expressions for the parts of (2.20) that are quadratic and cubic in h, namely

L(2)
g =

c4

32πG
FP
B=0

∫

d3x
( r

r0

)B
[

1

2
hµν�h

µν − 1

4
h�h

]

, (3.1a)

L(3)
g =

c4

32πG
FP
B=0

∫

d3x
( r

r0

)B
[

h
ρσ
(

−1

2
∂ρhµν∂σh

µν
+

1

4
∂ρh∂σh

)

− hµν

(

∂ρh
µσ
∂σh

νρ −H
µ
H

ν
)

+ hµν

(

∂ρh
µ

σ∂
ρh

νσ − 1

2
∂ρh∂

ρh
µν
)

]

. (3.1b)

We shall insert in (3.1) the general expression for the PN expansion of the field in the

near zone obtained by solving the matching equation (2.8) to any PN order [80, 81]. This

solution incorporates all tails and related effects (both dissipative and conservative). It is

built from a particular B-dependent solution of the wave equation, defined from the PN

expansion of the pseudo stress-energy tensor (2.4b), τµν , by

h
µν

part ≡
16πG

c4
FP
B=0

I−1
[( r

s′0

)B

τµν
]

, (3.2)

where the action of the operator I−1 of the “instantaneous” potentials (in the terminology

of [66]) is given by

I−1
[( r

s′0

)B

τµν
]

=

+∞
∑

k=0

(

∂

c∂t

)2k

∆−k−1
[( r

s′0

)B

τµν
]

, (3.3)

in terms of the k-th iterated Poisson integral operator,

∆−k−1
[( r

s′0

)B

τµν
]

= − 1

4π

∫

d3x′
( r′

s′0

)B |x− x′|2k−1

(2k)!
τµν(x′, t) . (3.4)

The general PN solution that matches an exterior solution with retarded boundary con-

ditions at infinity is then the sum of the particular solution (3.2) and of an homogeneous

multipolar solution regular inside the source, i.e., of the type retarded minus advanced, and

expanded in the near zone,8

h
µν

= h
µν

part −
2G

c4

+∞
∑

ℓ=0

(−)ℓ

ℓ!
∂L

{Aµν
L (t− r/c)−Aµν

L (t + r/c)

r

}

. (3.5)

Note that the particular solution (3.2) involves the scale s′0. Similarly, as we shall see, the

homogeneous solution in (3.5) will also depend on the scale s′0 (through s0 = s′0 e
−11/12

introduced below).

8 Here and below, the presence of an overbar denoting the near-zone expansion r → 0 is explicitly understood

on the regular retarded-minus-advanced homogeneous solutions like the second term in (3.5).
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The multipole moments AL(t) in (3.5) are STF in L = i1 · · · iℓ and can be called radiation-

reaction moments. They are composed of two parts,

Aµν
L (t) = Fµν

L (t) +Rµν
L (t) . (3.6)

The first one, FL, corresponds essentially to linear radiation reaction effects and yields the

usual radiation damping terms at half integral 2.5PN and 3.5PN orders. These terms will

not contribute to the conservative dynamics (they yield total time derivatives in the action)

and we ignore them.

Important for our purpose is the second part, RL, which depends on boundary conditions

imposed at infinity. It is a functional of the multipole expansion of the gravitational source

term in the Einstein field equations, i.e., M(Σ), and is given by Eq. (4.11) in [80]. The

function RL is responsible for the tail effects in the near zone metric and its contribution

to (3.5) starts precisely at 4PN order. We evaluate it for quadrupolar tails, corresponding

to the interaction between the total ADM mass M of the source and its STF quadrupole

moment Iij. Denoting the corresponding homogeneous solution by

Hµν
= −2G

c4

+∞
∑

ℓ=0

(−)ℓ

ℓ!
∂L

{Rµν
L (t− r/c)−Rµν

L (t+ r/c)

r

}

, (3.7)

the relevant calculation at the quadrupole level was done in Eq. (3.64) of [66]:

H00
= −4G2M

c5

∫ +∞

0

dτ ln

(

cτ

2s0

)

∂ij

{

I
(2)
ij (t− τ − r/c)− I

(2)
ij (t− τ + r/c)

r

}

, (3.8a)

H0i
=

4G2M

c6

∫ +∞

0

dτ ln

(

cτ

2s0

)

∂j

{

I
(3)
ij (t− τ − r/c)− I

(3)
ij (t− τ + r/c)

r

}

, (3.8b)

Hij
= −4G2M

c7

∫ +∞

0

dτ ln

(

cτ

2s0

){

I
(4)
ij (t− τ − r/c)− I

(4)
ij (t− τ + r/c)

r

}

, (3.8c)

with the shorthand s0 = s′0 e
−11/12. For systems of particles the quadrupole moment reads

Iij =
∑

A mAy
〈i
Ay

j〉
A , where 〈〉 denotes the STF projection. Time-derivatives are indicated as

I
(n)
ij . Here, note that the constant s0 in the logarithms a priori differs from r0 [the IR cut-off

in (2.20)] and we pose

s0 = r0 e
−α . (3.9)

In this work we shall view the parameter α in (3.9) as an “ambiguity” parameter reflecting

some incompleteness of the present formalism. We do not seem to be able to control this
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ambiguity,9 which we therefore leave as arbitrary. The parameter α is the equivalent of the

parameter C in [67] and we shall later fix it, like in [67], by requiring that the conserved

energy for circular orbits contains the correct self-force limit already known by numerical [69,

70] and analytical [71] calculations [see (4.32)]. We have checked that if we integrate by

part the quadratic contributions in the PN Lagrangian (3.1a), so that we start with terms

∼ rB∂h∂h, the surface terms that are generated by the presence of the regulator factor rB

do not contribute to the dynamics modulo a mere redefinition of α.

At the leading 4PN order the expressions (3.8) reduce to

H00
=

8G2M

15c10
xixj

∫ +∞

0

dτ ln

(

cτ

2s0

)

I
(7)
ij (t− τ) +O (12) , (3.10a)

H0i
= −8G2M

3c9
xj

∫ +∞

0

dτ ln

(

cτ

2s0

)

I
(6)
ij (t− τ) +O (11) , (3.10b)

Hij
=

8G2M

c8

∫ +∞

0

dτ ln

(

cτ

2s0

)

I
(5)
ij (t− τ) +O (10) , (3.10c)

where we denote the PN remainder by O(n) ≡ O(c−n). We insert the PN solution

h = hpart +H into the action (2.20) and compute the contributions of the tail part H (the

instantaneous parts are discussed later). The quadratic terms in the action [see (3.1a)] will

yield some ∼ H�hpart that are very simple to compute since at 4PN order we can use the

leading expressions for hpart [see e.g. (4.14) below]. Furthermore we find that some contri-

butions ∼ H ∂hpart ∂hpart coming from the cubic part of the action must also be included

at 4PN order.10 Finally, inserting H into the matter part Sm of the action makes obviously

further contributions. We thus obtain the following 4PN tail effect in the total Fokker action

as (skipping the PN remainder)

Stail
F =

∑

A

mAc
2

∫

dt

[

−1

8
H00

A +
1

2c
H0i

Av
i
A − 1

4c2
Hij

Av
i
Av

j
A

]

− 1

16πG

∫

dt

∫

d3xHij
∂iU∂jU .

(3.11)

Most terms have a compact support and have been straightforwardly evaluated for particles

with mass mA and ordinary coordinate velovity viA (A = 1, 2). However the last term

in (3.11) is non compact and contains the Newtonian potential U =
∑

A GmA/|x − yA|.

9 Notice that we do not control the “bulk” PN near-zone metric outside the particles; the present formalism

is incomplete in this sense.
10 From (3.1b), these cubic terms are easily identified as ∝ Hij

∂ih
00

part ∂jh
00

part − 1
2H

ij
∂ihpart ∂jhpart.
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Next we substitute (3.10) into (3.11) and obtain after some integrations by parts,

Stail
F = −2G2M

5c8

∫ +∞

−∞
dt Iij(t)

∫ +∞

0

dτ ln

(

cτ

2s0

)

I
(7)
ij (t− τ) + Sη . (3.12)

We observe that the non-compact support term in (3.11) has nicely combined with the

other terms to give a bilinear expression in the time derivatives of the quadrupole moment

Iij . The last term Sη denotes an irrelevant gauge term associated with a harmonic gauge

transformation with vector ηi at the 4PN order. Such gauge term is due to a replacement of

accelerations in the action that we did in order to arrive at the form (3.12). For completeness

we give the “zero-on-shell” form of this gauge term as

Sη = −
∑

A

mA

∫ +∞

−∞
dt
[

aiA − (∂iU)A

]

ηiA , (3.13a)

where ηi = −2G2M

c8
xj

∫ +∞

0

dτ ln

(

cτ

2s0

)

I
(5)
ij (t− τ) . (3.13b)

An important point to notice is that the result (3.12) can be rewritten in a manifestly time-

symmetric way. Thus the procedure automatically selects some “conservative” part of the

tail at 4PN order — the dissipative part giving no contribution to the action. Indeed we

can alternatively write (ignoring from now on the gauge term)

Stail
F = −G2M

5c8

∫ +∞

−∞
dt Iij(t)

∫ +∞

0

dτ ln

(

cτ

2s0

)

[

I
(7)
ij (t− τ)− I

(7)
ij (t+ τ)

]

, (3.14)

which can also be transformed to a simpler form (after integrations by parts) with the help

of the Hadamard partie finie (Pf) [82, 83], as

Stail
F =

G2M

5c8
Pf

2s0/c

∫∫

dtdt′

|t− t′| I
(3)
ij (t) I

(3)
ij (t′) . (3.15)

The dependence on the scale s0 [see (3.9)] enters here via the arbitrary constant present in

the definition of the Hadamard partie finie.11 The result (3.15) agrees with the non-local

action for the 4PN tail term which has been considered in [67] [see Eq. (4.4) there] and

investigated in the effective field theory approach [74, 75]. Note however that while this

contribution was added by hand to the 4PN local action in [67], we have shown here how to

11 For any regular function f(t) tending to zero sufficiently rapidly when t → ±∞ we have

Pf
τ0

∫ +∞

−∞

dt′
f(t′)

|t− t′| ≡
∫ +∞

0

dτ ln

(

τ

τ0

)

[

f (1)(t− τ) − f (1)(t+ τ)
]

.
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derive it from scratch. Varying the action (3.15) with respect to the particle world-lines we

obtain
δStail

F

δyiA(t)
= −4G2M

5c8
mAy

j
A(t) Pf

2s0/c

∫ +∞

−∞

dt′

|t− t′|I
(6)
ij (t′) , (3.16)

which coincides with the conservative part of the known 4PN tail contribution in the equa-

tions of motion [65, 66].

IV. PN ITERATION OF THE FOKKER ACTION

A. The method “n+ 2”

In the previous section we inserted the explicit PN solution h = hpart +H given by (3.5)

into the Fokker action, and showed that the regular homogeneous solution H produces the

expected tails at 4PN order [see (3.15)]. We now deal with the terms generated by the

particular solution in that decomposition. For simplicity, since the tails have now been

determined, we shall just call that particular solution h = hpart.

We first check that the variation of the Fokker action with PN gravitational term (2.20)

yields back the PN expansion of the Einstein field equations. Indeed, because of the factor

rB we have to worry about the surface term that is generated when performing the variation

with respect to h. Schematically we have the structure Lg ∼ rB(h�h + h∂h∂h + · · · ).
When varying for instance the first term we get a contribution ∼ rBh�δh on which we

must shift the box operator to the left side modulo a surface term. However the surface

term will contain the regulator rB, so we see that it is actually rigourously zero by analytic

continuation in B, since it is zero when starting from the case where ℜ(B) is a large negative

number. Computing then the functional derivative of the Fokker action with respect to the

PN expansion of the field, we still have some factors rB but in some local (non integrated)

expression, on which the FP prescription reduces to taking the value at B = 0. Thus we

obtain the PN field equations as expected, say

δSF

δh
∼ c4

[

�h− Σ− c−4T
]

, (4.1)

where Σ denotes the non-linear gravitational source term and T ∼ |g|T symbolizes the

matter tensor [see (2.4)]. In anticipation of the PN counting we address below, we have

inserted into (4.1) the appropriate PN factor c4/16πG ∼ c4.
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We now discuss our practical method by which we control the PN expansion of the

components of the metric perturbation h in order to obtain the Fokker action accurate to

order nPN. As we shall see, thanks to the properties of the Fokker action [72], we essentially

need to insert the metric perturbation at half the PN order which would have been naively

expected.12 To this end we decompose the PN metric perturbation according to

h
µν −→



















h
00ii ≡ h

00
+ h

ii
,

h
0i
,

h
ij
.

(4.2)

Written in terms of these variables the (gauge fixed) gravitational action takes the form13

Sg =
c4

64πG
FP
B=0

∫

dt

∫

d3x
( r

r0

)B
[

1

2
h
00ii

�h
00ii − 2h

0i
�h

0i
+ h

ij
�h

ij − h
ii
�h

jj
+O

(

h
3)
]

.

(4.3)

Similarly the matter action reads at dominant order as

Sm =
∑

A

mAc
2

∫

dt

[

−1+
v2A
2c2

− 1

4
h
00ii

A +
viA
c
h
0i

A− viAv
j
A

2c2
h
ij

A+
v2A
2c2

h
ii

A+O
(

h
2

A, c
−2hA

)

]

, (4.4)

where the remainder term includes both higher-order terms in h as well as sub-dominant PN

corrections. Varying independently with respect to these components of h, we recover the

fact that to lowest order (h
00ii

, h
0i
, h

ij
) = O(2, 3, 4), where we recall that O(n) = O(c−n).

Consider first the usual PN iteration scheme, in which one solves the field equations

up to order n, i.e., up to order c−n included, where n is an even integer. This means

that (h
00ii

, h
0i
, h

ij
) are known up to order O(n + 2, n + 1, n) included, corresponding for

n even to the usual conservative expansion — neglecting the radiation reaction dissipative

terms.14 We collectively denote by hn[yA] the PN solution of the field equation up to that

order, functional of the trajectories of the particles yA(t) together with their velocities,

accelerations and derivatives of accelerations, not indicated here. From (4.1), we see that

the PN order of the functional derivative of the Fokker action evaluated for the approximate

12 This point has been suggested to us by T. Damour (private communication).
13 We present here the expression in 3 dimensions. Later we shall use dimensional regularization, so we shall

need the easily generalized d-dimensional expression.
14 For this discussion we can neglect conservative half-integral PN approximations, which arise to higher

orders [78, 79].
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solution hn[yA] will be given by the commited error in that solution. Hence we have for n

even (and ignoring the non-conservative odd PN orders)

δSF

δh
00ii

[

hn[yB],yA

]

= O
(

n
)

, (4.5a)

δSF

δh
0i

[

hn[yB],yA

]

= O
(

n− 1
)

, (4.5b)

δSF

δh
ij

[

hn[yB],yA

]

= O
(

n− 2
)

. (4.5c)

If now we write the complete solution as h[yB] = hn[yB] + rn+2, introducing some un-

controlled PN remainder term

rn+2 = (r00iin+4, r
0i
n+3, r

ij
n+2) = O(n+ 4, n+ 3, n+ 2) , (4.6)

the Fokker action expanded around the known approximate solution reads15

SF

[

h[yB],yA

]

= SF

[

hn[yB],yA

]

+ FP
B=0

∫

dt

∫

d3x
( r

r0

)B
[

δSF

δh
00ii

[

hn[yB],yA

]

r00iin+4

+
δSF

δh
0i

[

hn[yB],yA

]

r0in+3 +
δSF

δh
ij

[

hn[yB],yA

]

rijn+2 + · · ·
]

. (4.7)

The ellipsis stand for the quadratic and higher-order terms in the remainders rn+2. Inserting

both the orders of magnitude estimates (4.5) as well as the orders of the remainders (4.6)

we readily obtain

SF

[

h[yB],yA

]

= SF

[

hn[yB],yA

]

+O (2n) , (4.8)

which means that the Fokker action has been determined at the (n − 1)PN order. This is

not yet the nPN accuracy we were aiming for.

However, we notice that in this scheme the term h
ij
is responsible for the dominant er-

ror O(2n), together with a term of the same order, associated with the second variation

(δ2SF/δh
ij
/δh

kl
) rijn+2r

kl
n+2. Thus, if one pushes by one order the precision of the compo-

nent h
ij
, denoting h

′
n[yA] the corresponding solution which is now accurate up to order

O(n+ 2, n+ 1, n+ 2) included, we see that

δSF

δh

[

h
′
n[yB],yA

]

= O
(

n, n− 1, n
)

, (4.9a)

15 The complete justification of this expansion is actually not trivial because of the presence of the regulator

(r/r0)
B coming from the PN gravitational term (2.20) and the integrations by parts that are necessary

in order to arrive at (4.7). We deal with this point in Appendix A.
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and r′n+2 = O
(

n + 4, n+ 3, n+ 4
)

. (4.9b)

Here the remainders are such that h[yB] = h
′
n[yB] + r′n+2. With the estimates (4.9) we now

obtain our looked for nPN precision, namely

SF

[

h[yB],yA

]

= SF

[

h
′
n[yB],yA

]

+O (2n+ 2) . (4.10)

Concerning the terms with higher order functional derivatives — the ellipsis in (4.7) — we

can remark that the derivatives are at most a factor c4 multiplied by a remainder term that

is squared at least. In the scheme (4.9) the dominant source of error is now the term h
0i
.

Since we ignore non-conservative odd PN terms, solving for (h
00ii

, h
0i
, h

ij
) to order

O(n+ 1, n+ 2, n+ 2) with n an odd integer gives

δSF

δh

[

h
′′
n[yB],yA

]

= O
(

n− 1, n, n− 1
)

, (4.11a)

and r′′n+2 = O
(

n + 3, n+ 4, n+ 3
)

, (4.11b)

hence the error is still O(2n+ 2). In conclusion, we find that in order to control the Fokker

action to the nPN order, it is necessary and sufficient to insert the components of the metric

perturbation

h = (h
00ii

, h
0i
, h

ij
) up to order











O
(

n + 2, n+ 1, n+ 2
)

when n is even ,

O
(

n + 1, n+ 2, n+ 1
)

when n is odd .

(4.12)

Since in both cases all the components of h (for the conservative dynamics) are to be

computed up to order O(n + 2) we call the PN iteration up to that order the “method

n+ 2”.

B. Metric potentials in d dimensions

From the previous result, we see that at the 4PN order we need the components of the

metric perturbation up to order O(6, 5, 6) included. To that order we shall parametrize the

metric by means of usual PN potentials (see e.g. [2]). But since we use dimensional regular-

ization for treating the local divergencies we provide the requested expression of the metric

in d spatial dimensions. To this end the appropriate generalization of the variables (4.2) is

h
00ii

= 2
(d− 2)h

00
+ h

ii

d− 1
, h

0i
, h

ij
. (4.13)
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We have (with Ŵ = Ŵii and Ẑ = Ẑij)

h
00ii

= − 4

c2
V − 4

c4

[

d− 1

d− 2
V 2 − 2

d− 3

d− 2
K

]

(4.14a)

− 8

c6

[

2X̂ + V Ŵ +
1

3

(

d− 1

d− 2

)2

V 3 − 2
d− 3

d− 1
ViVi − 2

(d− 1)(d− 3)

(d− 2)2
KV

]

+O (8) ,

h
0i
= − 4

c3
Vi −

4

c5

(

2R̂i +
d− 1

d− 2
V Vi

)

+O (7) , (4.14b)

h
ij
= − 4

c4

(

Ŵij −
1

2
δijŴ

)

− 16

c6

(

Ẑij −
1

2
δijẐ

)

+O (8) . (4.14c)

Each of these potentials obeys a flat space-time wave equation (in d dimensions) sourced by

lower order potentials in the same family, and by appropriate matter density components.

The list of requested wave equations is

�V = −4πGσ , (4.15a)

�K = −4πGσ V , (4.15b)

�X̂ = −4πG

[

V σii

d− 2
+

2(d− 3)

d− 1
σiVi +

(

d− 3

d− 2

)2

σ

(

V 2

2
+K

)]

+ Ŵij ∂
2
ijV

+ 2Vi ∂t∂iV +
d− 1

2(d− 2)
V ∂2

t V +
d(d− 1)

4(d− 2)2
(∂tV )2 − 2∂iVj ∂jVi +�δX̂ , (4.15c)

�Vi = −4πGσi , (4.15d)

�R̂i = − 4πG

d− 2

[

5− d

2
V σi −

d− 1

2
Vi σ

]

− d− 1

d− 2
∂kV ∂iVk −

d(d− 1)

4(d− 2)2
∂tV ∂iV , (4.15e)

�Ŵij = −4πG

(

σij − δij
σkk

d− 2

)

− d− 1

2(d− 2)
∂iV ∂jV , (4.15f)

�Ẑij = − 4πG

d− 2
V

(

σij − δij
σkk

d− 2

)

− d− 1

d− 2
∂tV(i ∂j)V + ∂iVk ∂jVk + ∂kVi ∂kVj

− 2∂kV(i ∂j)Vk −
δij

d− 2
∂kVm (∂kVm − ∂mVk)−

d(d− 1)

8(d− 2)3
δij (∂tV )2

+
(d− 1)(d− 3)

2(d− 2)2
∂(iV ∂j)K . (4.15g)

The presence of additional terms proportional to the harmonicity Hµ in the gravitational

source term (2.5) leads in principle to differences in these wave equations with respect to

previous works which used harmonic coordinates [38]. At the order we are considering, the

only such additional contribution enters the potential X̂. It is denoted by δX̂ above. The

corresponding source reads

�δX̂ = ∂iV

[

∂tVi + ∂j

(

Ŵij −
1

2
δijŴ

)]

. (4.16)

21



When the equations of motion are satisfied the above potentials are linked by the following

differential identities coming from the harmonic gauge condition,

∂t

{

d− 1

2(d− 2)
V +

1

2c2

[

Ŵ +

(

d− 1

d− 2

)2

V 2 − 2(d− 1)(d− 3)

(d− 2)2
K

]}

+ ∂i

{

Vi +
2

c2

[

R̂i +
d− 1

2(d− 2)
V Vi

]}

= O (4) , (4.17a)

∂t

{

Vi +
2

c2

[

R̂i +
d− 1

2(d− 2)
V Vi

]}

+ ∂j

{

Ŵij −
1

2
Ŵδij +

4

c2

[

Ẑij −
1

2
Ẑδij

]}

= O (4) . (4.17b)

Note that we generally do not use these relations, which are true only “on-shell”, at the

level of the Fokker action. The only relation we are allowed to use for simplifications is

d− 1

2(d− 2)
∂tV + ∂iVi = O(2) , (4.18)

since it will hold for the Newtonian potentials V and Vi regardless of the equations of

motion. According to Eqs. (3.2) and (3.5), in order to recover the “particular” solution, one

should integrate the latter wave equations by means of the operator of symmetric potentials

I−1, and in principle, one should implement the calculation by means of a factor (r/r′0)
B

to cure possible IR divergencies. But at this relatively low level O(6, 5, 6) we find that

the IR regulator is in fact not necessary, and we can use the usual symmetric propagator

∆−1 + c−2∂2
t∆

−2 + · · · . The matter source terms are defined by

σ = 2
(d− 2)T 00 + T ii

(d− 1)c2
, σi =

T 0i

c
, σij = T ij , (4.19)

from the components of the stress-energy tensor of the point particles,

T µν =
∑

A

mA vµAv
ν
A

√

−(gρσ)A vρAv
σ
A/c

2

δ(d)(x− yA)√−g
. (4.20)

Finally the constant G is related to Newton’s constant GN in three dimensions by

G = GN ℓd−3
0 , (4.21)

where ℓ0 denotes the characteristic length scale associated with dimensional regularization.

C. Implementation of the calculation

Having determined in (4.14)–(4.15) the metric components for insertion into the Fokker

action (2.1)–(2.2), we tackle the difficult (and very lengthy) calculation of all the spatial
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integrals in the gravitational part Sg of the action.16 To reach the 4PN precision we must

include non-linear terms in the action up to the sixth non-linear level, say

Lg ∼ c4
[

h�h + h∂h∂h + · · ·+ hhhh∂h∂h
]

+O (10) . (4.22)

The matter part Sm of the action is much simpler and will not be discussed.

Following previous works on the 3PN equations of motion [34, 38] we shall proceed in

several steps. The potentials (4.15) are first computed for any point in 3-dimensional space

and then inserted into the gravitational part of the action. The computation of potentials

extensively uses the famous function g = ln(r1 + r2 + r12), solution of the elementary Pois-

son equation ∆g = r−1
1 r−1

2 [9], which permits to deal with quadratic source terms of type

∼ ∂V ∂V . One needs also to integrate a cubic source term ∼ Ŵ∂2V and for that we use

more complicated elementary solutions given by Eqs. (6.3)–(6.5) in [24].

The integration is then implemented by means of the Hadamard regularization (HR)17

to treat the UV divergencies associated with point particles. We thus compute with HR

the spatial integral (with non-compact support) of the terms in (4.22), say some generic

function F (x) resulting from the PN iteration performed in 3 dimensions,

I = Pf
s1,s2

∫

d3xF (x) . (4.23)

The function F is singular at the two points y1 and y2, and the Hadamard partie finie Pf

depends on two UV scales denoted sA. We assume that the integral extends on some finite

volume surrounding the singularities so that we do not include the IR regulator rB at this

stage (see below for discussion of the IR divergencies). The HR is simple and very convenient

for practical calculations but is unfortunately plagued with ambiguities starting at the 3PN

order. Therefore, in a second step, we shall correct for the possible ambiguities of HR by

adding to the HR result the difference “DR−HR” between the corresponding result of the

more powerful dimensional regularization (DR) [85, 86] and the one of HR. While at 3PN

and 4PN orders the HR result contains logarithmic divergences yielding ambiguities, the

DR result gives some simple poles, i.e., ∝ 1/ε where ε = d− 3. The poles are followed by a

finite part ∝ ε0 which is free of ambiguities, and all terms of order O(ε) are neglected.

16 Extensive use is made of the algebraic software Mathematica together with the tensor package xAct [84].
17 Or, more precisely, the so-called pure-Hadamard-Schwartz regularization [38]. See [35] for precise defini-

tions of various concepts of Hadamard’s partie finie.
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We perform the similar PN iteration in d dimensions to obtain a generic non-compact d

dimensional integral of some function F (d)(x), say

I(d) =

∫

ddxF (d)(x) . (4.24)

When r1 → 0 the function F (d) admits a singular expansion more complicated than in 3

dimensions, as it involves complex powers of r1 of the type p+ qε (instead of merely p),

F (d)(x) =
∑

p,q

rp+qε
1 f

1

(ε)
p,q(n1) + o(rN1 ) , (4.25)

where p and q are relative integers whose values are limited by some p0 6 p 6 N and

q0 6 q 6 q1 (with p0, q0, q1 ∈ Z). The coefficients f1
(ε)
p,q depend on the direction of approach

to the singularity n1 = (x−y1)/r1, and are linked to their counterparts f1p associated with

the function F in 3 dimensions by

q1
∑

q=q0

f
1

(0)
p,q(n1) = f

1
p(n1) . (4.26)

One can show that at the 4PN order the functions F (d) have no poles as ε → 0, so the limit

ε = 0 in (4.26) is well defined.

The point is that the difference DR−HR can be computed purely locally, i.e., in the

vicinity of the two particles, as it is entirely determined, in the limit ε → 0, by the coefficients

f1
(ε)
p,q of the local expansion of the function F (d). This is clear because the parts of the

integrals outside the singularities cancel out in the difference when ε → 0. Denoting such

difference by DI = I(d) − I, for any of the non-compact support integrals composing the

gravitational action, we have the basic formula

DI =
1

ε

q1
∑

q=q0

[

1

q + 1
+ ε ln s1

]

〈

f
1

(ε)
−3,q

〉

2+ε
+ 1 ↔ 2 +O(ε) . (4.27)

Here 1 ↔ 2 is the particle label permutation, s1 and s2 are the HR scales in (4.23), the O(ε)

remainder is neglected, and the spherical angular integrals read

〈

f
〉

d−1
=

∫

dΩd−1(n1) f(n1) , (4.28)

with dΩd−1 being the usual differential surface element in d− 1 dimensions. Notice the sum

ranging over the integer q in (4.27) and the problematic case q = −1. An important test of

the calculation (and more generally of the adequacy of DR to treat the classical problem of
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point particles in GR), is that the spherical integral (4.28) is always zero in the case of the

offending value q = −1.

The potentials (4.15) in d dimensions are in principle computed with d-dimensional gener-

alizations of the elementary solutions used in HR, notably the function g(d) which generalizes

the function g = ln(r1+r2+r12). This function is known in explicit closed form for any d (see

the Appendix C in [38]). Here we need only its local expansion when r1 → 0. In practice, the

local expansion of a potential is obtained by integrating term by term the local expansion

of its source, and adding the appropriate homogeneous solution. We obtain in Appendix B

the local expansion of the function g(d). We have checked that at the 4PN order we do not

need to consider the d-dimensional generalizations of the elementary solutions (6.3)–(6.5)

in [24]. We also found that the final 4PN results are unchanged if we add to the potentials

some arbitrary homogeneous solutions at order ε, provided that the harmonic coordinate

conditions (4.17) for the potentials remain satisfied when the potentials are “on-shell”.

Once the HR calculation has been completed and the difference “DR−HR” added,18 the

next step consists in renormalizing the result by absorbing the poles ∝ 1/ε into appropriate

shifts of the trajectories of the particles. There is a lot of freedom for such shifts. Here we

adopt some non-minimal prescription in order to recover the earlier shifts at 3PN order [38],

which yielded precisely the 3PN harmonic coordinate equations of motion in [34]. The latter

3PN equations of motion depend on two gauge constants r′1 and r′2 that we therefore intro-

duce into the shifts in replacement of the characteristic DR length scale ℓ0. For convenience

we extend this prescription to 4PN order in the simplest way, so that ℓ0 disappears from

the Lagrangian and the logarithmic terms (in harmonic coordinates) are only of the form

ln(r12/r
′
1) or ln(r12/r

′
2), where r12 is the separation between particles, and are symmetric

under 1 ↔ 2 exchange. Our 4PN shifts read then

ξ1 =
11

3

G2
Nm2

1

c6

[

1

ε
− 2 ln

(

q1/2r′1
ℓ0

)

− 327

1540

]

a
(d)
1,N +

1

c8
ξ1, 4PN , (4.29a)

ξ2 = 1 ↔ 2 . (4.29b)

At 3PN order we recognize the shift given by Eq. (1.13) in [38], where ℓ0 is defined by (4.21),

q = 4πeγE depends on Euler’s constant γE ≃ 0.577, and a
(d)
1,N is the Newtonian acceleration

of the particle 1 in d dimensions. The complete expression of the shift at 4PN order is given

18 Notice that the scales sA cancel out in the final DR result.
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in Appendix C. After applying the shifts (4.29) the poles ∝ 1/ε cancel out and the result is

UV finite.

We also found that our “brute” Lagrangian depends on the individual positions yA of the

particles. Such dependence is pure gauge and we removed it by including appropriate terms

in the shift, so that the shifted Lagrangian depends only on the relative position y12 and

is manifestly translation invariant. More generally we found that our initial Lagrangian is

not manifestly Poincaré invariant, but that we can adjust the shift (4.29) so that it becomes

Poincaré invariant in a manifest way (modulo a total time derivative). The (global) Lorentz-

Poincaré invariance is a very satisfying property of our final 4PN dynamics.

Finally we discuss the very important problem of IR divergencies, which appear specif-

ically at the 4PN order. As we see in the complete formula for the 4PN shift [Eq. (C3)

in Appendix C], besides the UV logarithms ln(r12/r
′
1) and ln(r12/r

′
2), there are also some

logarithms ln(r12/r0) at the 4PN order, where r0 was introduced in the gravitational part of

the action [see Eq. (2.20)] as an IR cut-off dealing with the divergences of three-dimensional

volume integrals such as (4.23), caused by the PN expansion h diverging at infinity. The

fact that the constant r0 can be completely removed from the calculation by applying the

shift (4.29) constitutes a very important test of the calculation. This is made possible by the

presence of the 4PN non-local tails (3.14)–(3.15). To see that, we rewrite the logarithmic

kernel in the tail integrals (containing the constant s0) as

ln

(

cτ

2s0

)

= ln

(

cτ

2r12

)

+ ln

(

r12
r0

)

+ α , (4.30)

where α links s0 to r0 and is defined by (3.9). We find that the second term of (4.30)

combines with the IR divergences of the 3-dimensional volume integrals to exactly produce

a term removable by a shift, hence the ln(r12/r0) contributions in (C3). With the first term

in (4.30) we shall rewrite the tail integrals using the separation r12,
19 being careful that r12

is no longer a constant and will have to be varied and participate to the dynamics. Finally

our end result will not only be UV finite but also IR finite.

The constant α which remains is the analogue of the constant C in [67]. It does not seem

possible to determine its value within the present method. Like in [67] we shall compute

it by comparison with self-force calculations, which have determined the 4PN term in the

19 Specifically, our choice is to insert r12 into Eq. (3.15) of the tail term, i.e., after integrations by parts.
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conserved energy for circular orbits [69–71]. Let us check that α is a pure numerical constant,

i.e., does not depend on the masses. Since α is dimensionless and is necessarily a symmetric

function of the two masses m1 and m2, it can only depend on the symmetric mass ratio

ν = m1m2/(m1 +m2)
2. Thus, we can write very generally (with a finite or infinite sum)

α =
∑

n

αn ν
n . (4.31)

In the Lagrangian α is in factor of ∼ (I
(3)
ij )2. We derive the corresponding terms in the

acceleration of the particles and look at the mass dependence of these terms. Imposing that

the acceleration should be a polynomial in the two masses separately,20 we find that the only

admissible case is indeed a pure constant α = α0. Finally we adjust α so that the conserved

energy for circular orbits (that we shall compute in the sequel paper [73], see also Sec. VD)

agrees with self-force calculations in the small mass ratio limit — see the coefficient of ν at

4PN order in Eq. (5.5) of [67]. Anticipating the result we find

α =
811

672
. (4.32)

V. LAGRANGIAN OF COMPACT BINARIES AT THE 4PN ORDER

A. Result in harmonic coordinates

The Lagrangian in harmonic coordinates at the 4PN order will be a generalized one,

depending on the positions of particles yA and velocities vA = dyA/dt, and also accelerations

aA = dvA/dt, derivatives of accelerations bA, and so on. However, by adding suitable double-

zero or multi-zero terms [21] we have removed all terms that are non-linear in accelerations

and derivatives of accelerations. Furthermore, by adding suitable total time derivatives

we have eliminated the dependence on derivatives of accelerations. Note that the process is

iterative, since the latter time derivatives reintroduce some terms non-linear in accelerations,

that need to be removed by further double-zeros. Thus the generalized 4PN harmonic-

coordinate Lagrangian depends on yA and vA, and is linear in accelerations aA.
21 As said

in Sec. IVC, after a suitable shift the Lagrangian depends only on the relative separation

20 This can be justified from a diagrammatic expansion of the N -body problem based on the post-

Minkowskian approximation [87].
21 An exception is the 4PN tail piece which will be left as a functional of yA, vA, aA and bA.
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r12 = |y1−y2| between the particles in harmonic coordinates. We denote the corresponding

unit direction by n12 = (y1−y2)/r12. We systematically use parenthesis to denote ordinary

scalar products, e.g. (n12v1) = n12 · v1 and (a1v2) = a1 · v2.

We write the full 4PN Lagrangian in the form

L = LN +
1

c2
L1PN +

1

c4
L2PN +

1

c6
L3PN +

1

c8
L4PN +O (10) , (5.1)

where the pieces up to 3PN order are known from previous works (see e.g. [2]) as

LN =
Gm1m2

2r12
+

m1v
2
1

2
+ 1 ↔ 2 , (5.2a)

L1PN = −G2m2
1m2

2r212
+

m1v
4
1

8

+
Gm1m2

r12

(

−1

4
(n12v1)(n12v2) +

3

2
v21 −

7

4
(v1v2)

)

+ 1 ↔ 2 , (5.2b)

L2PN =
G3m3

1m2

2r312
+

19G3m2
1m

2
2

8r312

+
G2m2

1m2

r212

(

7

2
(n12v1)

2 − 7

2
(n12v1)(n12v2) +

1

2
(n12v2)

2 +
1

4
v21 −

7

4
(v1v2) +

7

4
v22

)

+
Gm1m2

r12

(

3

16
(n12v1)

2(n12v2)
2 − 7

8
(n12v2)

2v21 +
7

8
v41 +

3

4
(n12v1)(n12v2)(v1v2)

− 2v21(v1v2) +
1

8
(v1v2)

2 +
15

16
v21v

2
2

)

+
m1v

6
1

16

+Gm1m2

(

−7

4
(a1v2)(n12v2)−

1

8
(n12a1)(n12v2)

2 +
7

8
(n12a1)v

2
2

)

+ 1 ↔ 2 , (5.2c)

L3PN =
G2m2

1m2

r212

(

13

18
(n12v1)

4 +
83

18
(n12v1)

3(n12v2)−
35

6
(n12v1)

2(n12v2)
2 − 245

24
(n12v1)

2v21

+
179

12
(n12v1)(n12v2)v

2
1 −

235

24
(n12v2)

2v21 +
373

48
v41 +

529

24
(n12v1)

2(v1v2)

− 97

6
(n12v1)(n12v2)(v1v2)−

719

24
v21(v1v2) +

463

24
(v1v2)

2 − 7

24
(n12v1)

2v22

− 1

2
(n12v1)(n12v2)v

2
2 +

1

4
(n12v2)

2v22 +
463

48
v21v

2
2 −

19

2
(v1v2)v

2
2 +

45

16
v42

)

+Gm1m2

(

3

8
(a1v2)(n12v1)(n12v2)

2 +
5

12
(a1v2)(n12v2)

3 +
1

8
(n12a1)(n12v1)(n12v2)

3

+
1

16
(n12a1)(n12v2)

4 +
11

4
(a1v1)(n12v2)v

2
1 − (a1v2)(n12v2)v

2
1

− 2(a1v1)(n12v2)(v1v2) +
1

4
(a1v2)(n12v2)(v1v2)

+
3

8
(n12a1)(n12v2)

2(v1v2)−
5

8
(n12a1)(n12v1)

2v22 +
15

8
(a1v1)(n12v2)v

2
2

− 15

8
(a1v2)(n12v2)v

2
2 −

1

2
(n12a1)(n12v1)(n12v2)v

2
2
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− 5

16
(n12a1)(n12v2)

2v22

)

+
5m1v

8
1

128

+
G2m2

1m2

r12

(

− 235

24
(a2v1)(n12v1)−

29

24
(n12a2)(n12v1)

2 − 235

24
(a1v2)(n12v2)

− 17

6
(n12a1)(n12v2)

2 +
185

16
(n12a1)v

2
1 −

235

48
(n12a2)v

2
1

− 185

8
(n12a1)(v1v2) +

20

3
(n12a1)v

2
2

)

+
Gm1m2

r12

(

− 5

32
(n12v1)

3(n12v2)
3 +

1

8
(n12v1)(n12v2)

3v21 +
5

8
(n12v2)

4v21

− 11

16
(n12v1)(n12v2)v

4
1 +

1

4
(n12v2)

2v41 +
11

16
v61

− 15

32
(n12v1)

2(n12v2)
2(v1v2) + (n12v1)(n12v2)v

2
1(v1v2)

+
3

8
(n12v2)

2v21(v1v2)−
13

16
v41(v1v2) +

5

16
(n12v1)(n12v2)(v1v2)

2

+
1

16
(v1v2)

3 − 5

8
(n12v1)

2v21v
2
2 −

23

32
(n12v1)(n12v2)v

2
1v

2
2 +

1

16
v41v

2
2

− 1

32
v21(v1v2)v

2
2

)

− 3G4m4
1m2

8r412
+

G4m3
1m

2
2

r412

(

−9707

420
+

22

3
ln

(

r12
r′1

))

+
G3m2

1m
2
2

r312

(

383

24
(n12v1)

2 − 889

48
(n12v1)(n12v2)

− 123

64
(n12v1)(n12v12)π

2 − 305

72
v21 +

41

64
π2(v1v12) +

439

144
(v1v2)

)

+
G3m3

1m2

r312

(

− 8243

210
(n12v1)

2 +
15541

420
(n12v1)(n12v2) +

3

2
(n12v2)

2 +
15611

1260
v21

− 17501

1260
(v1v2) +

5

4
v22 + 22(n12v1)(n12v12) ln

(

r12
r′1

)

− 22

3
(v1v12) ln

(

r12
r′1

))

+ 1 ↔ 2 . (5.2d)

Next we present the 4PN term. As we have discussed this term is the sum of an instan-

taneous contribution and a non-local tail piece, say

L4PN = Linst
4PN + Ltail

4PN . (5.3)

The tail piece has been found in Eqs. (3.14)–(3.15), but here we have to replace the Hadamard

partie-finie scale s0 therein by the particle separation r12. Specifically, we insert r12 into the

form (3.15) of the action (after integrations by parts), so the Lagrangian reads

Ltail
4PN =

G2M

5
I
(3)
ij (t) Pf

2r12/c

∫ +∞

−∞

dt′

|t− t′|I
(3)
ij (t′)
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=
G2M

5
I
(3)
ij (t)

∫ +∞

0

dτ ln

(

cτ

2r12

)

[

I
(4)
ij (t− τ)− I

(4)
ij (t+ τ)

]

. (5.4)

Again, note that when varying the Lagrangian we shall have to take into account the varia-

tion of the “constant” r12 = |y1(t)− y2(t)| in (5.4). The Lagrangian is defined up to a total

time derivative, and with the choice made in (5.4), the tail term is a functional of yA, vA,

accelerations aA and also derivatives of accelerations bA = daA/dt. Spliting for convenience

the very long instantaneous contribution according to powers of G as

Linst
4PN = L

(0)
4PN +GL

(1)
4PN +G2 L

(2)
4PN +G3 L

(3)
4PN +G4 L

(4)
4PN +G5 L

(5)
4PN , (5.5)

we find

L
(0)
4PN =

7

256
m1v

10
1 + 1 ↔ 2 , (5.6a)

L
(1)
4PN = m1m2

[

5

128
(a2n12)(n12v1)

6 + (n12v1)
5

{

−13

64
(a2v2) +

5

64
(a2n12)(n12v2)

}

+
33

16
(a1v1)(n12v2)(v1v2)

2 +
9

16
(a1n12)(v1v2)

3 + (a2n12)(n12v1)
4

{

11

64
(v1v2)

− 27

128
v21

}

+ (a2n12)

{

(v1v2)
2v21 +

49

64
(v1v2)v

4
1 −

75

128
v61

}

+ (n12v1)
3

{

3

32
(a1v2)(n12v2)

2 − 5

32
(a1n12)(n12v2)

3 − 2

3
(a2v2)(v1v2)

+
77

96
(a2v2)v

2
1 + (a2n12)

[1

2
(n12v2)(v1v2)−

11

32
(n12v2)v

2
1

]

− 5

32
(a1v2)v

2
2

+
15

32
(a1n12)(n12v2)v

2
2

}

+ (n12v1)
2

{

9

32
(a1v1)(n12v2)

3

+
9

32
(a1n12)(n12v2)

2(v1v2) + (a2n12)
[

−1

2
(v1v2)

2 − 13

32
(v1v2)v

2
1 +

53

128
v41

]

− 15

32
(a1n12)(v1v2)v

2
2 + (n12v2)

[

−11

16
(a1v2)(v1v2)−

23

32
(a1v1)v

2
2

]

}

+ v21

{

−19

32
(a1v1)(n12v2)

3 − 9

32
(a1n12)(n12v2)

2(v1v2) +
23

32
(a1n12)(v1v2)v

2
2

+ (n12v2)
[33

16
(a1v2)(v1v2) +

93

32
(a1v1)v

2
2

]

}

+ (n12v1)

{

− 9

16
(a1v1)(n12v2)

2(v1v2) +
27

16
(a1v2)(v1v2)

2

− 11

16
(a1n12)(n12v2)(v1v2)

2 − 123

64
(a2v2)v

4
1 + (a2n12)

[

−(n12v2)(v1v2)v
2
1

+
31

64
(n12v2)v

4
1

]

+
23

16
(a1v1)(v1v2)v

2
2 + v21

[

− 9

32
(a1v2)(n12v2)

2
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+
9

32
(a1n12)(n12v2)

3 +
7

2
(a2v2)(v1v2) +

23

32
(a1v2)v

2
2 −

23

32
(a1n12)(n12v2)v

2
2

]

}

+ (a2v1)

{

13

64
(n12v1)

5 +
11

64
(n12v1)

4(n12v2) + 2(n12v2)(v1v2)v
2
1

+ (n12v1)
2
[

−(n12v2)(v1v2)−
13

32
(n12v2)v

2
1

]

+
49

64
(n12v2)v

4
1

+ (n12v1)
3
[1

4
(n12v2)

2 − 1

16
(v1v2)−

77

96
v21 −

1

3
v22

]

+ (n12v1)
[3

2
(v1v2)

2 +
123

64
v41

+ v21
(

−1

2
(n12v2)

2 − 3

16
(v1v2) +

7

4
v22
)

]

}

+
1

r12

{

−17

32
(v1v2)

4 +
75

128
v81

+ v61

[

−11

32
(n12v2)

2 − 5

4
(v1v2) +

5

8
v22

]

+ (n12v1)
5
[ 35

128
(n12v2)

3 − 75

128
(n12v2)v

2
2

]

+ (n12v1)
4
[

− 35

256
(n12v2)

4 − 75

128
(n12v2)

2(v1v2) +
75

128
(v1v2)v

2
2

]

+ v21

[37

16
(n12v2)

2(v1v2)
2 +

51

32
(v1v2)

3 − 7

4
(v1v2)

2v22

]

+ (n12v1)
3
[15

16
(n12v2)

3(v1v2) +
39

32
(n12v2)(v1v2)

2 + v21
(

−55

64
(n12v2)

3

+
99

64
(n12v2)v

2
2

)

]

+ (n12v1)
2
[

−57

32
(n12v2)

2(v1v2)
2 − 29

32
(v1v2)

3

+ v21
(45

64
(n12v2)

4 + (n12v2)
2(
99

64
(v1v2)−

3

4
v22)−

99

64
(v1v2)v

2
2

)

]

+ (n12v1)
[11

8
(n12v2)(v1v2)

3 + v41
( 93

128
(n12v2)

3 − 185

128
(n12v2)v

2
2

)

+ v21
(

−21

8
(n12v2)

3(v1v2) + (n12v2)(−
73

32
(v1v2)

2 +
19

8
(v1v2)v

2
2)
)

]

+ v41

[

− 15

128
(n12v2)

4 +
3

4
(v1v2)

2 + (n12v2)
2
( 3

128
(v1v2) +

23

64
v22
)

− 7

128
(v1v2)v

2
2

+
3

256
v42

]

}

]

+ 1 ↔ 2 , (5.6b)

L
(2)
4PN = m2

1m2

[

1

r12

{

[

−4247

960
(a1n12)−

2

3
(a2n12)

]

(n12v1)
4 + (n12v1)

3
[

−29

12
(a2v1)

− 4501

480
(a1v2) +

51

8
(a2v2) +

519

80
(a1n12)(n12v2)−

25

6
(a2n12)(n12v2)

]

− 367

10
(a2v2)(n12v2)(v1v2) +

[

−13129

480
(a1v2)(n12v2) +

437

30
(a2v2)(n12v2)

]

v21

+ (a1v2)
[8653

480
(n12v2)

3 + (n12v2)
(8291

240
(v1v2)−

6669

160
v22
)

]

+ (a2v1)
[42

5
(n12v2)

3

− 107

12
(n12v2)v

2
1 + (n12v2)

(112

15
(v1v2)−

367

20
v22
)

]

+ (a2n12)
[126

5
(n12v2)

2(v1v2)

+
56

15
(v1v2)

2 +
19

12
v41 −

367

20
(v1v2)v

2
2 + v21

(

−47

5
(n12v2)

2 − 107

12
(v1v2) +

437

60
v22
)

]

+ (n12v1)
2
[1

2
(a2v1)(n12v2) +

10463

480
(a1v2)(n12v2)−

77

15
(a2v2)(n12v2)
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+ (a2n12)
(28

5
(n12v2)

2 +
1

2
(v1v2)−

89

12
v21 −

77

30
v22
)

+ (a1n12)
(

−9661

480
(n12v2)

2

− 94

15
(v1v2) +

3017

240
v21 +

2177

240
v22
)

]

+ (a1v1)
[2507

160
(n12v1)

3 − 16183

480
(n12v1)

2(n12v2)

− 2543

160
(n12v2)

3 +
16589

480
(n12v2)v

2
1 + (n12v1)

(6261

160
(n12v2)

2 +
5213

80
(v1v2)

− 16429

480
v21 −

5113

160
v22
)

+ (n12v2)
(

−13129

240
(v1v2) +

18191

480
v22
)

]

+ (n12v1)
[

(7063

160
(a1v2)−

583

24
(a2v2)

)

v21 + (a1n12)
(2233

240
(n12v2)

3 − 489

40
(n12v2)v

2
1

+ (n12v2)(
37

60
(v1v2)−

56

15
v22)
)

+ (a2v2)
(127

10
(n12v2)

2 +
329

30
(v1v2)−

83

5
v22
)

+ (a2v1)
(

−77

15
(n12v2)

2 +
1

4
(v1v2) +

299

12
v21 +

329

60
v22
)

+ (a1v2)
(

−13807

480
(n12v2)

2

− 4469

240
(v1v2) +

9511

480
v22
)

+ (a2n12)
(

−184

15
(n12v2)

3 +
55

3
(n12v2)v

2
1

+ (n12v2)(−
154

15
(v1v2) +

127

10
v22)
)

]

+ (a1n12)
[

−1811

960
(n12v2)

4 +
1341

80
(v1v2)

2

+
9143

960
v41 + (n12v2)

2
(31

10
(v1v2)−

3

5
v22
)

− 4277

240
(v1v2)v

2
2 + v21

(109

30
(n12v2)

2

− 1213

240
(v1v2) +

1363

480
v22
)

+
1603

320
v42

]

}

+
1

r212

{

11

40
(n12v1)

6 +
109

40
(n12v1)

5(n12v2)

+
110

3
(n12v2)

4(v1v2)−
527

120
(v1v2)

3 +
33

16
v61 + (n12v1)

4
[

10(n12v2)
2 +

105

16
(v1v2)

− 727

48
v21 −

65

6
v22

]

+ v41

[37

3
(n12v2)

2 +
175

16
(v1v2)−

287

48
v22

]

− 649

60
(v1v2)

2v22

+ (n12v1)
3
[

−237

10
(n12v2)

3 +
541

12
(n12v2)v

2
1 + (n12v2)

(

−91

6
(v1v2) +

1691

60
v22
)

]

+ (n12v1)
[

−92

5
(n12v2)

5 − 207

8
(n12v2)v

4
1 + v21

(794

15
(n12v2)

3 + (n12v2)(
617

6
(v1v2)

− 2513

40
v22)
)

+ (n12v2)
3
(

−1052

15
(v1v2) +

113

3
v22
)

+ (n12v2)
(

−1109

60
(v1v2)

2

+
1144

15
(v1v2)v

2
2 −

171

8
v42
)

]

+ v21

[

−78

5
(n12v2)

4 − 293

24
(v1v2)

2 +
2959

240
(v1v2)v

2
2

+ (n12v2)
2
(

−623

15
(v1v2) +

1819

60
v22
)

− 1169

240
v42

]

+ (n12v2)
2
[189

5
(v1v2)

2

− 273

4
(v1v2)v

2
2 +

3

16
v42

]

+
75

8
(v1v2)v

4
2 + (n12v1)

2
[148

5
(n12v2)

4 − 3

2
(v1v2)

2

+
231

16
v41 + (n12v2)

2
(2063

60
(v1v2)−

1253

30
v22
)

− 3503

240
(v1v2)v

2
2 + v21

(

−883

12
(n12v2)

2

− 1009

16
(v1v2) +

1693

48
v22
)

+
989

120
v42

]

+
115

32
v62

}

]

+ 1 ↔ 2 , (5.6c)

L
(3)
4PN =

m3
1m2

r212

[

{

2582267

16800
(a1n12)−

89763

1400
(a2n12)

}

(n12v1)
2 +

{

1111

25200
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+
110

3
ln
[r12
r′1

]

}

(a2v1)(n12v2) +
487591

25200
(a1v2)(n12v2)− 6(a2v2)(n12v2)

+ (a1v1)

{

−163037

1200
(n12v1) +

[15929

1400
− 110

3
ln
(r12
r′1

)

]

(n12v2)

}

+ (n12v1)

{

435011

5040
(a2v1) +

[31309

560
+ 44 ln

(r12
r′1

)

]

(a1v2) +
[

−212641

6300

− 44 ln
(r12
r′1

)

]

(a2v2)−
268169

2100
(a1n12)(n12v2) +

[5421

700

+ 22 ln
(r12
r′1

)

]

(a2n12)(n12v2)

}

+ (a1n12)

{

27203

1200
(n12v2)

2 +
[888179

6300

− 44 ln
(r12
r′1

)

]

(v1v2) +
[

−1391897

12600
+ 44 ln

(r12
r′1

)

]

v21 −
89129

2016
v22

}

+ (a2n12)

{

51

2
(n12v2)

2 +
[ 1111

25200
+

110

3
ln
(r12
r′1

)

]

(v1v2) +
[128867

8400

− 110

3
ln
(r12
r′1

)

]

v21 − 3v22

}

]

+
m3

1m2

r312

[

−906349

3360
(n12v1)

4 +
399851

672
(n12v1)

3(n12v2)

+
85

2
(n12v2)

4 +

{

−34003

525
+

110

3
ln
[r12
r′1

]

}

(v1v2)
2 +

{

−1195969

16800

+
55

3
ln
[r12
r′1

]

}

v41 + (n12v2)
2

{

[

−28403

1680
+ 99 ln

(r12
r′1

)

]

(v1v2)−
131

4
v22

}

+

{

−193229

25200
− 44

3
ln
[r12
r′1

]

}

(v1v2)v
2
2 + v21

{

[735527

8400
− 99 ln

(r12
r′1

)

]

(n12v2)
2

+
[7879619

50400
− 55 ln

(r12
r′1

)

]

(v1v2) +
[

−540983

25200
+

44

3
ln
(r12
r′1

)

]

v22

}

+ (n12v1)
2

{

[

−46577

140
− 55 ln

(r12
r′1

)

]

(n12v2)
2 − 1160909

2400
(v1v2) +

[1732751

4200

− 55 ln
(r12
r′1

)

]

v21 +
[77801

840
+ 66 ln

(r12
r′1

)

]

v22

}

+ (n12v1)

{

[

−9559

280

+ 55 ln
(r12
r′1

)

]

(n12v2)
3 +

[

−2617007

5600
+ 165 ln

(r12
r′1

)

]

(n12v2)v
2
1 + (n12v2)

[

(65767

150

− 88 ln(
r12
r′1

)
)

(v1v2) +
(

−129667

4200
− 88 ln(

r12
r′1

)
)

v22

]

}

+
139

16
v42

]

+
m2

1m
2
2

r212

[

(

(
17811527

33600
− 8769

512
π2)(a1n12) + (−12448339

33600
+

1017

64
π2)(a2n12)

)

(n12v1)
2

+ (a1v1)
(

(−3168457

10080
− 2095

256
π2)(n12v1) + (

11535007

50400
+

177

64
π2)(n12v2)

)

+ (n12v1)
(

(
12111653

50400
+

133

8
π2)(a2v1) + (

12496303

50400
+

1023

64
π2)(a1v2) + (−4383363

5600

+
2157

64
π2)(a1n12)(n12v2)

)

+
(3213347

100800
+

55

32
π2
)

(a2n12)v
2
1 + (a1n12)

(

(
1263331

16800
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+
1107

64
π2)(v1v2)−

11

4608
(29656 + 1989π2)v21

)

]

+
m2

1m
2
2

r312

[

(

−465431

480

+
27075

1024
π2
)

(n12v1)
4 +

(10701209

3360
− 53445

512
π2
)

(n12v1)
3(n12v2) +

(

−8248733

50400

− 8379

512
π2
)

(v1v2)
2 + (n12v1)

2
(

(−14873539

6720
+

79815

1024
π2)(n12v2)

2 + (−27374071

16800

− 9033

512
π2)(v1v2) + (

2079017

2100
− 2037

512
π2)v21

)

+ (n12v1)
(

(
1040673

700

+
4587

256
π2)(n12v2)(v1v2) + (−5303279

3360
+

7953

512
π2)(n12v2)v

2
1

)

+
(

−1177829

10080

− 4057

1024
π2
)

v41 + v21
(

(
12260653

16800
− 6057

512
π2)(n12v2)

2 + (
17958959

50400
+

11049

512
π2)(v1v2)

+ (−7672087

100800
− 1283

1024
π2)v22

)

]

+ 1 ↔ 2 , (5.6d)

L
(4)
4PN =

1

r312

{

m4
1m2

[1691807

25200
(a1n12)−

149

6
(a2n12)

]

+m3
1m

2
2

[

(

−2470667

16800

+
1099

96
π2
)

(a1n12) +
(9246557

50400
− 555

64
π2
)

(a2n12)
]

}

+
1

r412

{

m4
1m2

[

(2146

75

− 880

3
ln(

r12
r′1

)
)

(n12v1)
2 +

(3461

50
+

880

3
ln(

r12
r′1

)
)

(n12v1)(n12v2)−
1165

12
(n12v2)

2

+
(

−11479

300
− 220

3
ln(

r12
r′1

)
)

(v1v2) +
(317

25
+

220

3
ln(

r12
r′1

)
)

v21 +
1237

48
v22

]

+m3
1m

2
2

[

(9102109

16800
− 3737

96
π2 − 286

3
ln(

r12
r′1

)
)

(n12v1)
2 +

(

−1409257

1680
+

179

4
π2

+ 44 ln(
r12
r′1

) + 64 ln(
r12
r′2

)
)

(n12v1)(n12v2) +
(5553521

16800
− 559

96
π2 +

110

3
ln(

r12
r′1

)

− 64 ln(
r12
r′2

)
)

(n12v2)
2 +

(1637809

6300
− 2627

192
π2 − 154

3
ln(

r12
r′1

)− 16 ln(
r12
r′2

)
)

(v1v2)

+
(

−1887121

12600
+

527

48
π2 +

121

3
ln(

r12
r′1

)
)

v21 +
(

−44389

450
+

173

64
π2 +

22

3
ln(

r12
r′1

)

+ 16 ln(
r12
r′2

)
)

v22

]

}

+ 1 ↔ 2 , (5.6e)

L
(5)
4PN =

3

8

m5
1m2

r512
+

m3
1m

3
2

r512

(587963

5600
− 71

32
π2 − 110

3
ln(

r12
r′1

)
)

+
m4

1m
2
2

r512

(1690841

25200
+

105

32
π2

− 242

3
ln(

r12
r′1

)− 16 ln(
r12
r′2

)
)

+ 1 ↔ 2 . (5.6f)

These expressions depend linearly on accelerations aA and do not contain derivatives of

accelerations. The only remaining constants are the two UV scales r′1 and r′2 which are

gauge constants and will disappear from physical invariant results. The correct value of α

given by (4.32) has been inserted.

We have checked that the full 4PN Lagrangian is invariant under global Lorentz-Poincaré
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transformations. Indeed, the tail part of the Lagrangian is separately Lorentz invariant. We

have transformed the variables yA, vA and aA in Eqs. (5.2) and (5.6) according to a Lorentz

boost (with constant boost velocity), and verified that the Lagrangian is merely changed at

linear order by a total time derivative irrelevant for the dynamics.

Finally, we have verified that our 4PN Lagrangian, when restricted to terms up to

quadratic order in Newton’s constant G, i.e., for L
(0)
4PN, L

(1)
4PN and L

(2)
4PN, is equivalent to

the Lagrangian obtained using the effective field theory by Foffa & Sturani [64].

B. Removal of accelerations from the Lagrangian

We shall now perform a shift of the particle’s dynamical variables (or “contact” transfor-

mation) to a new Lagrangian whose instantaneous part will be ordinary, in the sense that

it depends only on positions and velocities. Furthermore, the shift will be such that the

logarithms ln(r12/r
′
1) and ln(r12/r

′
2) are cancelled. This directly shows that the scales r′A are

pure gauge constants. Here we simply report the resulting ordinary Lagrangian, which is

comparatively much simpler than the harmonic one (the shift is too lengthy to be presented

here). Our choice for this ordinary Lagrangian is that it is the closest possible one from the

ADM Lagrangian (see the discussion in Sec. VC). We have

L̃ = L̃N +
1

c2
L̃1PN +

1

c4
L̃2PN +

1

c6
L̃3PN +

1

c8
L̃4PN +O (10) , (5.7)

where L̃N and L̃1PN are actually unchanged since the shift starts only at the 2PN order, and

L̃N =
Gm1m2

2r12
+

m1v
2
1

2
+ 1 ↔ 2 , (5.8a)

L̃1PN = −G2m2
1m2

2r212
+

m1v
4
1

8
+

Gm1m2

r12

(

−1

4
(n12v1)(n12v2) +

3

2
v21 −

7

4
(v1v2)

)

+ 1 ↔ 2 ,

(5.8b)

L̃2PN =
1

16
m1v

6
1 +

Gm1m2

r12

( 3

16
(n12v1)

2(n12v2)
2 +

1

8
(v1v2)

2 + (n12v1)(
3

4
(n12v2)(v1v2)

− 1

4
(n12v2)v

2
1) +

7

8
v41 + v21(−

5

8
(n12v2)

2 − 7

4
(v1v2) +

11

16
v22)
)

+
G2m2

1m2

r212

(15

8
(n12v1)

2 − 15

4
(v1v2) +

11

8
v21 + 2v22

)

+
1

4

G3m3
1m2

r312
+

5

8

G3m2
1m

2
2

r312

+ 1 ↔ 2, (5.8c)
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L̃3PN =
5

128
m1v

8
1 +

Gm1m2

r12

{

− 5

32
(n12v1)

3(n12v2)
3 +

1

16
(v1v2)

3 +
11

16
v61

+ (n12v1)
[ 5

16
(n12v2)(v1v2)

2 − 3

16
(n12v2)v

4
1 + v21

( 9

16
(n12v2)

3 + (n12v2)(
3

4
(v1v2)

− 9

32
v22)
)

]

+ (n12v1)
2
[

−15

32
(n12v2)

2(v1v2) + v21
( 3

16
(n12v2)

2 − 5

16
v22
)

]

+ v41

[

− 5

16
(n12v2)

2 − 21

16
(v1v2) +

7

8
v22

]

+ v21

[

− 1

16
(n12v2)

2(v1v2) +
1

8
(v1v2)

2

− 15

32
(v1v2)v

2
2

]

}

+
G2m2

1m2

r212

{

− 5

12
(n12v1)

4 − 13

8
(n12v1)

3(n12v2) +
341

48
(v1v2)

2

+
21

16
v41 + (n12v1)

[1

4
(n12v2)v

2
1 + (n12v2)

(1

3
(v1v2)− v22

)

]

− 71

8
(v1v2)v

2
2

+ (n12v1)
2
[

−23

24
(n12v2)

2 − 1

2
(v1v2) +

13

16
v21 +

29

24
v22

]

+ v21

[5

6
(n12v2)

2 − 97

16
(v1v2)

+
43

12
v22

]

+
47

16
v42

}

+
G3m2

1m
2
2

r312

{

1

64

[

292 + 3π2
]

(n12v1)
2 +

[

−11

− 3

64
π2
]

(n12v1)(n12v2) +
1

64

[

472 + π2
]

(v1v2) +
[

−265

48
− 1

64
π2
]

v21

}

+
G3m3

1m2

r312

{

−5(n12v1)
2 − 1

8
(n12v1)(n12v2)−

27

8
(v1v2) +

173

48
v21 +

13

8
v22

}

− 1

8

G4m4
1m2

r412
+

1

96

{

−908 + 63π2

}

G4m3
1m

2
2

r412
+ 1 ↔ 2 . (5.8d)

Next the 4PN term is of the form

L̃4PN = L̃inst
4PN + Ltail

4PN , (5.9a)

L̃inst
4PN = L̃

(0)
4PN +G L̃

(1)
4PN +G2 L̃

(2)
4PN +G3 L̃

(3)
4PN +G4 L̃

(4)
4PN +G5 L̃

(5)
4PN , (5.9b)

where the tail piece Ltail
4PN is exactly the same as in Eqs. (5.4) and where

L̃
(0)
4PN =

7

256
m1v

10
1 + 1 ↔ 2 , (5.10a)

L̃
(1)
4PN =

m1m2

r12

{

−25

64
(n12v1)

3(n12v2)(v1v2)
2 +

3

64
(n12v1)

2(v1v2)
3 +

75

128
v81

+ v61

[

− 5

32
(n12v1)(n12v2)−

15

64
(n12v2)

2 − 35

32
(v1v2) +

45

64
v22

]

+ (n12v1)
5
[ 35

256
(n12v2)

3 − 55

256
(n12v2)v

2
2

]

+ (n12v1)
4
[ 85

256
(n12v2)

2(v1v2)

+
23

256
(v1v2)v

2
2

]

+ v21

[

−1

8
(n12v2)

2(v1v2)
2 +

9

64
(v1v2)

3 +
1

32
(v1v2)

2v22

+ (n12v1)
3
(

− 85

128
(n12v2)

3 +
115

128
(n12v2)v

2
2

)

+ (n12v1)
2
( 5

32
(n12v2)

4

+ (n12v2)
2(−135

128
(v1v2)−

21

64
v22)−

19

128
(v1v2)v

2
2

)

+ (n12v1)
(1

2
(n12v2)

3(v1v2)
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+ (n12v2)(
53

64
(v1v2)

2 − 1

16
(v1v2)v

2
2)
)

]

+ v41

[

− 7

32
(n12v2)

4 +
3

32
(v1v2)

2

+ (n12v1)
(183

256
(n12v2)

3 + (n12v2)(
9

16
(v1v2)−

167

256
v22)
)

+ (n12v1)
2
( 9

64
(n12v2)

2

− 15

64
v22
)

+ (n12v2)
2
(

− 23

256
(v1v2) +

3

16
v22
)

− 185

256
(v1v2)v

2
2 +

31

128
v42

]

}

+ 1 ↔ 2 ,

(5.10b)

L̃
(2)
4PN =

m2
1m2

r212

{

−369

160
(n12v1)

6 +
549

128
(n12v1)

5(n12v2)−
21

16
(n12v2)

2(v1v2)
2 − 53

96
(v1v2)

3

+
143

64
v61 + (n12v1)

4
[2017

1280
(n12v2)

2 − 1547

256
(v1v2) +

243

64
v21 −

4433

1920
v22

]

+
335

32
(v1v2)

2v22 + v41

[1869

1280
(n12v2)

2 − 1947

256
(v1v2) +

5173

1280
v22

]

+ (n12v1)
3
[

−11

8
(n12v2)

3 − 81

16
(n12v2)v

2
1 + (n12v2)

(4531

320
(v1v2) +

205

96
v22
)

]

+ (n12v1)
[7

2
(n12v2)

3(v1v2) +
295

128
(n12v2)v

4
1 + v21

(841

192
(n12v2)

3

+ (n12v2)(−
771

160
(v1v2)−

125

32
v22)
)

+ (n12v2)
( 37

192
(v1v2)

2 +
15

4
(v1v2)v

2
2 −

3

2
v42
)

]

+ (n12v1)
2
[7

4
(n12v2)

4 − 5629

1280
(v1v2)

2 − 53

16
v41 + (n12v2)

2
(

−4013

384
(v1v2)−

45

16
v22
)

+
527

384
(v1v2)v

2
2 + v21

(

−859

160
(n12v2)

2 +
875

128
(v1v2) +

2773

1280
v22
)

+
11

64
v42

]

− 381

32
(v1v2)v

4
2 + v21

[

−7

4
(n12v2)

4 +
10087

1280
(v1v2)

2 − 5395

384
(v1v2)v

2
2

+ (n12v2)
2
(629

384
(v1v2) +

17

16
v22
)

+
379

64
v42

]

+
59

16
v62

}

+ 1 ↔ 2 , (5.10c)

L̃
(3)
4PN =

m3
1m2

r312

[

−5015

384
(n12v1)

4 +
46493

1920
(n12v1)

3(n12v2) +
7359

400
(v1v2)

2 +
4799

1152
v41

+ (n12v1)
(

−6827

640
(n12v2)v

2
1 + (n12v2)(

23857

2400
(v1v2)−

31

16
v22)
)

+ (n12v1)
2
(3521

960
(n12v2)

2 − 6841

384
(v1v2) +

11923

960
v21 −

2027

1600
v22
)

− 357

16
(v1v2)v

2
2

+ v21
(

−13433

4800
(n12v2)

2 − 468569

28800
(v1v2) +

54061

4800
v22
)

+
203

32
v42

]

+
m2

1m
2
2

r312

[ 3

40960

(

182752− 625π2
)

(n12v1)
4 +

(

−72

5
− 35655

16384
π2
)

(n12v1)
3(n12v2)

+
(2051549

57600
− 10631

8192
π2
)

(v1v2)
2 + (n12v1)

2
(

(
16523

960
+

36405

16384
π2)(n12v2)

2

+ (
578461

6400
− 56955

16384
π2)(v1v2) + (−64447

1600
+

1107

1024
π2)v21

)

+ (n12v1)
( 7

51200
(−668104 + 21975π2)(n12v2)(v1v2)
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+ (
1295533

19200
− 43869

16384
π2)(n12v2)v

2
1

)

+
(65463

6400
− 2877

8192
π2
)

v41

+ v21
( 1

38400
(−1487258 + 79425π2)(n12v2)

2 + (−836017

14400
+

40739

16384
π2)(v1v2)

+ (
787817

57600
− 13723

16384
π2)v22

)

]

+ 1 ↔ 2 , (5.10d)

L̃
(4)
4PN =

m4
1m2

r412

[19341

1600
(n12v1)

2 − 15

8
(v1v2)−

16411

4800
v21 +

31

32
v22

]

+
m3

1m
2
2

r412

[

(−3461303

403200
− 15857

16384
π2)(n12v1)

2

+ (
46994113

403200
− 79385

24576
π2)(n12v1)(n12v2)

+ (−5615591

134400
+

35603

24576
π2)(n12v2)

2 + (
2827397

57600
− 171041

24576
π2)(v1v2)

+ (−1830673

57600
+

193801

49152
π2)v21 + (−1158323

57600
+

21069

8192
π2)v22

]

+ 1 ↔ 2 , (5.10e)

L̃
(5)
4PN =

1

16

m5
1m2

r512
+ (

3421459

50400
− 6237

1024
π2)

m4
1m

2
2

r512
+ (

4121669

50400
− 44825

6144
π2)

m3
1m

3
2

r512

+ 1 ↔ 2 . (5.10f)

C. Comparison with the Hamiltonian formalism

In principle, by properly adjusting the contact transformation or shift from harmonic

coordinates, the ordinary Lagrangian obtained in the previous section, Eqs. (5.7)–(5.10),

should correspond to ADM like coordinates, and by an ordinary Legendre transformation

we should obtain the (instantaneous part of the) ADM Hamiltonian. Concerning the tails

we also need to find a shift (which will be non-local [68]) that removes the accelerations and

derivatives of accelerations from the tail part of the Lagrangian (5.4), or, rather, from the

corresponding action. Once the tail part of the Lagrangian becomes ordinary, we can obtain

the corresponding tail part in the Hamiltonian.

The tail part of the action is

Stail
F =

G2M

5c8
Pf

2r12/c

∫∫

dtdt′

|t− t′| I
(3)
ij (t) I

(3)
ij (t′) , (5.11)

where the Hadamard scale s0 in Eq. (3.15) has been replaced by r12 = r12(t); the time

derivatives of the Newtonian quadrupole moment Iij =
∑

A mA y
〈i
Ay

j〉
A are evaluated without
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replacement of accelerations, i.e.,

I
(3)
ij =

∑

A

2mA

(

3v
〈i
Aa

j〉
A + y

〈i
Ab

j〉
A

)

. (5.12)

Here we look for a shift that transforms the action into the same expression but with the

derivatives of the quadrupole evaluated using the Newtonian equations of motion, i.e.,

Î
(3)
ij =

2Gm1m2

r212

(

−4n
〈i
12v

j〉
12 + 3(n12v12)n

〈i
12n

j〉
12

)

. (5.13)

Note that here Î
(3)
ij is not the third time derivative of the quadrupole moment unless the

equations of motion are satisfied. The requested shift is easy to find and we get, after

removal of some double-zero terms which do not contribute to the dynamics,

Stail
F = Ŝtail

F +
∑

A

mA

∫ +∞

−∞
dt
[

aiA − (∂iU)A

]

ξiA , (5.14)

where Ŝtail
F is given by the same expression as (5.11) but with the derivatives of the

quadrupole moment computed on-shell, Eq. (5.13), while the second term takes the form of

a shift explicitly given by22

ξiA =
4G2M

5c8

[

2vjA Pf
2r12/c

∫

dt′

|t− t′| Î
(3)
ij (t′)− yjA Pf

2r12/c

∫

dt′

|t− t′| Î
(4)
ij (t′) + 2

(n12v12)

r12
yjAÎ

(3)
ij

]

.

(5.15)

Once the total action ŜF = S inst
F + Ŝtail

F is ordinary, the (Fokker) Hamiltonian is defined by

the usual Legendre transformation as

ŜF =

∫ +∞

−∞
dt

[

∑

A

piAv
i
A −H

]

. (5.16)

The Hamiltonian is a functional of positions yA and momenta pA, and reads then

H = H inst + Ĥtail, where the tail part is just the opposite of the tail part of the Lagrangian,

as also found in Eq.(4.5) of [67],

Ĥtail = −G2M

5c8
Î
(3)
ij (t) Pf

2r12/c

∫ +∞

−∞

dt′

|t− t′| Î
(3)
ij (t′) . (5.17)

To prove this we notice that the tail term is a small 4PN quantity, and that its contribu-

tion in the velocity expressed as a function of the momentum cancels out in the Legendre

22 Note that in the shift vector itself, it does not matter whether we replace the accelerations by the equations

of motion or not.
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transformation at leading order. In the right-hand side of (5.17), the velocities present in

the quadrupole moment (5.13) are to be replaced with this approximation by vA → pA/mA.

An important point is that since the action is non-local in time the Hamiltonian is only

defined in an “integrated” sense by Eq. (5.16) but not in a local sense [88, 89]. Thus, the

Hamiltonian equations of motion will be valid in a sense of functional derivatives, and the

value of the Hamiltonian “on-shell” does not yield in general a strictly conserved energy.

Indeed, we shall find in the companion paper [73] that in order to obtain an energy E

that consistently includes the non-local tails at the 4PN order and is strictly conserved,

i.e., dE/dt = 0 at any time, we must take into account an extra contribution with respect

to the Hamiltonian computed on-shell. The latter extra contribution is however zero for

circular orbits. We shall show in Sec. VD how to compute, in that case, the energy from

the Hamiltonian.

We have compared our 4PN dynamics with the 4PN Hamiltonian published in Refs. [61–

63, 67], but unfortunately we have not been able to match our results with these works.

Moreover, we fundamentally disagree with Ref. [67] regarding the contribution of tails to

the energy for circular orbits (see the details in Sec. VD), but taking into account that

disagreement is not sufficient to explain the full discrepancy.

We did two comparisons. One at the level of the equations of motion, looking for a shift of

the trajectories such that the equations of motion derived from the 4PN harmonic Lagrangian

in Sec. VA are transformed into the equations of motion derived from the 4PN Hamiltonian

published in Eqs. (A3)–(A4) of [67]. Our second comparison was directly at the level of the

Lagrangian, constructing from the harmonic Lagrangian the ordinary Lagrangian (see the

result in Sec. VB), then shifting the tail part according to Eq. (5.14), and constructing the

4PN Hamiltonian following (5.16).

However these comparisons failed. The best we could do was to match all the terms with

powers G0, G1, G2 (the terms G0, G1 and G2 in our Lagrangian also match with those of

Ref. [64]), G3 and G5, as well as many terms with powers G4 in the acceleration, but there

are residual terms with powers G4 that are impossible to reconcile. When looking for the

ADM Lagrangian, the closest one we could find is given by (5.8)–(5.10) in Sec. VB, but its

Legendre transform disagrees with the published ADM Hamiltonian by G4 and G5 terms.

Finally the contact transformation which minimizes the number of irreconcilable terms

in both formalisms gives the difference between our harmonic-transformed acceleration ai1
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and their ADM acceleration (ai1)DJS as

ai1−(ai1)DJS =
2

15

G4mm1m
2
2

c8r512

[

−472

3
vi12(n12v12)+ni

12

(

− 1429

7
(n12v12)

2+
1027

7
v212

)

]

, (5.18)

where we denote m = m1 +m2 and vi12 = vi1 − vi2. Such a difference of accelerations cannot

be eliminated by a further contact transformation. It corresponds to the following difference

between Hamiltonians,

H − (H)DJS =
G4m

315 c8 r412

[

1429
(

m2
2(n12p1)

2 − 2m1m2(n12p1)(n12p2) +m2
1(n12p2)

2
)

+ 826
(

m2
2 p

2
1 − 2m1m2(p1p2) +m2

1 p
2
2

)

+ 902
Gmm2

1m
2
2

r12

]

. (5.19)

Our Hamiltonian H is defined by the sum of the tail part (5.17) and of the Legendre trans-

formation of the ordinary Lagrangian given by (5.8)–(5.10). In conclusion, from Eqs. (5.18)–

(5.19) we face a true discrepancy. Note, however, that this discrepancy concerns only a few

terms; for many terms our Hamiltonian agrees with the Hamiltonian of [67].

Furthermore, we observe the paradoxical fact that the difference of accelerations (5.18)

does not yield a zero contribution to the energy in the case of circular orbits. Similarly, the

difference of Hamiltonians (5.19) does not vanish for circular orbits. This is inconsistent with

the fact that the two groups agree on the conserved energy in that case. Recall that we have

adjusted our ambiguity parameter α to the value α = 811
672

so that the 4PN energy for circular

orbits (computed directly from the 4PN equations of motion in harmonic coordinates [73])

agrees with self-force calculations [see (4.32) and the preceding discussion]. On the other

hand, the ambiguity parameter in Ref. [67], which is denoted by C, has been adjusted

(to the value C = −1681
1536

) using the same self-force results. This contradiction leads us to

investigate the validity of the derivation of the conserved energy for circular orbits using the

Hamiltonian formalism as presented in Ref. [67]. We address this point in the next section.

D. Energy for circular orbits computed with the Hamiltonian

As discussed in the previous section we can consider the non-local but ordinary Hamil-

tonian H [yA,pA] = H inst(yA,pA) + Ĥtail[yA,pA], where the tail term given by (5.17) func-

tionally depends on the canonical positions yA and momenta pA. In the frame of the center

of mass the Hamiltonian is a functional of y = rn ≡ y1 − y2 and p ≡ p1 = −p2. Next,
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introducing polar coordinates (r, ϕ) in the binary’s orbital plane and their conjugate mo-

menta (pr = n · p, pϕ), we make the substitution p2 = p2r + p2ϕ/r
2 to obtain the reduced

Hamiltonian Hred which is a (non-local) functional of the canonical variables r, pr and pϕ.
23

For circular orbits we have r = r0 (a constant) and p0r = 0. The angular momentum p0ϕ is

then obtained as a function of the radius r0 by solving the radial equation

δHred

δr

[

r0, p
0
r = 0, p0ϕ

]

= 0 , (5.20)

while the orbital frequency Ω of the circular motion is given by

δHred

δpϕ

[

r0, p
0
r = 0, p0ϕ

]

= Ω . (5.21)

The circular energy is then E = Hred[r0, 0, p
0
ϕ(r0)], the function p0ϕ(r0) representing here the

solution of Eq. (5.20). Finally, by inverting Eq. (5.21), we can express the radius r0 as a

function of the frequency Ω, or rather, of the PN parameter x = (GmΩ/c3)2/3. This leads

to the invariant circular energy E(x).

The only tricky calculation is that of the contribution of the tail part of the Hamiltonian.

Because of the non-locality, the differentiation occurring in Eqs. (5.20)–(5.21) should be

performed in the sense of functional derivatives. As such, the functional variation of the tail

term with respect to r(t) (where t is the coordinate time with respect to which the binary’s

dynamics is measured) yields

δĤtail

δr(t)
= −2G2M

5c8

[

∂Î
(3)
ij (t)

∂r(t)
Pf

2r(t)/c

∫ +∞

−∞

dt′

|t− t′| Î
(3)
ij (t′)− 1

r(t)

(

Î
(3)
ij (t)

)2
]

. (5.22)

The second term in the square brackets comes from the variation of the Hadamard partie

finie scale r(t) ≡ r12(t) present in Eq. (5.17). Similarly, the functional variation with respect

to pϕ(t) reads

δĤtail

δpϕ(t)
= −2G2M

5c8
∂Î

(3)
ij (t)

∂pϕ(t)
Pf

2r(t)/c

∫ +∞

−∞

dt′

|t− t′| Î
(3)
ij (t′) . (5.23)

We substitute into the radial equation (5.20) all the instantaneous contributions — this

poses no problem since the partial derivatives are ordinary — and add to that the tail

23 Because of the non-local tail term, the Hamiltonian depends also on ϕ, so that pϕ is not strictly conserved.

However, we can neglect this dependence on ϕ and the variation of pϕ in the present calculation, since in

particular pϕ is constant in the case of circular orbits.
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piece (5.22). Solving iteratively for p0ϕ as a function of r0, we find the standard Newtonian

result

p0ϕ(r0) = mν
√

Gmr0 +O(2) , (5.24)

which we can insert back into the tail integral entering (5.22), because the tail term is a small

4PN quantity. At this stage, and only at this stage, we are allowed to reduce the tail integral

and compute it in the case of circular orbits, i.e., for r = r0, p
0
r = 0, p0ϕ(r0) being given

by (5.24), and for ϕ̇ = ω0 + O(2), with ω0 =
√

Gm/r30. A straightforward calculation [90]

leads to the formula (modulo higher-order PN radiation-reaction corrections)
(

Pf
2r(t)/c

∫ +∞

−∞

dt′

|t− t′| Î
(3)
ij (t′)

)
∣

∣

∣

∣

[r0,p0r=0,p0ϕ(r0)]

= −2
(

Î
(3)
ij (t)

)

∣

∣

∣

∣

[r0,p0r=0,p0ϕ(r0)]

[

ln

(

4ω0r0
c

)

+ γE

]

,

(5.25)

with γE denoting the Euler constant. This result is used to determine the contribution of

the tail term in the link between p0ϕ and r0 at the 4PN order. Denoting such contribution

by ∆p0ϕ(r0) we explicitly find

∆p0ϕ(r0) =
G2M

5c8ω0

{(

r
∂
(

Î
(3)
ij

)2

∂r

)

∣

∣

∣

∣

[r0,p0r=0,p0ϕ(r0)]

[

ln

(

4ω0r0
c

)

+ γE

]

+
(

(

Î
(3)
ij

)2
)

∣

∣

∣

∣

[r0,p0r=0,p0ϕ(r0)]

}

.

(5.26)

This is easily reduced by employing the Newtonian expression of the quadrupole moment,

valid for a general orbit (i.e., for any r, pr and pϕ), hence

(

Î
(3)
ij

)2
=

G2m2

r4

(

8

3
p2r + 32

p2ϕ
r2

)

+O(2) . (5.27)

Treating (r, ϕ, pr, pϕ) as independent variables, we differentiate (5.27) partially with respect

to r and take r = r0, pr = 0, pϕ = p0ϕ(r0) afterwards. We get [using also M = m+O(2)]

∆p0ϕ(r0) =
G9/2m11/2ν2

5c8r
7/2
0

(

−192

[

ln

(

4ω0r0
c

)

+ γE

]

+ 32

)

. (5.28)

Next, we consider the orbital frequency Ω ≡ dϕ/dt given by Eq. (5.21). The tail contribution

therein has been displayed in (5.23). Using Eq. (5.24) to Newtonian order we simply find

Ω(r0) = ω0 +O(2). The tail term is consistently evaluated thanks to (5.25) as before. The

tail induced modification of the frequency, say ∆Ω(r0), is then the sum of the direct effect

of the tail term in (5.23) and of a contribution due to the tail modification of the angular

momentum (5.28),

∆Ω(r0) =
∆p0ϕ(r0)

mνr20
+

128

5

G9/2m9/2ν

5c8r
11/2
0

[

ln

(

4ω0r0
c

)

+ γE

]
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=
G9/2m9/2ν

5c8r
11/2
0

(

−64

[

ln

(

4ω0r0
c

)

+ γE

]

+ 32

)

. (5.29)

With the two results (5.28)–(5.29) in hands the contribution of tails in the invariant energy

for circular orbits expressed as a function of x = (GmΩ/c3)2/3 is readily found to be

∆E(x) = −224

15
mc2ν2x5

[

ln (16x) + 2γE − 4

7

]

. (5.30)

This result fully agrees with our alternative derivation based on the direct construction of

the conserved circular energy from the equations of motion in harmonic coordinates (see

the companion paper [73]). Thus, by following the above Hamiltonian procedure, i.e., by

carefully taking into account the non-local character of the tail term during the variation of

the Hamiltonian [see notably (5.22)], we have shown that our Hamiltonian H defined by the

Legendre transformation of the ordinary Lagrangian (5.8)–(5.10) plus the tail part (5.17)

leads to the correct conserved invariant energy for circular orbits. This calculation confirms

our value α = 811
672

for the ambiguity parameter.

However, we find that, applying the same Hamiltonian procedure to the Hamiltonian

(H)DJS, we do not recover the part of the invariant energy for circular orbits that is known

from self-force calculations, unless the ambiguity parameter C is adjusted to a different

value, which would then in turn change several coefficients in the Hamiltonian for general

orbits [67]. We obtain that the value for which that Hamiltonian gives the correct circular

energy is

Cnew = C +
3

7
= − 7159

10752
. (5.31)

One possible explanation for the discrepancy could reside in the treatment of the non-

local part of the Hamiltonian when reducing to circular orbits. Recall from Eq. (5.22) that

one must evaluate the tail integral for circular orbits after the differentiation with respect

to r. We think that the treatment of Ref. [67] effectively amounts to doing the reverse,

i.e., to computing first the tail integral for circular orbits by means of (5.25), and only then

performing the differentiation with respect to r. Indeed, we have been told by G. Schäfer

(private communication) that Ref. [67] uses a local version of the Hamiltonian computed

with Eq. (5.25), and then differentiates it with respect to the independent canonical variables

r, pr and pϕ, using ω = pϕ/(mνr2) for the circular orbit frequency, therefore arriving at

(

∆p0ϕ
)

DJS
=

G2M

5c8ω0

(

r
∂

∂r

(

(

Î
(3)
ij

)2
[

ln

(

4pϕ
mνrc

)

+ γE

])

)

∣

∣

∣

∣

[r0,p0r=0,p0ϕ(r0)]

, (5.32)
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instead of our prescription (5.26). If one now applies the derivative with respect to r, one

finds that the tail induced contribution to the angular momentum as a function of r0 in [67]

differs from ours by the amount

∆p0ϕ −
(

∆p0ϕ
)

DJS
=

2

5

G2M

c8ω0

(

(

Î
(3)
ij

)2
)

∣

∣

∣

∣

[r0,p0r=0,p0ϕ(r0)]

=
64

5

G9/2m11/2ν2

c8r
7/2
0

. (5.33)

Furthermore we find that the tail contribution to the orbital frequency Ω(r0) as a function of

the radius agrees with us, so that, in the end, the tail contribution in the invariant circular

energy differs from ours by

∆E − (∆E)DJS = ω0

[

∆p0ϕ −
(

∆p0ϕ
)

DJS

]

=
64

5
mc2ν2x5 . (5.34)

Finally the prescription (5.32), with which we disagree, leads to an incorrect invariant energy

E(x) for circular orbits when starting from our Hamiltonian or from the one in [67] but with

C given by (5.31). On the other hand, if one applies this prescription, different from ours,

for the circular orbit reduction of the Hamiltonian in [67], without modifying the constant

C, one ends up with the correct E(x).

Similarly, we disagree with the computation of the effective-one-body (EOB) potentials at

the 4PN order in Ref. [68]. Indeed, a local ansatz has been made for the EOB Hamiltonian,

since it has been obtained by evaluating the tail term on shell for an explicit solution of

the motion (see Eqs. (4.10)–(4.11) in [68]), which means effectively using Eq. (5.25) in the

case of circular orbits, and results in a local Hamiltonian. Note that the comparison to

the self-force results of the work [67, 68] have been recently complemented by deriving and

confirming with another method the EOB potential D(u) [91]. However, the problem in the

treatment of the non-locality described above might affect this comparison as well24.

Still, if we now make the comparison with the Hamiltonian [67] but with the new value of

the ambiguity parameter (5.31), we cannot reduce the difference to zero. Indeed, the right-

hand sides of Eqs. (5.18)–(5.19) do not correspond to a mere rescaling of the ambiguity

parameter. We get instead

a′
i
1 − (ai1)

new
DJS =

2

15

G4mm1m
2
2

c8r512

[

680

3
vi12(n12v12) + ni

12

(

− 595(n12v12)
2 + 85v212

)

]

, (5.35a)

24 After this work was submitted for publication, the authors of [67, 68] described in more details their

method for reducing the dynamics to a local-in-time Hamiltonian in [92].
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H ′ − (H)newDJS =
1

315

G4m

c8 r412

[

4165
(

m2
2(n12p1)

2 − 2m1m2(n12p1)(n12p2) +m2
1(n12p2)

2
)

− 1190
(

m2
2 p

2
1 − 2m1m2(p1p2) +m2

1 p
2
2

)

+ 1190
Gmm2

1m
2
2

r12

]

. (5.35b)

With respect to (5.18)–(5.19) we have performed for convenience an additional shift, hence

we denote our new acceleration and Hamiltonian with a prime. When using the value (5.31)

of the ambiguity parameter, the differences (5.35) can now be seen not to contribute to the

conserved invariant energy for circular orbits, which resolves our paradox. Unfortunately,

we have no explanation for the remaining discrepancy in Eqs. (5.35).
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Appendix A: Complement about the method “n+ 2”

We compute the Fokker action SF for a full-fledge solution h of the field equations reducing

to the PN expansion h in the near zone and to the multipole expansion M(h) in the far

zone. These two expansions obey the matching equation M(h) = M
(

h
)

. We suppose that

this solution is of the type

h = hn + δh , (A1)

where hn is some known approximate solution and δh is a remainder (or error) term defined

everywhere. We denote the approximate solution hn with the label n because we assume

that in the near zone the PN expansion of this solution agrees with the known solution

considered in Sec. IVA, i.e., hn. However we extend here that solution to the far zone

as well, where it agrees with the multipole expansion M(hn). Similarly the error in that

solution is defined both in the near zone, i.e., δh, and in the far zone, M(δh).

Since we are considering here the true solution h (and not merely its PN expansion h)

there is no regulator rB in the first place, and we can freely integrate by parts the action
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and write the usual expansion

SF[h] = SF[hn] +

∫

dt

∫

d3x
δSF

δh
[hn] δh+O

(

δh2
)

. (A2)

At this stage we apply the lemma (2.9) to the second term in (A2). We introduce the regu-

lator rB and transform it into an expression that integrates over the formal PN expansion,

plus a contribution that integrates over the multipole expansion (with, say, r0 = 1):

∫

d3x
δSF

δh
δh = FP

B=0

∫

d3x rB
δSF

δh
δh+ FP

B=0

∫

d3x rBM
(

δSF

δh

)

M (δh) . (A3)

The first term of (A3) corresponds exactly to the PN remainder that is investigated in

Sec. IVA and yields to our method n + 2 [see Eq. (4.7)]. Here we worry about the second,

multipolar contribution in (A3) that was not considered in the arguments of Sec. IVA. We

shall argue that its contribution is completely negligible when re-expanded in the near zone

as compared with the 4PN order.

For the method n+2 we proved in Sec. IVA that if the PN solution hn is known to order

O(n + 2, n + 1, n + 2) when n is even and O(n + 1, n + 2, n + 1) when n is odd, then the

contribution of the first, PN term in (A3) is very small, and the action is finally controlled

up to nPN order [see Eq. (4.12)]. We evaluate the contribution due to the second, multipolar

term in (A3), namely

TF = FP
B=0

∫

dt

∫

d3x rBM
(

δSF

δh

)

M (δh) . (A4)

We must impose that the error made in the multipole expansion in the far zone, i.e., M(δh),

becomes equal when re-expanded into the near zone to the error assumed in the PN expan-

sion, i.e., δh. Note that M(δh) is not equal to M(δh) as the matching equation is only

correct for the true, complete solution h [see Eq. (2.8)]. Since the multipole expansion is

constructed from a post-Minkowskian (PM) expansion (see [2])

M(h) =

+∞
∑

m=1

Gmh(m) , (A5)

we shall assume that the error M(δh) in the far zone corresponds to some high PM order

m0, i.e., is of order O(Gm0). Thus we have

M(hn) =

m0−1
∑

m=1

Gmh(m) , (A6a)
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M(δh) =

+∞
∑

m=m0

Gmh(m) . (A6b)

To determine what m0 is we recall that the leading PN order of the near zone re-expansion

of the PM coefficients is h(m) = O(2m, 2m+1, 2m).25 Imposing then that this PN-expanded

PM error is equal to the previous one assumed for δh, we find the minimal PM order of the

error in the far zone to be 2m0 = n+2 when n is even and 2m0 = n+3 when n is odd, thus

(with [ ] being the integer part)

m0 =
[

n+1
2

]

+ 1 . (A7)

To obtain the magnitude of the term (A4) we first notice that any term in the integrand

which is instantaneous in the sense of having the structure (2.15) will yield zero contribution

thanks to our lemma (2.17). Thus it remains only the hereditary contributions which have

the more complicated structure given by (2.16). Next, we remark that sinceM(δh) is a small

error PM term of order O(Gm0), the variation of the Fokker action M(δSF/δh) evaluated

for the approximate solution hn must necessarily also be a small PM term, because the

Fokker action is stationary for the exact solution. More precisely we find [because of the

extra factor ∼ c4/G in front of (4.1)] that it must be of order O(Gm0−1), hence

M
(

δSF

δh

)

=
+∞
∑

m=m0−1

Gmk(m) , (A8)

with some PM coefficients k(m). Thus we conclude that only hereditary terms that are

at least of order O(G2m0−1) can contribute to the PM expansion of (A4). For our 4PN

computation n = 4 thus m0 = 3 from (A7), thus such hereditary terms must be O(G5).

We had argued at the end of Sec. II B that cubic∼ O(G3) hereditary terms will correspond

for the leading multipole interactions to “tail-of-tails” and are dominantly of order 5.5PN

when re-expanded in the near zone. Here the hereditary terms ∼ O(G5) should correspond

minimally to say “tail-of-tail-of-tail-of-tails” and give an even smaller contribution in the near

zone, presumably starting at the order 8.5PN. In conclusion we can neglect the term (A4)

and our use of Eq. (4.7) for the method “n+ 2” is justified.

25 Such statement can be proved by induction over the PM order m.
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Appendix B: Local expansion of the function g(d) in d dimensions

In this Appendix we work out the local expansion near the singularities, say when r1 → 0,

of the function g(d), defined in d dimensions by

g(d) = ∆−1
(

r2−d
1 r2−d

2

)

, (B1)

where ∆−1 is the usual inverse Laplace operator in d dimensions. Such solution plays

a crucial role when integrating the non compact support source terms in the elementary

potentials (4.15) for d dimensions. The explicit form of this function is known and has been

displayed in the Appendix C of [38]. Here we shall complete the latter work by providing the

explicit expansion of g(d) when r1 → 0. This expansion is all what we need when computing

the difference between DR and HR — since that difference can precisely be obtained solely

from the local expansions r1 → 0 or r2 → 0 near the singularities [see notably Eq. (4.27)].

1. Derivation based on distribution theory

Following Ref. [38] we first obtain a local solution in an expanded form near the particle

1, denoted as g
(d)
loc1, by expanding near r1 = 0 the source of the Poisson equation for g(d)

in (B1) and integrating that source term by term. For this purpose, we insert the well-known

expansion when r1 → 0,

r2−d
2 = r2−d

12

+∞
∑

ℓ=0

(

r1
r12

)ℓ

P
(d)
ℓ (c1) , (B2)

where we have posed c1 = −n1 · n12 = cos θ1, following exactly the notation of Appendix

C of [38], and denoted P
(d)
ℓ (c1) = C

(d/2−1)
ℓ (c1) the Gegenbauer polynomial representing the

appropriate generalization of the ℓth-degree Legendre polynomial in d dimensions

P
(d)
ℓ (c1) =

(−2)ℓΓ
(

d
2
+ ℓ− 1

)

ℓ! Γ
(

d
2
− 1
) n̂L

1 n̂
L
12 . (B3)

After replacing Eq. (B2) into the right-hand side of (B1), we integrate term by term, using

the fact that P
(d)
ℓ (c1) ∝ n̂L

1 , by means of the elementary formula

∆−1
(

n̂L
1 r

α
1

)

=
n̂L
1 r

α+2
1

(α− ℓ+ 2)(α+ ℓ+ d)
. (B4)

In this way, we arrive at the formal local expansion when r1 → 0,

g
(d)
loc1 =

r2−d
12 r4−d

1

2(4− d)

+∞
∑

ℓ=0

1

ℓ+ 1

(

r1
r12

)ℓ

P
(d)
ℓ (c1) . (B5)
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The trick now is to rewrite (B5) as an expression formally valid “everywhere”, i.e., not only

in the vicinity of the singular point 1, namely the following integral extending along the

segment of line joining the source point y1 to the field point x,

g
(d)
loc1 =

r4−d
1

2(4− d)

∫ 1

0

dλ
∣

∣y12 + λ r1
∣

∣

2−d
. (B6)

See the Appendix C in Ref. [38] for more details about this procedure (we recall that here

y12 = y1 − y2 and r1 = x− y1).

Let us next add to g
(d)
loc1 given in the form of the line integral (B6) the appropriate

homogeneous solution in such a way that the requested equation (B1) be satisfied in the

sense of distributions. Computing ∆g
(d)
loc1 in the sense of distributions we readily obtain [38]

∆g
(d)
loc1 = r2−d

1 r2−d
2 +

r4−d
12

2(4− d)

∫ 1

0

dλ

λ2
∆
∣

∣r1 +
1
λ
y12

∣

∣

2−d
, (B7)

showing that the true solution, valid in the sense of distributions, actually reads

g(d) = g
(d)
loc1 + g

(d)
hom1 , (B8)

where g
(d)
hom1 is obtained from the second term in (B7). Changing λ into 1/λ we can arrange

this term as a semi infinite line integral extending from x up to infinity in the direction n12,

g
(d)
hom1 = − r4−d

12

2(4− d)

∫ +∞

1

dλ
∣

∣r1 + λy12

∣

∣

2−d
. (B9)

This is an homogeneous solution in the sense that ∆g
(d)
hom1 = 0 in the sense of functions. One

can prove that the sum g(d) = g
(d)
loc1 + g

(d)
hom1 is indeed symmetric in the exchange of y1 and

y2 although the two separate pieces are not.

Here we shall only need the expansion when r1 → 0. An easy calculation, inserting the

expansion (B2) into (B9) and performing the integral over λ using analytic continuation in

d (which is the essence of dimensional regularization) readily yields (with ε = d− 3)

g
(d)
hom1 = − r−2ε

12

2(1− ε)

+∞
∑

ℓ=0

1

ℓ+ ε

(

r1
r12

)ℓ

P
(d)
ℓ (c1) , (B10)

where ε = d− 3. Finally the complete expansion of g(d) when r1 → 0 is obtained by adding

the corresponding piece given by (B5), as

g(d) =
r−2ε
12

2(1− ε)

+∞
∑

ℓ=0

[

1

ℓ+ 1

(

r1
r12

)1−ε

− 1

ℓ+ ε

](

r1
r12

)ℓ

P
(d)
ℓ (c1) . (B11)
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2. Derivation based on asymptotic matching

It is instructive to present an alternative proof of Eq. (B11) based on the same asymptotic

matching techniques as in the demonstration of Lemma 1 exposed in Sec. II B. We start

with the definition of g(d) in the form of the d-dimensional Poisson integral, which we choose

to be centred on the particle 1,

g(d) = − k̃d
4π

∫

ddr′
1

|r1 − r′
1|d−2

r′2−d
1 r′2−d

2 , (B12)

where k̃d stands for the constant factor Γ(d/2−1)/πd/2−1 and r1 = x−y1. In this definition,

we decompose the source into two terms. The first one is taken to be the Taylor expansion

of S = r2−d
1 r2−d

2 near r1 = 0, denoted as T1(S) henceforth. The second term is thus the

difference δS(x, t) = S − T1(S). The key point consists in noticing that δS(x, t) vanishes

in some open ball of radius R1 centered at the “origin” r1 = 0. This means that one can

restrict the integration domain of the Poisson operator acting on δS to the set of points

verifying r′1 > R1. Therefore, for r1 < R1, the Poisson kernel |r1 − r′
1|2−d may be replaced

by its multipole expansion

M
(

|r1 − r′
1|2−d

)

=
+∞
∑

ℓ=0

(−)ℓ

ℓ!
rL1 ∂Lr

′2−d
1 , (B13)

with the short notation rL1 = ri11 r
i2
1 · · · riℓ1 . After this operation, the integration domain may

be extended again to the whole space, since the source is still zero for r′1 < R1. It is implicitly

understood here that all Taylor and multipole expansions are actually performed at some

finite but arbitrary high orders. The formal use of infinite series in the present discussion

just allows us to elude technicalities related to the control of remainders. However, we have

checked that truncations at finite orders do not change the backbone of our argument. In

particular, we are formally allowed to commute the sum and integral symbols.

At this stage, we have shown that

g(d) = ∆−1T1

(

r2−d
1 r2−d

2

)

− k̃d
4π

+∞
∑

ℓ=0

(−)ℓ

ℓ!
rL1

∫

ddr′
1 ∂L

(

1

r′d−2
1

)

[

r′2−d
1 r′2−d

2 − T1

(

r′2−d
1 r′2−d

2

)

]

. (B14)

Because ∆−1T1(r
2−d
1 r2−d

2 ) is precisely what we have defined to be g
(d)
loc1 in Eq. (B5), the expres-

sion in the second line is identified with the homogeneous solution g
(d)
hom1. Now, the second
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term within the square brackets is made of pieces of the form ∼ (n̂′L
1 /r′d−2+ℓ

1 )(r′2−d
1 )(r′k1 n̂

′K
1 )

for ℓ, k integers. Its radial integration leads to integrals
∫ +∞
0

dr′1 r
−1−ε
1 . The latter are

just zero by analytic continuation on the parameter ε = d − 3, as explained in the proof a

Lemma 1 (with ε playing the role of −B there). Hence the homogeneous solution reads

g
(d)
hom1 = − k̃d

4π

+∞
∑

ℓ=0

(−)ℓ

ℓ!
rL1

∫

ddr′
1∂L

(

1

r′d−2
1

)

r′2−d
1 r′2−d

2 . (B15)

Next we complete the proof by evaluating explicitly the integral entering the above formula

with the help of the relation ∂̂Lr
′α
1 = (−2)ℓΓ(ℓ− α/2)/Γ(−α/2)r′α−ℓ

1 n̂′L
1 . We first obtain26

g
(d)
hom1 = − k̃d

4π

+∞
∑

ℓ=0

Γ(ℓ+ d/2− 1)Γ(d− 2)

Γ(d/2− 1)Γ(ℓ+ d− 2)

rL1
ℓ!

∂

∂ŷL1

∫

ddr′
1r

′4−2d
1 r′2−d

2 , (B16)

and, in the last step, we compute
∫

ddr′
1r

′4−d
1 r′2−d

2 by means of the Riesz formula, given e.g.

by Eq. (B.19) of Ref. [38]. Using the relation (B3) we find that the ensuing expression for

g
(d)
hom1 is in full agreement with Eq. (B10).

Notice finally that the function g(d) in d dimensions contains a pole in the dimension com-

ing from the monopole part of the expansion (B10) or (B11), namely g(d) = −1
2
ε−1 +O(ε0).

However, since in practical computations g(d) will always be differentiated, this pole is al-

ways cancelled out. Furthermore it was proved in Ref. [38] that the finite part of g(d) when

ε → 0 recovers the 3-dimensional result ln(r1 + r2 + r12) [9] up to some irrelevant additive

constant, namely

g(d) = − 1

2ε
− 1

2
+ ln

(

r1 + r2 + r12
2

)

+O(ε) . (B17)

But here we only need the local expansion provided by (B11) up to order ε included.

Appendix C: The complete 4PN shift

In this Appendix we show the complete shift at 4PN order that removes, in particular, all

the poles ∝ 1/ε and all the IR constants r0.
27 Furthermore, this shift cancels the dependence

26 Recall that the spatial multi-derivative ∂L(r
2−d) is trace-free. The traces are actually made of derivatives

of d-dimensional Dirac functions but one can check that, when inserted into the integral of (B15), they

vanish by analytic continuation on ε.
27 Another shift has been used in Secs. VB and VC to remove the accelerations in the harmonic Lagrangian

and compute the Hamiltonian. This shift, however, is too long to be presented.
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on the individual positions yA of the particles and is such that the shifted equations of motion

are manifestly Poincaré invariant (including spatial translations and boosts). It reads

ξ1 =
11

3

G2m2
1

c6

[

1

ε
− 2 ln

(

q1/2r′1
ℓ0

)

− 327

1540

]

a
(d)
1,N +

1

c8
ξ1, 4PN , (C1)

where G = GN in this Appendix, a
(d)
1,N represents the Newtonian acceleration of 1 in d

dimensions and we recall that q = 4πeγE . For convenience we divide the 4PN piece of the

shift in several pieces,

ξi1, 4PN =
1

ε
ξ
i (−1)
1, 4PN + ξ

(0,n12)
1, 4PN ni

12 + ξ
(0,v1)
1, 4PNv

i
1 + ξ
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i
12 , (C2)

with vi12 = vi1 − vi2 and
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