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We apply select ideas from the modern theory of stochastic processes in order to study the
continuity/roughness of scalar quantum fields. A scalar field with logarithmic correlations (such as
a massless field in 1+1 spacetime dimensions) has the mildest of singularities, making it a logical
starting point. Instead of the usual inner product of the field with a smooth function, we introduce
a moving average on an interval which allows us to obtain explicit results and has a simple physical
interpretation. Using the mathematical work of Dudley, we prove that the averaged random process
is in fact continuous, and give a precise modulus of continuity bounding the short-distance variation.
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I. INTRODUCTION

In traditional geometry, the distance between two
points is the length of the shortest curve that joins them.
This fits well with classical physics, as this shortest path
is the one followed by a free particle. But in quantum
physics, the shortest one is only the most likely of many
paths that the particle can take. Moreover, no parti-
cle can follow a path connecting two space-like separated
points. Taking these facts into account, we should hes-
itate to associate distance with the length of one par-
ticular curve. Instead, we can average over all paths
connecting two points, yielding the Green’s function of
a quantum field (also called the two point function, cor-
relation function or propagator.) A metric does emerge
out of the correlation, but turns out to be non-Euclidean
[1].
The idea of defining a metric from the correlation of a

random process is a staple of modern stochastic analysis
[2–5]. This can be illustrated with Brownian motion. The
Brownian paths are continuous, but not differentiable
with respect to the usual time parameter. A particle
executing Brownian motion is knocked around by other
particles in the medium. As the time between collisions
tends to zero, the velocity at any instant is no longer a
physical quantity. Furthermore, even the speed cannot

be bounded; as x→ y the probability of |B(x)−B(y)|
|x−y| being

bounded is zero (To make comparison with a quantum
field easier, we call the time parameter of the Brownian
process x rather than t. Since the diffusion constant has
dimension (length)

2
/time, dimensional analysis suggests

that

|B(x) −B(y)|
√

|x− y|
(1.1)
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would be a better quantity to measure the speed of a
Brownian particle. But it turns out that even this is un-
bounded with probability 1 (more commonly stated as
“almost surely” or a.s.) as x → y. The proper way to
quantify the time that has elapsed between two measure-
ments is not |x−y| or even

√

|x− y|. We seek a metric ω
with respect to which the sample paths are locally Lip-

schitz continuous, meaning |B(x)−B(y)|
ω(x,y) is almost surely

bounded as x→ y . The correct such “modulus of conti-
nuity,” attributed to Lévy, is

ω(x, y) ∝
√

|x− y| log 1

|x− y| (1.2)

for small |x − y|. This quantifies the roughness of
Brownian paths (One can bound the variations precisely

with a proportionality constant
√
2, but we will gener-

ally ignore multiplicative constants in discussing conti-
nuity/roughness here).
We look at the spatial metric in the simplest relativistic

theory, a massless scalar quantum field in 1 + 1 dimen-
sions. Such logarithmically correlated fields have gener-
ated interest in purely mathematical contexts, and have
potential applications in areas ranging from finance to
cosmology (see [6]). It is enough to understand the con-
tinuity of sample fields in the ground state; those in any
state of finite energy will exhibit identical behavior over
small distances (see Appendix B for a discussion of the
ground state wavefunction).
A complication is that scalar quantum fields are ran-

dom distributions rather than functions: φ(x) at some
point in space is not a meaningful quantity. But we will
show that a mild smoothing procedure (averaging over an
interval) is enough to get around this difficulty, yielding a
continuous but not differentiable function. This average
can be viewed as a model for the potential measured by
a device: such a measurement will always take place over
some finite width. A peculiar property of the logarith-
mically correlated field is that the probability law of the
average is independent of the size of the interval (size of
the measuring device). That is, the field does not appear
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any rougher if we average over smaller intervals.
We then obtain a result analogous to that of Levy: a

metric in space with respect to which the scalar field is
a.s. Lipschitz (we will use this term exclusively in the
sense of local continuity). Our result is a particular case
of the much deeper mathematical theory of regularity of
random processes [2–5] . The idea of using a moving
average (instead of an inner product with smooth test
functions) seems to be new, and yields simple explicit
results.
We then apply this moving average technique to other

random fields of physical interest, noting that a new pro-
cedure is sometimes needed if the field considered has
more severe divergences. For supplemental context, Ap-
pendix A discusses the intimate relationship of this work
to the resistance metric on a lattice, connecting to an ear-
lier paper [1], while Appendix B describes connections to
a functional analytic approach to regularity of random
processes.
Although we work with Gaussian fields in this paper,

the short distance behavior is the same for asymptoti-
cally free interacting fields (up to sub-leading logarithmic
corrections). The regularity of renormalizable but not
asymptotically-free theories (such as QED or the Higgs
model) can be quite different. The strength of interac-
tions grow as distances shrink, possibly leading to a sin-
gularity (Landau pole). In the case of QED, we know
that this is not physically significant, due to unification
with weak interactions into a non-abelian gauge theory.
But the question of what happens to the self-

interaction of a scalar quantum field (Higgs boson) at
short distances is still open. In the absence of evi-
dence at the LHC for supersymmetry or compositeness
of the scalar, we have to consider the possibility that the
Higgs model is truly the fundamental theory. The short
distance behavior is dominated by interactions, necessi-
tating new mathematical methods beyond perturbative
renormalization. The extensive mathematical literature
[2–5] on continuity of non-Gaussian processes ought to
contain useful tools for physics. In order to apply this
work to a full interacting theory, we must first know what
happens in the simpler case of a free theory. This is part
of the physical motivation for this paper.

II. CONTINUITY

A. Continuity of Random Processes

A random process r(x) assigns a random variable to
each value of x in some space X . The quantity

d(x, y) =

√

〈[r(x) − r(y)]2〉 (2.1)

satisfies the triangle inequality and so defines a metric
on X (provided we identify any originally distinct points
x, y for which d(x, y) = 0).

This metric need not be Euclidean or even Rieman-
nian. A standard example is Brownian motion, where
d(x, y) =

√

|x− y|, which is neither. We work out an-
other simple case in Appendix A: when X is a finite
graph, and d is the square root of the resistance met-
ric [7–9].
One commonly successful approach to the study of con-

tinuity is to leave behind the intuitive structure associ-
ated with the space X , and begin instead by looking at
structures related to the process of interest (such as the
metric d above). At first, one might expect that the sam-
ple paths for a random process r(x) will be necessarily
continuous with respect to d. Although true for Brown-
ian motion, almost sure continuity w.r.t. d does not hold
in general. For Gaussian processes, a sufficient condition
for continuity is the convergence of the Dudley integral
[2–5]

J(δ) =

∫ δ

0

√

logN(D, ǫ)dǫ, δ < D (2.2)

where N(D, ǫ) be the minimum number of balls of ra-
dius ǫ it takes to cover a ball of radius D in (X, d) (We
suppress the D dependence of J for simplicity of nota-
tion). The possible divergence comes from the lower limit
of the integral ǫ→ 0.
Can we go beyond continuity? To speak of differen-

tiable functions, a metric is not enough: we would need
a differentiable structure on X which we do not have
intrinsically. The closest analogue to differentiable func-
tions on a metric space (X, d) are Lipschitz functions, for

which |f(x)−f(y)|
d(x,y) is bounded. For comparison, differen-

tiable functions on the real line are Lipschitz, but not
all Lipschitz functions are differentiable. Of course, all
Lipschitz functions are continuous.
Even in cases where J(δ) converges, indicating that

the sample paths are continuous, they may still not be
Lipschitz with respect to the metric d above. Again, the
Dudley integral comes to the rescue: using it we can
define a more refined metric

ω(x, y) = J(d(x, y)) (2.3)

Since
√

logN(D, ǫ) is a decreasing function of ǫ, J(δ) is
a convex function. Thus J(d(x, y)) satisfies the triangle
inequality as well.
The sample paths of a Gaussian process for which J(δ)

converges are [2] a.s. Lipschitz in this refined metric ω.
Thus ω, rather than d, is the metric (“modulus of conti-
nuity”) we must associate to a Gaussian random process.
What would one do if the Dudley integral does not

converge? There is a more general theory [3] which gives
necessary and sufficient conditions for continuity: a “ma-
jorising measure” must exist on X . We will not use this
theory in this paper, but hope to return to it, as it can
deal with more general cases than Gaussian processes
(e.g., interacting quantum fields).
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B. Quantum Fields

In this paper, we consider a quantum scalar field φ
in the continuum limit. In the trivial case where φ is
massless with 1 spatial dimension and no time dimension,
the correlations of Brownian motion are reproduced and
φ remains a continuous function. However, in any fully
relativistic field theory, φ lives on a space of distributions,
not functions. To get a sensible random variable, we must
then take the inner product w.r.t. some test function h
with zero average.

φ[h] =

∫

φ(x)h(x)dx,

∫

h(x)dx = 0. (2.4)

We study the case where φ is a distribution with the
weakest possible singularities; one might say we want a
field that is “close” to being a function. The obvious
candidate is the case of logarithmic correlations (For a
recent review, see [6])

〈φ[h]φ[h′]〉 = −
∫

log |x− y| h(x)h′(y)dxdy. (2.5)

The corresponding Gaussian measure can be thought
of as the (square of the) ground state wavefunction of a
massless scalar field in 1+1 dimensions. (More precisely,
the continuum limit of the resistance metric of a row on
an infinite square lattice, discussed in Appendix A).
The condition

∫

h(x)dx = 0 ensures that the covari-
ance is unchanged if log |x−y| is replaced by logλ|x−y|,
meaning φ is scale invariant. Since φ has the physical
meaning of a potential, observables such as φ[h] must be
unchanged under a shift φ(x) 7→ φ(x) + a, which equiva-
lently suggests the requirement

∫

h(x)dx = 0.

C. Moving Average of a Quantum Field

Quantum fields which are only mildly singular can act
on test functions which are not smooth or even contin-
uous. It is not necessary to consider the whole space of
test functions as in [4]; in this paper our test functions
will be piecewise constant with compact support and zero
mean.
We define a moving average of φ:

φ̄s(u) =

∫ 1

2

− 1

2

{φ (s [u− w])− φ (s [0− w])} dw, s > 0

(2.6)
This is the inner product of φ with a discontinuous test
function h that has support on two intervals of width
s based at su and at 0; the sign is chosen so that
∫

h(x)dx = 0. The probability law of φ̄s is not trans-
lation invariant: the second term ensures the boundary
condition

φ̄s(0) = 0. (2.7)

We will mostly work with the quantity

φ̄s(u)− φ̄s(v) =

∫ 1

2

− 1

2

{φ (s [u− w])− φ (s [v − w])} dw

(2.8)
which has a translation invariant law. It is convenient to
rescale the co-ordinate of the midpoint by the width (as
we have already done), so that the variable u is dimen-
sionless. Then the quantity

ρ(u, v) ≡
√

〈
[

φ̄s(u)− φ̄s(v)
]2〉, (2.9)

which is just a special case of (2.1), is finite and de-
fines a metric. Moreover, it is independent of s in the
logarithmically correlated case. This means the process
φ̄s(u)− φ̄s(v) has a probability law that is independent of
s: a consequence of scale invariance, which is specific to
logarithmic correlations. As an interesting aside, we note
that sφ̄s(u) produces a solution to the wave equation in
u and s.
The moving average does not depart from the essence

of the standard idea of averaging over a test function.
It is simply that a piecewise constant test function is
especially convenient for a mildly singular quantum field
as opposed to a smoother function. For more singular
fields (e.g. scalar field in four dimensions) we would have
to revert to more regular test functions.

III. LOGARITHMICALLY CORRELATED

SCALAR FIELD IN 1 DIMENSION

In the logarithmically correlated case, we obtain ex-
plicit formula

ρ(u, v) = ρ(|u− v|) (3.1)

ρ(r) =
√

L(r + 1) + L(r − 1)− 2L(r) (3.2)

Where

L(r) =
1

2
r2 log r2. (3.3)

Being a convex function of r = |u − v|, this ρ(u, v)
will satisfy the triangle inequality (not true of ρ2, as seen
in figure 1). Thus, ρ defines a translationally invariant
metric.
Simple calculations (see IV) show that the Dudley in-

tegral J converges, so that φ̄s is a.s. continuous in ρ.
Moreover we can construct a refinement

J (ρ(u, v)) ≡ ω(u, v) ≈ |u− v| log 1

|u− v| (3.4)
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FIG. 1. The behavior of ρ2(r) and ρ(r), setting s = 1.

with respect to which φ̄s is a.s. Lipschitz. This is
a “modulus of continuity” for the moving average of a
quantum field, analogous to that of Lévy for Brownian
motion. (Note that there is no square root, however.)
We can obtain a crude picture of the moving average

process by generating noise which has the same power
spectrum as a log-correlated field, but with some high
frequency cutoff. This is given by the Fourier series

φ
Λ
(x) =

Λ
∑

m=1

1√
m

[

Xm cos
(πmx

L

)

+ Ym sin
(πmx

L

)]

(3.5)
where Xm, Ym are independent standard Gaussian

variables. For large Λ (Ultra Violet cutoff) and L (the
Infra Red cutoff, −L < x < L ) this creates an intuitive
“approximation” to the divergent field. Such a technique
is often used to visualize white noise. While one must
be careful claiming to “approximate” a distribution with
a truncated series, φ

Λ
gives us some sensible object on

which to numerically test the properties of our moving
average. This is carried out in figure 2. We see that
φ̄s has the desired properties without requiring the full
distribution.
While we focus on the log-correlated field for its math-

FIG. 2. We show an approximate φ and two averages φ̄Λ,s

where Λ = 4000, L = 5 and we average over width s =
0.05 (blue/dark) and s = 0.2 (orange/light). We see that
despite the factor of 4 difference in averaging windows, the two
appear interchangeable, demonstrating the scale invariance
even for this approximate representation. The two appear to
follow the same law, and the continuity is seen to be greatly
improved.

ematical simplicity, it is worth noting that such objects
are not necessarily confined to the realm of mathematical
fantasy. A free scalar field in one dimension can in prin-
ciple be a good approximation for a real physical system,
with one possible example being the electromagnetic field
of certain optical fibers. If the refractive index of the fiber
is chosen appropriately, only a finite number of transmis-
sion modes will be allowed. We can think of the wave
equation as analogous to the Schrödinger equation, with
the variable refractive index providing an effective poten-
tial. This potential can be chosen to allow only a finite
number of bound states. Single-mode fibers have only
one such state, leading to a system with one effective
spatial dimension.

Even in the absence of light in the fiber (ground state
of the electromagnetic field), there will be quantum fluc-
tuations in the potential. In the absence of severe non-
linearities, these fluctuations can be modeled as two non-
interacting scalar fields, one for each polarization mode.
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If the wire is transparent over a sufficient frequency
(maintaining its single-mode property and minimal dis-
persion for propagating waves), then the potential differ-
ence between two points will be a Gaussian random vari-
able whose variance is approximately logarithmic with
distance. The measurement of the potential would re-
quire a probe of finite size, so the averaging process em-
ployed in this paper provides a convincing model for the
potential as seen by a measuring apparatus at a given in-
stant. The considerations of this paper can be viewed as
a model of the spatial regularity of the electromagnetic
potential in such an optical fiber. This model could also,
in principle, describe the ground state fluctuations of a
quantum system confined to a very narrow region in 2
spatial dimensions, sometimes called a quantum wire.
Perhaps an experimental test of the sample field be-

havior in figure 2 is indeed possible. However, the details
of realizing such a system and carrying out such measure-
ments is highly non-trivial and not suited to the themes
of this paper; we include this discussion mainly as a re-
minder that lower dimensional systems are often not so
unphysical as they seem.

IV. EXPLICIT CALCULATIONS AND

FURTHER EXAMPLES

A. Variance of φ̄s for the log-correlated field

The calculations that justify the above assertions are
straightforward, but worth outlining as they help illu-
minate the properties discussed above. Because of the
divergences, we can’t use the standard approach directly
to the quantum field, but only to its moving average.
Begin with the observation that

F (a, b, c, d) ≡ −
∫ b

a

dx

∫ d

c

dy log |x− y| (4.1)

=
3

2
(a− b)(c− d)

+
1

2
[L(c− a)− L(d− a)− L(c− b) + L(d− b)]

(4.2)

Where L is defined in (3.3). Note this quantity is not
quite scale invariant: there is an “anomaly” proportional
to log λ.

L(λr) = λ2L(r) + r2 logλ (4.3)

F (λa, λb, λc, λd) = λ2F (a, b, c, d)− (b− a)(d− c) logλ
(4.4)

Then

〈
[

φ̄s(u)− φ̄s(v)
]2〉 = (4.5)

=
F (a, b, a, b)

(b − a)2
+
F (c, d, c, d)

(d− c)2
− 2

F (a, b, c, d)

(b− a)(d − c)
(4.6)

Where

F (a, b, a, b)

(b− a)2
=

3

2
− 1

2
log(b − a)2 (4.7)

which only depends on the width of the interval [a, b].
We can then consider two intervals of equal width s, cen-
tered at su and sv, yielding

〈
[

φ̄s(u)− φ̄s(v)
]2〉 = 3− 2 log(s)

− 2

s2
F
(

su− s

2
, su+

s

2
, sv − s

2
, sv +

s

2

) (4.8)

From the scale transformation property above of F we
can see that this quantity is independent of s: the “scale
anomaly” of F cancels against 2 log s. So we can simplify
by putting s = 1 and expressing F in terms of L:

〈
[

φ̄s(u)− φ̄s(v)
]2〉 ≡ ρ2(u, v)

= L(u− v − 1) + L(u− v + 1)− 2L(u− v)
(4.9)

as was claimed.

B. Continuity of Brownian Paths

In using the Dudley integral, it is useful to begin with
a well-known example. The most familiar example of a
Gaussian process is Wiener’s model of Brownian motion,
for which d(x, y) =

√

|x− y| . If an interval [0, 1] is
divided into N equal parts, each part is contained in a

d−ball of radius ǫ =
√

1
2N . Thus N(ǫ) = 1 + Floor

(

1
2ǫ2

)

and for small δ, (where Floor(a) is the integer part of the
real number a)

J(δ) ≈ δ
√

−2 log δ (4.10)

Thus Brownian sample paths B are almost surely con-
tinuous. More quantitatively, we may construct

ω(r) = J(d(r)) =
√

r log(1/r) (4.11)

to obtain the result of Lévy that, with probability one,

|B(x) −B(y)|
√

|x− y| log 1
|x−y||

< C (4.12)

as x→ y for some constant C.
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C. Continuity of φ̄s for logarithmically correlated

fields

We can now show that the sample paths φ̄s(u) are
continuous with probability one. Again, if [0, 1] is divided
into N intervals, each will have radius ǫ = ρ

(

1
N

)

. To get
small ǫ, we must choose a large N ; using the asymptotic
behavior

ρ(r) ≈ r
√

− log r (4.13)

for small r,

ǫ ≈ 1

N

√

− log

[

1

N

]

=⇒ N(ǫ) ≈ 1

ǫ

√

− log ǫ (4.14)

The Dudley integral converges:

J(δ) ≈ δ

√

log
1

δ
, δ → 0 (4.15)

J (ρ(r)) ≡ ω(r) ≈ r log(1/r) (4.16)

which yields the claimed modulus of continuity.

D. Additional Examples for Comparison

1. Moving Average of Brownian Paths

It is informative to apply the moving average pro-
cedure to the Brownian case, where the paths B(x)
which we average over are continuous functions to be-
gin with. Proceeding analogously, consider two intervals
with width s with centers su and sv respectively. Then
we can define, analogous to 4.1 but with some added
foresight,

F (su − s

2
, su+

s

2
, sv − s

2
, sv +

s

2
)

≡ −
∫ su+s/2

su−s/2

dx

∫ sv+s/2

sv−s/2

dy|x− y|
(4.17)

=

{

1
3

(

r3
(

−3s2 + 3s− 1
)

+ 3r2s3 + s3
)

0 < r < s

s3r r > s

(4.18)
Where r = |u− v|. We then have

〈
[

B̄s(u)− B̄s(v)
]2〉 ≡ ρ2(r) (4.19)

=
2s

3
− 2

s2
F
(

su− s

2
, su+

s

2
, sv − s

2
, sv +

s

2

)

(4.20)

It is easily seen that ρ2(λr) = λρ2(r), breaking scale
invariance. Still for comparison purposes, we consider
averaging over intervals of width s = 1, noting that the
scaling behavior will only change ω(r) by a constant fac-
tor.
As before, ρ2 does not define a metric, but its square

root ρ does. In the large-r limit we have

ρ(r) ∼
√
r (4.21)

While for small r,

ρ(r) ∼ r (4.22)

This short distance behavior suggests by dimensional
analysis that B̄s(x) might be Lipschitz in the usual metric
|u− v|, but the Dudley integral yields a weaker limit

ω(r) ≈ r log(
1

r
) (4.23)

|B̄s(u)− B̄s(v)|
r log(1r )

< C (4.24)

Thus B̄s is just shy of being Lipschitz in the usual
metric, but is a.s. Lipschitz with respect to the metric
ω(u, v) ≈ |u− v| log 1

|u−v| . Interestingly, this is the same

ω we obtained in 4.16 for the log-correlated case, even
though the short distance behavior of ρ is not quite the
same (the difference in the Dudley integral vanishes for
small δ). However ω for the Brownian sample paths prior
to averaging 4.11 contains a square root not present here.

2. Power Law Correlations in 1D

We can use the same method as with Brownian motion
to consider the moving average of a more general power-
law correlated field such that

〈φ[h]φ[h′]〉 = sign(α)

∫

|x− y|αh(x)h′(y)dxdy, (4.25)

∫

h(x)dx = 0 (4.26)

When α > 0 this is related to fractional Brownian
motion [10]. When α = −1 it is the restriction to one
dimension of a massless scalar quantum field in 2 + 1
dimensions. The moving average is no longer indepen-
dent of the width of the intervals. Still, for purposes of
comparison, we consider the average on intervals of fixed
width s = 1.
It is not difficult to evaluate the integrals to find that,

in the small r limit,
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ρ2(r) ∼











r2 α > 0

rα+2 −2 < α < 0, α 6= −1

r log r α = −1

(4.27)

The moving average is Lipschitz with respect to the
modulus

ω(r) =

{

r log(1/r) α > 0

r
α
2
+1 log(1/r) −2 < α < 0,

(4.28)

When α ≤ −2 the divergences are such that the mov-
ing average is an insufficient tool to smooth the quantum
field. Note that ω(r) is the same in the logarithmic case
as the case where α > 0. The logarithmic case can be
thought of as the critical case where the smoothness im-
plied by Dudley’s criterion starts to lessen.

3. Log Correlated Scalar Field in 3D

It is useful to work out a case in higher dimensions
as well. The massless scalar field in n + 1 space-time
dimensions has correlation

〈

φ(x)φ(y)
〉

∝ 1

|x− y|n−1
(4.29)

Thus for n > 1 will we get power law, instead of log-
arithmic correlations. Yet a logarithmically correlated,
non-relativistic, scalar field in 3 space dimensions is still
of interest in cosmology [6, 11]. As with the log-correlated
scalar field in 1D we must average it over a test function

〈φ[h]φ[h′]〉 = −
∫

log |x− y|h(x)h′(y)dx3dy3,
∫

h(x)dx3 = 0

(4.30)

Recall that

− log |x|+ const = c

∫

eik·x
1

|k|3
d3k

(2π)3
(4.31)

where the constant c = 2π2. The integral is not abso-
lutely convergent, so we define it through zeta regular-
ization.
We perform our moving average over the interior of a

sphere with radius t , centered at tu

φ̄t(u) ≡
∫

|w|≤1

{φ (t [u− w])− φ (t [0− w])} dw (4.32)

〈φ̄t(u)φ̄t(v)〉 =
∫

|w|≤1

〈

φ (t [u− w1])φ (t [v − w1])
〉

dw1dw2

(4.33)

= c2
∫

1

|k|3 e
ik·(u−v)t d

3k

(2π)3

∫

|w|≤1

e−ik·(w1−w2)tdw1dw2

(4.34)
Taking t = 1, this can be reduced to the form

〈
[

φ̄t(u)− φ̄t(v)
]2〉 = 26π4G(r) (4.35)

where

G(r) =

∫ ∞

0

dk
1

k7
[sin k − k cos k]

2

[

1− sin kr

kr

]

(4.36)

and r = |u−v|. We are not able to evaluate the integral
analytically, but its convergence is clear, justifying the
independence on t. In the large r limit, the integral is
dominated by small k contribution. We then have

G(r) ≈
∫ ∞

0

dk
1

3k

[

1− sinkr

kr

]

(4.37)

∼ log(r) +O(1) (4.38)

In the case of small r, the dominant contribution comes
from the first peak of 1

k7 [sin k − k cos k]
2
, which must

occur for k < 2π (i.e., k ≈ 5.678). This allows us to treat
kr as small, yielding the behavior

G(r) ≈ r2 ·
∫ ∞

0

dk
1

3k5
[sin k − k cos k]

2
(4.39)

∼ r2 (4.40)

The approximation can be verified numerically. This
small r behavior dictates the continuity modulus dis-
cussed above. Namely, we have that for the 3D Log-
correlated scalar field,

ρ(r) ∼ r (4.41)

ω(r) ∼ r log(1/r) (4.42)

A similar metric can be obtained for a log correlated
field in other dimensions. Note that, once we have
ρ(r) ∼ r for small r, the logarithm in the Dudley inte-
gral ensures that ω will not depend on the dimensionality
(up to proportionality). This is not true if ρ(r) has some
other short distance behavior.
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V. OUTLOOK

Gaussian processes correspond to free fields. The most
elegant way to introduce interactions into a scalar field
theory is to let it take values in a curved Riemannian
manifold. This is the nonlinear sigma model in physics
language, or the wave map in the mathematical litera-
ture. In 1+1 dimensions, such a theory, with a target
space of a sphere or a compact Lie group, is well-studied
in the physics literature. The short distance behavior is
approximated by free fields with corrections computable
in perturbation theory (asymptotic freedom). The only
case for which mathematically rigorous results are known
is that of the Wess-Zumino-Witten model, which has
non-gaussian behavior at short distances; i.e., a “non-
trivial fixed point” for the renormalization group. The
related measure for the ground state of the quantum field
has been constructed by Pickrell. (For a review, see [12]).
It is natural to ask for regularity results analogous to ours
in this case.
Looking further out, it would be interesting to quantify

the regularity of quantum fields of the non-linear sigma
model in two dimensional space time; and even further
out, λφ4 theory in four dimensions. It is possible that
the “naturalness problem” of the standard model of par-
ticle physics has a resolution in terms of such a deeper
understanding of the regularity of scalar quantum field
theory. The “modern” theory [3] of regularity of non-
gaussian processes ought to help with this daunting task.
Even harder is the case of Yang-Mills fields. An ana-
logue of our moving average is the Wilson loop. The
measure of integration over the space of gauge fields is
only known rigorously for the two dimensional case [13].
Regularity of Yang-Mills fields satisfying classical evolu-
tion equations (let alone random processes) is already
a formidable problem under active investigation (see for
example [14]).
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Appendix A: The Resistance Metric as the Variance

of Potential Fluctuations

Without being aware of the “modern” theory [2–5] of
random processes, we argued in an earlier paper [1] that
the two point function (for space-like separations) of a
quantum scalar field

√

〈[φ(x) − φ(y)]
2〉 (A1)

be used as the metric on spacetime. Since quantities
such as < φ2(x) > are divergent in a quantum field the-
ory, the metric was defined with a regularization. With
the lattice regularization of a free massless scalar field,
our proposal for the metric fitted well with the idea of a
resistance metric [7–9] popular in network theory.
In this appendix we show that the resistance metric

(more precisely its square root) is simply a finite dimen-
sional special case of the metric d appearing in the theory
of Gaussian processes. This connection can be thought
of as a particular case of the fluctuation-dissipation the-
orem of statistical mechanics: the potential difference
across a resistor has thermal fluctuations with variance
proportional to dissipation.
Imagine each edge of a network as a unit resistor con-

necting two vertices. Then, if a unit potential difference
is applied across two vertices (k, l), the reciprocal of the
power dissipated defines the effective resistance Rkl be-
tween them. Kirchhoff’s laws imply a variational princi-
ple for this quantity [7]

Rkl =
1

infφ

{

∑

ij Aij(φi − φj)2 | φk − φl = 1
} (A2)

where A is the adjacency matrix of the network. It is
well known that this Rkl satisfies the triangle inequality,
and is used as a metric in network theory.
It is convenient to introduce another symmetric matrix

K by

∑

ij

Aij(φi − φj)
2 =

∑

ij

Kijφiφj (A3)

Some Linear Algebra

Note that K is degenerate; it vanishes on the vector
whose components are all equal to one:

∑

j

Kijcj = 0, c ≡ (1, 1, , · · · 1) (A4)

In particular, the equation

∑

j

Kijφj = Ji (A5)

has a solution only if

∑

i

Ji = 0. (A6)

But the solution is not unique because if φiis a solution,
so is φi + aci .We can construct an inverse for K by
restricting the potentials to the subspace satisfying
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∑

i

φi = 0. (A7)

This fixes the overall constant (“ground potential”) in
φi. Now, K is an invertible map of this n−1 dimensional
subspace to itself; there is a matrix G satisfying

φi =
∑

j

GijJj (A8)

Equivalently, we can define G by the equations

∑

i

Gij = 0 (A9)

∑

j

KijGjk = δik − 1

n
cick (A10)

Variational Principle

We can solve this variational problem for effective re-
sistance using a Lagrange multiplier:

S =
∑

ij

Aij(φi − φj)
2 + λ(φk − φl) (A11)

∂S

∂φi
= 0 =⇒ 2

∑

j

Kijφj + λ [δik − δil] = 0. (A12)

The solution is

φi = −λ
2
[Gik −Gil] (A13)

The constraint φk − φl = 1 determines λ:

λ = − 2

[Gkk +Gll −Gkl]
(A14)

Then

∑

Kijφiφj = −λ
2

∑

i

φi(δik−δil) = −λ
2
(φk−φl) (A15)

=
1

[Gkk +Gll −Gkl]
(A16)

Thus

Rkl = Gkk +Gll −Gkl. (A17)

Gaussian Integral

Given a matrix K with all positive eigenvalues except
for one zero eigenvalue (with eigenvector c) we can define
a Gaussian integral

Z(J) =
1

Z

∫

V

e−
1

2

∑
ij

Kijφiφj+
∑

i
Jiφidφ ≡ 〈eJ·φ〉 (A18)

where
∑

i Ji = 0 . The normalization factor Z is cho-
sen such that Z(0) = 1.
Also, the range of integration is V ≡ R

n/R ; the quo-
tient of Rn by the translation φi 7→ φi + aci. From each
such orbit we can pick a representative that satisfies

∑

i

φi = 0 (A19)

This is an elementary example of “gauge fixing”.
On this n−1 dimensional subspace K is invertible with

the inverse G defined earlier. So

Z(J) = e
1

2

∑
ij

GijJiJJ (A20)

In particular

〈φkφl〉 = Gkl (A21)

and

〈(φk − φk)
2〉 = Gkk +Gll − 2Gkl (A22)

Thus, the effective resistance is equal to the variance
of the voltage fluctuations:

Rkl = 〈(φk − φk)
2〉. (A23)

This point of view on the resistance is especially con-
venient if we average overK (e.g., percolation). We hope
to return to this issue in another publication.
This procedure for deriving a formula for variance

breaks down in the continuum limit. We need to work
not with the potential itself, but an average of it over a
small region.

Appendix B: Abstract Wiener Spaces

There is another point of view on the regularity of
random processes, based on function spaces. Given an
orthonormal basis en in an infinite dimensional Hilbert
space H we can try to define a random variable

φ =
∑

n

gnen (B1)
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where gn are independent Gaussian random variables
of zero mean and variance one. But the probability of
this series converging in the norm of H is zero. For con-
vergence, we need a weaker norm. More precisely, we
seek a Banach space B and an embedding i : H → B
such that the sum converges to a random variable val-
ued in B. Such a triple (i,H,B) is the Abstract Wiener
Space of Gross [15]. There is no “best possible” B; the
choice is usually motivated by physics or geometry.

Recall that the Sobolev space Hs is the Hilbert space
equipped with inner product (f,∆sg). For Brownian mo-
tion, the Hilbert space H defined above is the Sobolev
space H1 of functions whose derivatives are square in-
tegrable. One choice for B is the space of continuous
functions. A more refined choice would be the space of
functions with norm

sup
x,y

|f(x)− f(y)|
ω(x, y)

. (B2)

where ω is the Lévy modulus described above. What is
the Abstract Wiener Space for a massless scalar quantum

field? Note that the ground state wave function of such
a field is (in the notation preferred by physicists)

ψ(φ) ∝ e−
1

2

∫
|k||φ̃(k)|2 dk

2π (B3)

The quadratic form in the exponent can be written as

(φ,
√
∆φ) (B4)

where ∆ is the Laplacian and (f, f) =
∫

|f(x)|2dx. Thus,
in more mathematical language, the log-correlated scalar
field is the Gaussian process modeled on the Sobolev
space H

1

2 (R) .
Gross [16] has shown that any choice of B must fit

within a small band of Hilbert spaces: L2 ⊂ B ⊂ H−ǫ

for ǫ > 0. We can make a proposal for the Abstract
Wiener Space for the massless scalar field on the real
line, based on the modulus of continuity: the completion
of the space of continuous functions (modulo constants)
by the norm

||f || ω = sup
u,v,s

|f̄s(u)− f̄s(v)|
ω(|u− v|) , ω(u, v) ≈ |u−v| log 1

|u − v|
(B5)
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